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Abstract

Deep Learning Architectures for Heterogeneous Face Recognition

Seyed Mehdi Iranmanesh

Face recognition has been one of the most challenging areas of research in biometrics and computer vi-
sion. Many face recognition algorithms are designed to address illumination and pose problems for visible
face images. In recent years, there has been significant amount of research in Heterogeneous Face Recogni-
tion (HFR). The large modality gap between faces captured in different spectrum as well as lack of training
data makes heterogeneous face recognition (HFR) quite a challenging problem. In this work, we present
different deep learning frameworks to address the problem of matching non-visible face photos against a
gallery of visible faces.

Algorithms for thermal-to-visible face recognition can be categorized as cross-spectrum feature-based
methods, or cross-spectrum image synthesis methods. In cross-spectrum feature-based face recognition a
thermal probe is matched against a gallery of visible faces corresponding to the real-world scenario, in a
feature subspace. The second category synthesizes a visible-like image from a thermal image which can
then be used by any commercial visible spectrum face recognition system. These methods also beneficial
in the sense that the synthesized visible face image can be directly utilized by existing face recognition
systems which operate only on the visible face imagery. Therefore, using this approach one can leverage the
existing commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) solutions. In addition, the
synthesized images can be used by human examiners for different purposes.

There are some informative traits, such as age, gender, ethnicity, race, and hair color, which are not dis-
tinctive enough for the sake of recognition, but still can act as complementary information to other primary
information, such as face and fingerprint. These traits, which are known as soft biometrics, can improve
recognition algorithms while they are much cheaper and faster to acquire. They can be directly used in a
unimodal system for some applications. Usually, soft biometric traits have been utilized jointly with hard
biometrics (face photo) for different tasks in the sense that they are considered to be available both during
the training and testing phases. In our approaches we look at this problem in a different way. We consider
the case when soft biometric information does not exist during the testing phase, and our method can predict
them directly in a multi-tasking paradigm.

There are situations in which training data might come equipped with additional information that can
be modeled as an auxiliary view of the data, and that unfortunately is not available during testing. This is
the LUPI scenario. We introduce a novel framework based on deep learning techniques that leverages the
auxiliary view to improve the performance of recognition system. We do so by introducing a formulation
that is general, in the sense that can be used with any visual classifier.

Every use of auxiliary information has been validated extensively using publicly available benchmark
datasets, and several new state-of-the-art accuracy performance values have been set. Examples of appli-
cation domains include visual object recognition from RGB images and from depth data, handwritten digit
recognition, and gesture recognition from video.

We also design a novel aggregation framework which optimizes the landmark locations directly using
only one image without requiring any extra prior which leads to robust alignment given arbitrary face de-
formations. Three different approaches are employed to generate the manipulated faces and two of them
perform the manipulation via the adversarial attacks to fool a face recognizer. This step can decouple from
our framework and potentially used to enhance other landmark detectors. Aggregation of the manipulated
faces in different branches of proposed method leads to robust landmark detection.



Finally we focus on the generative adversarial networks which is a very powerful tool in synthesizing
a visible-like images from the non-visible images. The main goal of a generative model is to approximate
the true data distribution which is not known. In general, the choice for modeling the density function is
challenging. Explicit models have the advantage of explicitly calculating the probability densities. There
are two well-known implicit approaches, namely the Generative Adversarial Network (GAN) and Varia-
tional AutoEncoder (VAE) which try to model the data distribution implicitly. The VAEs try to maximize
the data likelihood lower bound, while a GAN performs a minimax game between two players during its
optimization. GANs overlook the explicit data density characteristics which leads to undesirable quantita-
tive evaluations and mode collapse. This causes the generator to create similar looking images with poor
diversity of samples. In the last chapter of thesis, we focus to address this issue in GANs framework.
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Chapter 1

Introduction

1.1 Problem Definition

In the past few years, computer vision and biometrics technology has reached the attention of the masses

because of the widespread use of different cameras, from cellphone to surveillance cameras to more ad-

vanced imaging sensors. Computer vision and biometrics deals with acquiring, processing, and understand-

ing images in order to solve different tasks.

This proposal focuses on the Heterogeneous Face Recognition (HFR) task. Face recognition has been

one of the most challenging areas of research in biometrics and computer vision. Many face recognition

algorithms are designed to address illumination and pose problems for visible face images. In recent years,

there has been significant amount of research in HFR [11]. The main issue in HFR is to match the visible

face image to a face image that has been captured in another domain such as the infrared spectrum [12, 13],

polarimetric [14], or millimeter wave [15] due to the significant phenomenological difference as well as

the lack of training data. Infrared images are categorized into two major groups of reflection and emission.

The reflection category, which contains near infrared (NIR) and shortwave infrared (SWIR) bands, is more

informative about the facial details and it is very similar to the visible imagery. Due to this reflective

phenomenology of NIR and SWIR, there has been a significant performance on the NIR-to-visible face

recognition accuracy [16, 12] and to some extent for SWIR-to-visible face recognition accuracy [17, 13].

In this thesis, we also focus on additional information such as facial information that can be collected

and used in training. In addition, since one of the main challenges in HFR is synthesizing a visible like

image from a non-visible modality, we try to improve the generative adversarial networks which are very
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powerful tool for synthesizing images.

1.2 Motivation and Challenges

Due to the significant differences between the phenomenology of thermal and visible imagery, matching

a thermal face against a gallery of visible faces becomes a challenging task. However, thermal-to-visible

recognition is highly demanding because in the thermal data no active illumination is needed at night-time or

low-light environments since the thermal imagery is based on the emission originating from the underlying

skin and depends on the individual’s physiology.

Moreover, face sketch recognition is an important problem when the photo of a suspect is not available

or is captured with very poor quality. A face sketch is usually drawn by a forensic artist [18] or facial soft-

ware [19] based on the information provided by a victim, or an eye-witness. Therefore, the generated sketch

using the provided description of the victim is the only clue to identify the victim. An automatic matching

method is necessary to identify a suspect accurately via searching the law enforcement face database or

surveillance cameras using only the sketch of the suspect. The sketch recognition problem has been ex-

tensively studied in recent years [20]. Due to the large phenomenological gap between sketch and photo

domains, sketch recognition problem still remains a challenging task.

1.2.1 Heterogeneous Face Recognition

In recent years, there has been a growing research on thermal-to-visible face recognition [21, 22, 23, 24]

and thermal-to-visible detection [25]. Visible images contain rich textural and geometrical details with the

edges of the key facial structures (i.e, mouth, eyes, and nose) which clearly observable. However, in the

conventional thermal images some edges around the eye, eyebrows do appear but they suffer from significant

lack of details compared to the corresponding visible images, thus highlighting the large domain gap.

Recently, via an emerging technology [26], the polarization state information of thermal emission has

been exploited to provide additional geometrical and textural details, especially around the nose and the

mouth, which complements the textural details of the conventional intensity-based thermal images. This

additional information is not available in the conventional intensity-based thermal imaging [26], and is

utilized in recent algorithms to enhance the cross thermal-to-visible face recognition [26, 27, 28].
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1.2.2 Heterogeneous Face Recognition using Facial Attributes

Forensic or composite sketches contain limited information such as a rough spatial topology of the

suspect face and lack of some complementary information such as skin color, ethnicity, or hair color are

noticeable. In addition, sketch recognition problems mainly focus on single sketch which can be unreliable

in real-world situations. This unreliability can lead to a false identification [29]. In forensics investigation

multiple sources of information such as verbal description of multiple witnesses or the verbal description

and poor video surveillance can be utilized to enhance the performance of suspect identification [30, 31].

In general there are two classical ways to solve the sketch recognition problem. First approach namely

generative methods transfer one of the modalities (either sketch or photo) to the other before matching [32,

33]. In the second approach, the discriminative methods utilize feature descriptors such as the scale-invariant

feature transform (SIFT) [34], Weber’s local descriptor (WLD) [35], and multi-scale local binary pattern

(MLBP) [36]. The main drawbacks of these feature descriptors is that they might not be the optimal features

for the task of sketch-photo recognition. To compensate for this, some other methods in the literature

propose to extract modality-invariant features [23, 37].

Recently, in the literature soft biometric traits have been utilized jointly with hard biometrics (face

photo) for different tasks such as person identification or face recognition [38]. In fact, using facial attributes

in conjunction with sketch would be more advantageous since some attributes such as eye color, hair color,

skin color, and ethnicity do not exist in sketch and could be considered as the complementary information.

Moreover, some attributes such as wearing a hat or eyeglasses can be utilized as an auxiliary information to

narrow down the suspect in the databases more accurately.

1.2.3 Soft Biometric as a Privileged Data to Improve Deep Face Recognition

Biometric systems can recognize different identities based on various physical, behavioral features and

characteristics [39]. In general, unimodal recognition systems, which utilize the data from a single biometric

trait of the individual, are prone to failures arising from distorted biometric traits due to sensor noise and

limitations of feature extractors. They are also vulnerable to inter-class similarities, especially in the case

of large population, which make them less reliable to acquire enough distinctive features from a single

modality [40]. A multimodal biometric system with multiple modalities, such as face, fingerprint, and iris,

is expected to be more reliable and accurate due to utilization of different sources of information. However,
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acquisition of this information is costly and a tedious task which can affect the popularity and ease of using

multimodal biometric recognition systems. On the other hand, there are some informative traits, such as

age, gender, ethnicity, race, and hair color, which are not distinctive enough for the sake of recognition, but

still can act as complementary information to other primary information, such as face and fingerprint. These

traits, which are known as soft biometrics, can improve recognition algorithms while they are much cheaper

and faster to acquire.

The main question here is can we train a visual recognition model that is more robust to main data view

changes in testing when we are given additional information during training? The answer is “yes”. It is

possible to learn a shared embedding space using the given views (information) in training which is more

robust to main data view changes in testing. Typically, this problem is addressed by processing the available

data with classifiers trained on the same modalities. However, the missing modality at testing time can be

seen as additional information, available only during training. This additional information is an auxiliary

data of the image/video sample.

The problem of using auxiliary information has been studied within the concept of learning using priv-

ileged information (LUPI) as it has been introduced by Vapnik in [41]. The existence of the privileged

(auxiliary) information can help to improve the performance of prediction and classification tasks during

the testing phase, and increase the rate of convergence in the training phase. In this section, we consider

to develop a classifier for a more general and complex scenario in which the privileged information (soft

biometrics) and the primary data (hard biometrics) are true heterogeneous modalities.

The lack of auxiliary information during the testing phase, enforces some limitations on how to utilize

the auxiliary data during the training phase. The paradigm needs to relate the main modality and the avail-

able auxiliary information, and exploit this relationship to increase the convergence rate or learn features

which are more discriminative. Sharmanska et. al. [42], have confirmed that the privileged information can

distinguish between hard and easy samples in the training set. They made the assumption that the privileged

and the primary data share similar informative information, and consequently, the ”easy to classify” or ”hard

to classify” samples are the same in the primary and privileged data. However, in our work, LUPI paradigm

is employed to justify that the soft biometrics information can act as a complementary information to the

primary data.
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1.2.4 Robust Facial Landmark Detection via Aggregation on Geometrically Manipulated
Faces

A common approach to facial landmark detection problem is to leverage deep features from ConvNets.

These facial features and regressors are trained in an end-to-end manner utilizing a cascade strategy to

update the landmark locations progressively [43, 44]. Yu et al. [45] integrate geometric constraints within

CNN architecture using a deep deformation network. Lev et al. [46] propose a deep regression framework

with two-step re-initialization to avoid the initialization issue. Zhu et al. [5] also tried to deal with poor

initialization utilizing a coarse search over a shape space with variant shapes. In another work, Zhu et

al. [44], overcome the extreme head poses and rich shape deformations exploiting cascaded regressors.

Another category of landmark detection approaches leverages the end-to-end training from ConvNets

frameworks to learn robust heatmaps for landmark detection task [47, 48, 49]. Balut et al. [48] utilized the

residual framework to propose a robust network for facial landmark detection. Newell et al. [49] and Wei

et al. [47] consider the coordinate of the highest response on the heatmaps as the location of landmarks for

human pose estimation task.

In a more general definition, this problem can also be viewed as learning structural representation. Some

studies [50, 51], disentangle visual content into different factors of variations such as camera viewpoint,

motion and identity to capture the inherent structure of objects. However, the physical parameters of these

factors are embedded in a latent representation which is not discernible. Some methods can handle [52, 53]

conceptualize structures in the multi-tasking framework as auxiliary information (e.g., landmarks, depth,

and mask). Such structures in these frameworks are designed by humans and need supervision to learn.

1.2.5 Generative Adversarial Networks and Avoiding mode Collapse Issue

Generative models have extensively grown in recent years. The main goal of a generative model is

to approximate the true data distribution which is not known. Generative models are based on finding the

model parameters that maximize the likelihood of the training data. This is equivalent to minimizing the

Kullback-Leibler (KL) divergence (DKL(pdata||pmodel)) between the data distribution pdata and model dis-

tribution pmodel. Although this objective spans multiple modes of the data, it leads to generating vague and

undesirable samples [54]. There are other approaches that minimize DKL(pmodel||pdata) which are usually

referred to as the reverse KL divergence [55] and this is the main idea behind the generative adversarial
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networks. Although these models generate sharp images, minimizing the reverse KL divergence causes the

model distribution to focus on a single mode of the data and ignore the other modes. This is known as the

mode collapse in the generative adversarial models [56]. This happens because the reverse KL divergence

measures the dissimilarity between two distributions for the fake samples, and there is no penalty on the

fraction of the model distribution that covers the data distribution [57]. To address this problem, the au-

thors in [58] suggested the Wassertein distance which has the weakest convergence among existing GAN

metrics. This new metric is a powerful tool to avoid mode collapse. However, they used weight clipping to

approximate the Wassertain distance which causes a pathological behavior [56].

In general, the choice for modeling the density function is challenging. There are two ways to estimate

the density function namely, implicit methods and explicit methods. Implicit approaches tend to calculate

the model parameters without the need for the analytical form of pmodel. Explicit models have the advantage

of explicitly calculating the probability densities. There are two well-known implicit approaches, namely

the Generative Adversarial Network (GAN) and Variational AutoEncoder (VAE) which try to model the data

distribution implicitly. The VAEs try to maximize the data likelihood lower bound, while a GAN performs

a minimax game between two players during its optimization in which for an optimal discriminator, the

algorithm tries to find a generator that minimizes the Jensen-Shannon divergence (JSD). The JSD minimiza-

tion has been proven empirically to behave more similar to the reverse KL divergence rather than the KL

divergence [59, 56]. This behavior leads to the aforementioned problem of mode collapse in GAN models,

which causes the generator to create similar looking images with poor diversity of samples.

1.3 Contributions and Thesis Structure

In this thesis, we introduce algorithms for each of the problems we explained in the previous section.

Chapter 2 addresses the heterogeneous face recognition problem. Chapter 3 proposes a heterogeneous face

recognition systems which utilize some soft biometric traits (facial attributes) in addition to the main face

images (hard biometric traits). Chapter 4 addresses the LUPI problem. Chapter 5 tries to add an adaptive

margin to angular softmax loss. This leads to a more discriminative embedding space. Chapter 6 addresses

the problem of facial landmark detection utilizing aggregation on manipulated faces which are generated

using only one given image. This method is very useful for careful augmentation and also self-supervised

learning. Chapter 7 focuses on the theoretical aspect of generative adversarial networks and attempts to
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avoid mode collapse issue in them.

1.3.1 Chapter 2

The large modality gap between faces captured in different spectrum makes heterogeneous face recog-

nition (HFR) quite a challenging problem. In this chapter, we present two methods based on deep networks.

The first method is a coupled deep neural network to find global discriminative features in a nonlinear

embedding space to relate the polarimetric thermal faces to their corresponding visible faces. In the sec-

ond approach a coupled generative adversarial network (CpGAN) is employed to address the problem of

matching non-visible face photos against a gallery of visible faces.

Our CpGAN architecture consists of two sub-networks one dedicated to the visible spectrum and the

other sub-network dedicated to the non-visible spectrum. Each sub-network consists of a generative adver-

sarial network (GAN) architecture. Inspired by a dense network which is capable of maximizing the infor-

mation flow among features at different levels, we utilize a densely connected encoder-decoder structure as

the generator in each GAN sub-network. The proposed CpGAN framework uses multiple loss functions to

force the features from each sub-network to be as close as possible for the same identities in a common latent

subspace. To achieve a realistic photo reconstruction while preserving the discriminative information, we

also added a perceptual loss function to the coupling loss function. An ablation study is performed to show

the effectiveness of different loss functions in optimizing the proposed method. Moreover, the superiority

of the model compared to the state-of-the-art models in HFR is demonstrated using multiple datasets.

1.3.2 Chapter 3

In this chapter we proposed two methods. In the first approach we present a deep coupled framework

to address the problem of matching sketch image against a gallery of mugshots. Face sketches have the

essential information about the spatial topology and geometric details of faces while missing some impor-

tant facial attributes such as ethnicity, hair, eye, and skin color. We propose a coupled deep neural network

architecture which utilizes facial attributes in order to improve the sketch-photo recognition performance.

The proposed Attribute-Assisted Deep Convolutional Neural Network (AADCNN) method exploits the fa-

cial attributes and leverages the loss functions from the facial attributes identification and face verification

tasks in order to learn rich discriminative features in a common embedding subspace. The facial attribute

identification task increases the inter-personal variations by pushing apart the embedded features extracted
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from individuals with different facial attributes, while the verification task reduces the intra-personal varia-

tions by pulling together all the features that are related to one person. The learned discriminative features

can be well generalized to new identities not seen in the training data. The proposed architecture is able to

make full use of the sketch and complementary facial attribute information to train a deep model compared

to the conventional sketch-photo recognition methods. Extensive experiments are performed on composite

(E-PRIP) and semi-forensic (IIIT-D semi-forensic) datasets.

We also present a facial attribute-guided deep coupled learning framework to address the problem of

matching polarimetric thermal face photos against a gallery of visible faces. The coupled framework con-

tains two sub-network one dedicated to the visible spectrum and the second sub-network dedicated to the

polarimetric thermal spectrum. Each sub-network is made of a generative adversarial network (GAN) ar-

chitecture. We propose a novel Attribute-Guided Coupled Generative Adversarial Network (AGC-GAN)

architecture which utilizes facial attributes in order to improve the thermal-to-visible face recognition per-

formance. The proposed AGC-GAN method exploits the facial attributes and leverages multiple loss func-

tions in order to learn rich discriminative features in a common embedding subspace. To achieve a realistic

photo reconstruction while preserving the discriminative information we add a perceptual loss term to the

coupling loss function.

1.3.3 Chapter 4

We present a novel framework to exploit privileged information for face recognition which is provided

only during the training phase. Here, we focus on face classification/verification task, where RGB face

images are provided as the main view and soft biometric traits (age, ethnicity, etc) are provided as the

privileged (auxiliary) data. We assume that the soft biometric traits are only available during the training

phase and consider two different deep architectures in order to make full use of this additional privileged

information. In the first approach, a coupled deep neural network (Cp-DNN) architecture is proposed in

which a pair of networks are employed during the training phase to find a common latent feature space

between the main and privileged data. These two networks are simultaneously trained using both the main

and auxiliary data during the training phase. The Cp-DNN learns the complementary information from the

privileged data to improve the recognition of the main data. In the second approach, a multi-task learning

(MTL) framework is proposed to perform learning using privileged information (LUPI) during the training

phase. We refer to this second approach as MTL-LUPI. In this approach, network tries to simultaneously



Seyed Mehdi Iranmanesh Chapter 1. Introduction 9

predict the privileged soft biometric information and perform the classification/verification task by using

only the main data. The network learns the common features in a multi-task learning paradigm. Learning the

privileged tasks, helps the network to refine its features and enhance the main task performance. Extensive

experiments are performed on four different datasets and the results show the superiority of our method

compared to the state-of-the-art LUPI models in the face recognition task.

1.3.4 Chapter 5

In this chapter, we demonstrate that more discriminative feature space can be learned by enforcing

a deep network to adjust adaptive margins between classes utilizing attributes. This tight constraint also

effectively reduces the class imbalance inherent in the local data neighborhood, thus carving more balanced

class boundaries locally and using feature space more efficiently. Extensive experiments are performed on

five different datasets and the results show the superiority of our method compared to the state-of-the-art

models in both tasks of face recognition and person re-identification.

1.3.5 Chapter 6

In this work, we present a practical approach to the problem of facial landmark detection. The proposed

method can deal with large shape and appearance variations under the rich shape deformation. To handle

the shape variations we equip our method with the aggregation of manipulated face images. The proposed

framework generates different manipulated faces using only one given face image. The approach utilizes

the fact that small but carefully crafted geometric manipulation in the input domain can fool deep face

recognition models. We propose three different approaches to generate manipulated faces in which two

of them perform the manipulations via adversarial attacks and the other one uses known transformations.

Aggregating the manipulated faces provides a more robust landmark detection approach which is able to

capture more important deformations and variations of the face shapes. Our approach is demonstrated its

superiority compared to the state-of-the-art method on benchmark datasets AFLW, 300-W, and COFW.

1.3.6 Chapter 7

In this chapter, we present a simple approach to train Generative Adversarial Networks (GANs) in order

to avoid a mode collapse issue. Implicit models such as GANs tend to generate better samples compared

to explicit models that are trained on tractable data likelihood. However, GANs overlook the explicit data
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density characteristics which leads to undesirable quantitative evaluations and mode collapse. To bridge this

gap, we propose a autoregressive generative adversarial network (AutoGAN) for which we can enforce data

density estimation via an autoregressive model and support both adversarial and likelihood framework in a

joint training manner which diversify the estimated density in order to cover different modes. We propose

to use an adversarial network to transfer knowledge from an autoregressive model (teacher) to the generator

(student) of a GAN model.

1.4 Related work

Heterogeneous Face Recognition. Algorithms for thermal-to-visible face recognition can be categorized

as cross-spectrum feature-based methods, or cross-spectrum image synthesis methods. In cross-spectrum

feature-based face recognition a thermal probe is matched against a gallery of visible faces corresponding

to the real-world scenario [14], in a feature subspace. The second category synthesizes a visible-like image

from a thermal image which can then be used by any commercial visible spectrum face recognition system.

Recently, almost all the state-of-the-art techniques in face recognition task have applied deep convo-

lutional neural networks (DCNN) trained on large datasets to build up a compact discriminative feature

subspace. This approach also has been applied in other cross-modal applications such as pedestrian detec-

tion [25], and cross-modal retrieval [60] to find a representative embedding subspace. In [61], the authors

trained a network on a private dataset containing 4.4 million labeled images of 4,030 different subjects. They

also fine-tuned their network with a Siamese network [62] for a face verification task. They also extended

their work with an expanded dataset which contained 500 million images related to 10 million subjects. Sun

et al. [63, 64, 65, 66] studied a deep neural network architecture employing a joint verification-identification

loss function and Bayesian metrics in their works. They used two different datasets, namely, CelebFaces [63]

(202,599 images of 10,177 different subjects) and WDRef [67] (99,773 images of 2,995 subjects) to train

their deep networks. Schroff et al. [68] also trained a deep network using 200 million images of 8 million

different subjects. This network gained the best performance on Labeled Faces in the Wild (LFW) [69]

dataset, which is a standard unconstrained face recognition benchmark.

Researchers have also investigated a variety of approaches to exploit the polarimetric LWIR thermal

images to improve the cross-spectrum face recognition [26, 27, 70, 71]. One of the first methods devel-

oped for polarimetric thermal-to-visible extracted the histogram of oriented gradients (HOG) features from

S0, S1, and, S2 and combined them together and performed a one-versus-all support vector machine (SVM)
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classifier to do the face recognition [72]. Another work utilized similar approach to extract features [73].

However, they used partial least square (PLS), on top of the extracted features and learned a one-vs-all PLS

discriminant analysis classifier.

Recent cross-spectrum feature based approaches learn a function to explicitly map the visible and polari-

metric thermal features. Riggan et al. [70, 74] employed a deep perpetual mapping (DPM) and the coupled

neural network (CpNN) for polarimetric thermal-to-visible face recognition. The DPM technique [75] learns

a direct mapping between the scale invariant feature transform (SIFT) features from the thermal imagery and

the corresponding visible SIFT feature subspace by using a multilayer neural network, and then reconstructs

the visible image from these features. In contrast, CpNN [74] performs an indirect mapping between thermal

and visible SIFT features. The authors in [74] developed a method to jointly learn two mappings in order

to extract the shared latent features. The authors also added one-vs-all PLS classification on top of CpNN

or DPM to enhance the recognition accuracy. These two approaches are referred to as PLSoDPM [14] and

PLSoCpNN [70].

The second category of approaches attempt to synthesize a visible-like image from another modality

such as NIR, thermal, or polarimetric thermal image input. These methods also beneficial in the sense that

the synthesized visible face image can be directly utilized by existing face recognition systems which operate

only on the visible face imagery. In [76], the authors developed a method to synthesize a visible-like face

image from the polarimetric input. In order to perform synthesizing, they utilized DPM to map SIFT features

to the corresponding SIFT features in visible domain, and then reconstructed the visible images from the

mapped SIFT features. The authors extended their work in [77] where they employed a multi-region based

approach to jointly optimize the global and local spatial information during the reconstruction. In contrast

to the two-step process of Riggan et al. [76, 77], Zhang et al. [78] proposed a generative adversarial network

(GAN) based approach to reconstruct a more photo-realistic image using multiple loss functions. Although,

in the literature the feature-based cross-spectrum face recognition system has shown a better performance

compared to the synthesis-based methods. But, with the emergence of new GAN architectures and deep

generative models, it is expected that synthesis based methods will proceed to outperform the feature-based

cross-spectrum matching methods.

Recently, deep learning methods have been widely utilized in face recognition and other classification

problems [68, 79, 80, 81, 82, 83, 84] instead of classical methods [85, 86]. These methods, can also be

employed for the task of sketch-photo recognition problem by learning the relationship between the two
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modalities. However, the problem of sketch recognition is more challenging compared to the classical face

recognition problem from the deep learning point of view. The reason behind this lies not only in the

heterogeneous nature of sketch and photo modalities but also the lack of large databases in order to avoid

over-fitting and local minima. For example, most of the datasets contain only one sketch per subject which

makes it very challenging for a deep model to learn the robust features [87]. To avoid this, many deep

techniques utilize relatively shallow model or train the network only on the photo modality [88].

Heterogeneous Face Recognition with Facial Attributes. Recent approaches on sketch recognition prob-

lem have mainly focused on closing the gap between the two domains of sketch and photo and use of soft

biometrics has not been investigated adequately. In [89] an approach was proposed to directly use facial

attributes in suspect identification without using the sketch. [90] used race and gender to narrow down the

galley of mugshots for faster and more accurate matching. Mittal et. al. [1] fused multiple sketches of a

suspect to increase the accuracy of their algorithm. They also employed some soft biometric traits such as

gender, ethnicity, and skin color to reorder the ranked list of the suspects. Ouyang et al. [91] introduced a

framework to combine the facial attributes with low-level features to fill the gap between sketch and photo

modalities.

There are some informative traits, such as age, gender, ethnicity, race, and hair color, which are not dis-

tinctive enough for the sake of recognition, but still can act as complementary information to other primary

information, such as face and fingerprint. These traits, which are known as soft biometrics, can improve

recognition algorithms while they are much cheaper and faster to acquire. They can be directly used in a

unimodal system for some applications [38]. Soft biometric traits also have been utilized jointly with hard

biometrics (face photo) for different tasks such as person identification or face recognition. However, the

soft biometric traits are considered to be available both during the training and testing phases. Our approach

looks at this problem in a different way. We consider the case when soft biometric information does not

exist during the testing phase, and our method can predict them directly in a multi-tasking paradigm.

Learning Using Priviledged Information. Design of a face recognition system, comprises of two major

phases, namely training and testing. However, in some cases, there is an extra information which is only

available during the training phase and is missing during the testing phase. In other words, the training

data is augmented with some extra auxiliary information. For example, in object recognition, the labeled

images maybe annotated with texts which provide semantic information about the object, or any other extra

knowledge, such as the boundary information which determines the exact location of a specific object [92].
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This extra information can be regarded as an auxiliary to the primary modality of the data. Unlike the domain

adaptation and transfer learning problems in which the data is similar in both the source and target domains

but statistically different [93, 94], here, the available data in the source domain has an extra modality which

is not available in the target domain. This makes the task much more similar to the multi-task and multiview

problems [95, 96, 97]. However, in comparison with the two aforementioned problems, the absence of

auxiliary data in the testing phase makes our problem more challenging.

Facial Landmark Detection There has been a wide range of approaches to solve the problem of landmark

detection, starting with methods such as active shape model [98], and active appearance models [99] which

are related to PCA-based shape constraint.

Many of these approaches utilize a cascade strategy to integrate prediction modules and update the

landmark locations in a progressive manner [100, 101]. Cascade regression networks which are designed

for landmark localization [43], or human body pose estimation [102] have made improvements by tackling

the problem level at coarse to fine levels. However, requiring careful design and initialization for such frame-

works and the absence of learned geometric relationships are the main challenges of these architectures.

Recently, with the onset of convolutional neural networks (ConvNets) in feature representation [103],

a common approach in facial landmark detection is to extract features from the facial appearance using

ConvNets, and afterward learn a model typically a regressor to map the features to the landmark loca-

tions [100, 104, 105, 106]. Despite the excellent performance of the ConvNets in different applications, it

has been shown [107, 108] that they can be very sensitive and vulnerable to a small perturbation in the input

domain which can lead to a drastic change of the output domain, e.g., predicted landmarks.

Generative Adversarial Networks. In contrast to VAE models which implicitly compute the likelihood of

the data space, autoregressive models have the advantage of tractable likelihood and can generate diverse

samples. The basic idea of these models is to use the autoregressive connections to model an image pixel by

pixel. In fact, autoregressive approaches model the joint distribution of pixels in the image as the product of

conditional distributions [109]. PixelCNN++ [110] is the most recent autoregressive method that provides

a tractable likelihood for the data distribution and generates images with diverse samples. However, these

models suffer from a slow synthesis when compared to GANs.

The lack of explicit density function in GANs is problematic for two main reasons. Many applications in

deep generative models are based on the density estimation. For instance, the count-based exploration meth-

ods [111] rely on density estimation have achieved state-of-the-art performance on reinforcement learning
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environments [112]. The second reason is that the quantitative evaluation of the generalization performance

of such models is challenging. Since GANs typically are able to generate sharp samples by memorizing the

training data, the evaluation criteria based on ad-hoc sample quality metrics [113] does not capture the mode

collapse issue.

Recently some approaches have been trying to solve the mode collapse issue by improving the GAN

training process. In [113], the authors utilize the mini-batch discrimination trick to allow the discriminator

to detect samples that are unusually similar to the other generated samples. This heuristic helps to generate

visually more appealing samples at the cost of more computational time. Therefore, this method is usually

used in the last hidden layer of the discriminator. Another method is to unroll the optimization of discrimi-

nator to make a surrogate objective function in order to help optimizing the generator [114]. Although their

model is robust to mode collapse but it is not clear whether this happens at the cost of losing image quality

or not. In another approach the author used many generators to discover all the modes of the data [115].

There are some other approaches that attempt to use autoencoders as regularizers or additional losses to

penalize the missing modes [116, 117]. In [118] authors used an LSTM-based autoregressive model in their

discriminator function and considered the reconstruction loss as the penalty for fake data. However, in their

GAN model they trained their discriminator only on the true data as it becomes unbounded for the fake data

synthesized by the generator.
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Chapter 2

Heterogeneous Face Recognition

2.1 Introduction

Motivated by recent advances in face recognition algorithms using deep approaches and generative

models, in this chapter we propose two different methods for cross-spectrum face recognition, namely, a

novel Coupled Generative Adversarial Network (CpGAN) , which utilizes non-visible modalities to perform

a cross-spectrum face recognition task and a Coupled Deep Convolutional Neural Network (CpDCNN)

. In [119], authors used a coupled CNN-based architecture for their face recognition system. However,

they evaluated their framework only for near infrared which is very close to visible. Here, we evaluate

the proposed algorithm on different bands of electromagnetic spectrum from NIR to the more challenging

modalities such as midwave and longwave infrared. We compare our proposed framework against several

different state-of-the-art techniques in the literature such as DPM [75], coupled neural network (CpNN) [74],

PLS [24], PLS◦DPM and PLS◦CpNN [14, 70]. We present a thorough evaluation using multiple datasets:

Wright State (WSRI), Notre Dame X1 (UND X1), Night Vision (NVESD), Polarimetric thermal, and Casia

Figure 2.1: Visible spectrum and its corresponding conventional thermal (S0), and polarimetric state information (S1 and
S2) of a thermal image of a subject.



Seyed Mehdi Iranmanesh Chapter 2. Heterogeneous Face Recognition 16

NIR-VIS 2.0 datasets. Our results show that our proposed CpGAN could outperform the existing methods

for heterogeneous face recognition.

2.2 Polarimetric Thermal Imagery

In comparison to the conventional thermal imaging that captures intensity-only in the midwave infrared

(MWIR) or longwave infrared (LWIR) bands, polarimetric thermal considers the polarization state informa-

tion in the thermal infrared spectrum. Polarization states are characterized using the Stokes parameters S0,

S1, S2, and S3 that are captured from a face, see Fig. 7.1. The polarimetric measurement is done using a

series of linear and circular polarizers. The four mentioned Stokes parameters which completely define the

polarization states are:

S0 = I◦0 + I◦90 , (2.1)

S1 = I◦0 − I◦90 , (2.2)

S2 = I◦45 + I◦−45 , (2.3)

S3 = I◦R + I◦L , (2.4)

where I◦0 , I◦90, I◦45, and I◦−45 describe the measured intensity of the light after passing through a linear

polarizer with angle of 0◦, 90◦, 45◦, and −45◦ related to horizontal axes, respectively. IR and IL are the

intensity of the light after passing through right and left circularly polarization filters. Since there is no

artificial illumination in passive imaging, there is almost no circularly polarized information in LWIR or

MWIR spectrum. Therefore, S3 is considered to be zero for most of the applications. To quantify the

portion of electromagnetic radiation that is linearly polarized, the Degree of Linear Polarization (DoLP), is

computed with the linear combination of the Stokes as follows:

DoLP =

√
S2
1 + S2

2

S0
. (2.5)
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Figure 2.2: An overview of the pyramid densely connected network.

2.3 DenseNets

Traditional convolutional feed-forward networks such as VGG [120], connect the output of the lth layer

as the input to the next layer, which is equal to the following transition: xl = Hl(xl−1), where Hl is the

convolutional mapping from l−1 to l. In Resnet [121], authors made a change in this transition information

by adding a skip-connection which bypasses the non-linear transformation with an identity function:

xl = Hl(xl−1) + xl−1 . (2.6)

A benefit of Resnet architecture is that through the identity function, the gradient of the cost function can

progress directly from later layers to the earlier layers. However, the combination of the identity function

and output of Hl might prevent the information flow in the network [122].

In order to improve the information flow between different layers, in Densenet [122] authors provided

a different connectivity between different layers in which there is a direct connection between any layer

and all the subsequent layers. Therefore the lth layer receives the feature maps of all the previous layers,

x0, x1, ..., xl−1 as input:

xl = Hl([x0, x1, ..., xl−1]) , (2.7)

where [x0, x1, ..., xl−1] represents the concatenation of the feature maps produced from the previous layers

0, ..., l − 1 [122] (see dense block in Fig. 2.2).
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Figure 2.3: Proposed network using two GAN based sub-networks (Vis-GAN and NVis-GAN) coupled by contrastive loss
function. Here, the input to NVis-GAN is polarimetric data (S0, S1, S2). In the case of other non-visible modalities such as
(NIR, MWIR, and LWIR) the framework remains the same and only the input to the NVIS-GAN is changed accordingly.

2.4 Generative adversarial networks

The generative adversarial network consists of two sub-networks, namely a generator and a discrim-

inator which compete with each other in a minimax game. For the generator to learn the distribution pg

over the data x, the authors consider a prior on the input noise variables pz(z) [123]. Generator network G

is a differentiable function with a parameter θg which performs a mapping to the data space G(z; θg). On

the other hand, the discriminator network is also a differentiable function D(.; θd) which performs a binary

classification between the real data x and the generated data G(z). At the same time, network G tries to fool

the discriminator by minimizing log(1 − D(G(z))). In other words, D and G play a two-player minimax

game which resembles minimizing the Jenson-Shannon divergence [123] as follows:

min
G
,max

D
Ex∼Pdata(x)

[logD(x)] + Ez∼Pz [log(1−D(G(z)))].

2.5 Conditional generative adversarial networks

Conditional adversarial networks is an extension of generative adversarial networks in which both the

generator and discriminator are conditioned on some auxiliary information y. The extra information y can

be any kind of information such as class label or other modalities data. The objective of the conditional GAN
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is the same as the classical GAN. The only exception is that in the conditional GAN both the discriminator

and generator are conditioned on the auxiliary information as follows:

min
G

max
D

Ex∼Pdata(x)
[logD(x|y)] + Ez∼Pz [log(1−D(G(z|y)))],

2.6 CpGAN method

The proposed CpGAN is illustrated in Fig. 2.3. The proposed approach consists of two generators and

two discriminators which are coupled with each other [124]. In the following, we explain these modules in

detail.

2.6.1 Pyramid Densely Connected Network.

This network is a densely connected encoder-decoder structure which utilizes the features from multi

layers of a CNN [125]. In this framework a dense block [122] is used as the basic structure since it can

maximize the information flow and has better convergence with connecting all the layers. The encoder part

of the network consists of three dense blocks with their corresponding down-sampling operations which

shrinks the feature map to 1/32 of the input size. The decoder part is responsible for reconstructing the orig-

inal size image from the embedding subspace and it stacks five dense blocks with the refined up-sampling

transition blocks [126, 127]. Moreover, the concatenations are performed on the feature maps with the same

size. Inspired by the use of global context information in classification and segmentation, this network tries

to capture more global information, using multi-level pyramid pooling blocks [128, 129]. This operation

is done to make sure that features from different scales are embedded in the final result. Therefore, four

different operations with pooling sizes of 1/32, 1/16, 1/8, and 1/4 is selected. All the four level features

are up-sampled to the original size and are concatenated together. Fig. 2.2 illustrates the overview of the

pyramid densely connected network.

2.7 Deep cross-modal face recognition

The final objective of the proposed model is identification of non-visible faces which we do not have ac-

cess to them during the training phase. For this reason, we couple two pyramid densely connected networks
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one dedicated to the visible spectrum (Vis-GAN) and the other one to the non-visible spectrum (NVis-GAN).

Each network performs a non-linear transformation of the input space. The final objective of our proposed

CpGAN is to find the global deep features representing the relationship between non-visible face images

and their corresponding visible ones. In order to find a common latent embedding subspace between these

two different domains we couple two pyramid densely connected networks (Vis-GAN and NVis-GAN) via

a contrastive loss function [62]. The contrastive loss function (`cont) pulls the genuine pairs (i.e., a visible

face image with its own corresponding non-visible face image) towards each other into a common latent

feature subspace and push the impostor pairs (i.e., a visible face image of a subject with another subject’s

non-visible face image) apart from each other (see VisGAN and NVis-GAN networks at their bottlenecks in

Fig. 2.3). Similar to [62], our contrastive loss is of the form:

`cont(z1(y
i
vis), z2(y

j
nvis), ycont) = (2.8)

(1− ycont)Lgen(D(z1(y
i
vis), z2(y

j
nvis)) + ycontLimp(D(z1(y

i
vis), z2(y

j
nvis)) ,

where yivis is the input for the Vis-GAN (i.e., visible face image), and yjnvis is the input for the NVis-GAN

(i.e., non-visible face images). ycont is a binary label, Lgen and Limp represent the partial loss functions

for the genuine and impostor pairs, respectively, and D(z1(y
i
vis), z2(y

j
nvis)) indicates the Euclidean dis-

tance between the embedded data in the embedded common feature subspace. z1(.) and z2(.) are the deep

convolutional neural network based embedding functions, which transform yivis and yjnvis into a common

latent embedding subspace, respectively. The binary label, ycont, is assigned a value of 0 when both modal-

ities, i.e., visible and non-visible, form a genuine pair, or, equivalently, the inputs are from the same class

(cli = clj). On the contrary, when the inputs are from different classes, which means they form an impostor

pair, ycont is equal to 1. In addition, Lgen and Limp are defined as follows:

Lgen(D(z1(y
i
vis), z2(y

j
nvis))) =

1

2
||z1(yivis), z2(y

j
nvis)||

2
2

for cli = clj ,

(2.9)

and

Limp(D(z1(y
i
vis), z2(y

j
nvis))) = (2.10)

1

2
max(0,m− ||z1(yivis), z2(y

j
nvis)||

2
2) for cli 6= clj .
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where m is the contrastive margin. Therefore, the coupling loss function can be written as:

Lcpl = 1/N2
N∑
i=1

N∑
j=1

`cont(z1(y
i
vis), z2(y

j
nvis), ycont) , (2.11)

where N is the number of samples. It should be noted that the contrastive loss function (2.11) considers

the subjects’ labels implicitly. Therefore, it has the ability to find a discriminative embedding space by

employing the data labels in contrast to some other metrics such as the Euclidean distance. This discrimina-

tive embedding space would be useful in identifying a non-visible probe photo against a gallery of visible

photos.

2.7.1 Generative Adversarial Loss

Let Gvis and Gnvis denote the generators that synthesize a visible image from an input visible and a

non-visible image, respectively. To synthesize the output and to make sure that the synthesized images

generated by the two generators are indistinguishable from the corresponding ground truth visible image,

we utilized the GAN loss function in [123]. As it is shown in Fig. 2.3, the first generator Gvis is responsible

to generate a visible image when the network is conditioned on a visible image. On the other hand, the

second generator Gnvis tries to generate the same visible image from the non-visible image which has a

more challenging task compared to the first generator. Therefore, the total loss for the coupled GAN is as

follows:

LGAN = Lvis + Lnvis, (2.12)

where the GAN loss function related to the Vis-GAN is given as:

Lvis = min
Gvis

max
Dvis

Exi∼Pvis(x)
[logD(xi|yivis)] + Ez∼Pz [log(1−D(G(z|yivis)))],

where yivis is the visible image used as condition for the Vis-GAN and xi is the real data. It should be

noted that for the Vis-GAN the real data xi and the condition yivis are the same. Similarly the loss for the

NVis-GAN is given as:
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Lnvis = min
Gnvis

max
Dnvis

Exj∼Pvis(x)
[logD(xj |yjnvis)] + Ez∼Pz [log(1−D(G(z|yjnvis)))],

where yjnvis is the non-visible image used as condition for the NVis-GAN and xj is the real data. It should

be noted that xi is the same as xj if they refer to the same subject (cli = clj), otherwise they are not the

same.

2.7.2 Overall Loss Function

The proposed approach contains the following loss function: the Euclidean LEvis and LEnvis losses

which are enforced on the recovered visible images from the Vis-GAN and NVis-GAN networks, respec-

tively, are defined as follows:

LEvis = ||Gvis(z|yivis)− xi||22, (2.13)

LEnvis = ||Gnvis(z|yjnvis)− x
j ||22, (2.14)

LE = LEvis + LEnvis . (2.15)

The LGAN (2.12) loss is also added to generate sharper images. In addition, based on the success of

perceptual loss in low-level vision tasks [130, 131], the perceptual loss is added to the NVis-GAN to preserve

more photo realistic details as follows:

LPnvis =
1

CpWpHp

Cp∑
c=1

Wp∑
w=1

Hp∑
h=1

||V (Gnvis(z|yjnvis))
c,w,h − V (xj)c,w,h||,

where xj is the ground truth visible image, Gnvis(z|yjnvis) is the output of NVis-GAN generator. V(.)

represents a non-linear CNN transformation and Cp,Wp, Hp are the dimension of a particular layer in V . It

should be noted that the perceptual loss is just used in the NVis-GAN.

Finally, the contrastive loss function (2.11) is added to train both networks Vis-GAN and NVis-GAN

jointly to make the embedding space of the mentioned networks as close as possible and to preserve a more

discriminative and distinguishable shared space. Therefore, the total loss function for the proposed CpGAN
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Table 2.1: Summary of heterogeneous face recognition datasets used for comparing models.

Database Source Target # subjects Variations
WSRI visible MWIR 64 E

UND X1 visible LWIR 241 E
NVESD visible MWIR & LWIR 50 E,D

Casia NIR-VIS 2.0 visible NIR 725 P,E,G,D
Casia HFB visible NIR 202 P,E,G,D

Polarimetric thermal visible S0, S1, S2 60 E,D

is as follows:

LT = Lcpl + λ1LE + λ2LGAN + λ3LPnvis, (2.16)

where Lcpl is the coupling loss (2.11) term which is the contrastive loss function, the second is the total

L2 loss for the Vis-GAN and NVis-GAN. LGAN and LPnvis are the GAN, and perceptual loss functions

for the Vis-GAN, respectively. λ1, λ2, and λ3 are the hyper-parameters which weight the Euclidean, the

adversarial, and the perceptual losses, respectively.

2.7.3 Testing Phase

During the testing phase, only the NVis-GAN is used. For a given test probe ytnvis, NVis-GAN is

employed in the proposed CpGAN to synthesize the visible image Gnvis(z|ytnvis) = x̂tvis. Eventually,

the identification of face recognition is done, by calculating the minimum Euclidean distance between the

synthesized image from the not-visible prob and visible gallery images as follows:

xt
∗
vis = argmin

xtvis

||xtvis, x̂tvis|| , (2.17)

where x̂tvis is the synthesized probe face image and xt
∗
visis the selected matching visible face image within

the gallery of face images.
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Figure 2.4: Proposed network using two convolutional networks (Vis-DCNN and Pol-DCNN) coupled by contrastive loss
function.

2.8 CpDCNN

In this method, we used a VGG-16 like network [132] in our cross-spectrum recognition framework. The

VGG-16 neural network comprised of five major convolutional components which are connected in series.

The first two components, Conv1− 64 and Conv2− 128 consists of the following layers: a convolutional

layer, a rectified linear unit layer, a second convolutional layer, a second rectified linear unit layer, and a max

pooling layer. The remaining three components contain one additional convolutional layer and a rectifier

linear unit layer. The only exception is in the last component, where global pooling was used instead of the

max pooling to reduce the number of parameters.

The final objective of the proposed model is identification of the polarimetric thermal images of the

probe faces while we do not have access to them during the training phase. For this reason, we coupled

two VGG-16 like networks one dedicated to the visible spectrum (Vis-DCNN) and the other one to the

polarimetric thermal (Pol-DCNN). Each DCNN performs a non-linear transformation of the input space.

The ultimate goal of our proposed CpDCNN is to find the global deep features representing the relationship

between polarimetric thermal face images and their corresponding visible ones. In other to find the common

embedding space between these two different domains we coupled two VGG-16 structured networks (Vis-

DCNN and Pol-DCNN) via a contrastive loss function [62] (see Fig. 2.4).
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2.9 Experiments and results

2.9.1 Implementation details

The network is trained on a Nvidia Titan X GPU using the PyTorch framework. We choose λ4 = 0.5

and λ1,2,3 = 1. For training, we used the Adam optimizer [133] with a first-order momentum of 0.5 and a

learning rate of 0.0002 and a batch size of 4. The perceptual loss is assessed on relu3-1 layer of a pre-trained

VGG [120] model for the Imagenet dataset [134].

2.9.2 Heterogeneous face recognition datasets

In order to evaluate the proposed CpGAN model, we utilize six different heterogeneous face recognition

databases:

1) Wright State (WSRI) [135],

2) Notre Dame X1 (UND X1) [136],

3) Night Vision (NVESD) [137],

4) Casia NIR-VIS 2.0 [138],

5) Casia HFB [139],

6) Polarimetric thermal [14],

in order to test the NIR-to-visible, MWIR-to-visible, LWIR-to-visible and polarimetric thermal-to-

visible face recognition applications. Table 2.1 provides an overview of the datasets. Each of the mentioned

databases are described below:

WSRI dataset consists of 1,615 visible and 1,615 MWIR images from 64 different identities. There are 25

images per subject approximately with different facial expressions. For the visible modality, the original

resolution of the images are 1004× 1004, and for the MWIR modality and 512× 640. After preprocessing,

the images from both modalities are resized to 235 × 295 pixels. This database is split randomly into a set

of 10 subjects for training set and remaining 54 subjects for testing set.

UND X1 dataset contains LWIR and visible images related to 241 subjects with different variations in

lighting, expression and time lapse. The original resolutions of the images are 1600 × 1200 pixels for the

visible modality and 320× 240 pixels for the LWIR modality. Both modalities are resampled to 150× 110

pixels after preprocessing.

The training set composed of 159 subjects captured in the visible and LWIR modalities with only one
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image per subject. One the other hand, the test set contains the remaining 82 subjects with multiple images

per subject. This database is challenging due to the low resolution and noise present in the LWIR imagery.

This leads to significant difference between the two modalities in this dataset.

NVESD dataset is collected by the U.S Army CERDEC-NVESD in 2012 from 50 different subjects. The

dataset composed of 450 images for each modality of visible, MWIR, and LWIR. The images were cap-

tured simultaneously from different identities with the original resolution of 640 × 480 pixels for all of the

modalities. After preprocessing as in [24], the image resolution are resampled to 174 × 174 and dataset is

split into training and testing sets.

CASIA NIR-VIS 2.0 dataset contains the visible and NIR images from 725 different identities. The images

were not captured simultaneously. For each subject there are one to 22 visible images and five to 50 NIR

images with different expressions, poses, glasses, and distance to camera/sensor. The original resolution

of the images for both modalities are 640 × 480 pixels. After preprocessing, the cropped image sizes are

128 × 128. This database provides a part of data for the sake of parameter tuning, and 10 remaining parts

for reporting the experimental results.

CASIA HFB dataset contains 202 subjects. Similar to the CASIA NIR-VIS 2.0 this dataset has two views

where the first view is for parameter selection and View2 is for the sake of evaluation. This dataset contains

about 1,000 visible images and 1,500 NIR images for training and similarly 1,000 visible and 1,500 NIR

images for testing phase. The resolution of the images before and after preprocessing is the same as the

NIR-VIS 2.0 dataset.

Polarimethric Thermal Face dataset [14] comprises polrimetric LWIR face images and their correspond-

ing visible spectrum related to 60 subjects. Data was collected at three different distances: Range 1 (2.5

m), Range 2 (5 m), and Range 3 (7.5 m). At each range two different conditions, including baseline and

expression are considered. In the baseline condition the subject is asked to keep a neutral expression look-

ing at the polarimetric thermal sensor. On the other hand, in the expression condition the subject is asked

to count out numerically from one upwards which results in different expressions in the mouth and to the

eyes and consequently different variations in the facial imagery. Each subject has 16 images of visible and

16 polarimetric LWIR images in which four images are related to the baseline condition and the remaining

12 images are related to the expression condition.
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2.9.3 WSRI and UND results

The network for the visible face images (Vis-GAN) and the network for the non-visible face images

(NVis-GAN) have the same structure. These images are resized to 256× 256 before passing to the network.

To benefit from the pre-defined weights of the DenseNet [122], the first convolutional layer and the first three

Dense-blocks have been taken up from a pre-trained DenseNet 121 as the encoder structure. At the end of

the encoder part where the feature size is 1/32 of the original input size, the two sub-networks (Vis-GAN

and NVis-GAN) are coupled together via a contrastive loss function (see Fig. 2.3) to construct the CpGAN

framework.

To increase the correlation between the two modalities of visible and thermal, each modality was pre-

processed. We applied a band-pass filter so called difference of Gaussians (DoG), to emphasize the edges in

addition to removing high and low frequency noise. The DoG filter which is the difference of two Gaussian

kernels with different σ is defined as follows:

D(I, σ0, σ1) = [G(x, y, σ0)−G(x, y, σ1)] ∗ I(x, y) , (2.18)

where D is the DoG filtered image, ∗ is the convolution operator, and G is the Gaussian kernel which is

defined in:

G(x, y, σ) =
1√

2πσ2
e
−
x2 + y2

2σ2 . (2.19)

The training set is used to transform the visible and non-visible features to a shared latent embedding

subspace. Also at the same time, the network tries to synthesize visible modality from the shared latent

subspace in the GAN framework. To train the network, the genuine and impostor pairs are constructed. The

genuine pair is constructed from the same subject images in two different modalities. For the impostor pair,

a different subject is selected for each modality. In general, the number of the generated impostor pairs

are significantly larger than the genuine pairs. For the sake of balancing the training set, we consider the

same number of genuine and impostor pair. After training the network, during the testing phase, only the

NVis-GAN sub-network is used for the evaluation. For a given probe, the network is used to synthesize the

visible image. Afterwards, the Euclidean distance is used to match the synthesize image to its closest image
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Table 2.2: Results of the proposed method and the baseline methods for WSRI and UND X1 datasets

Method WSRI UND X1
PLS 83.7% 41.0%

BCDL 93.1% 50.5%
K-BCDL 95.9% 52.0%

CpNN 97.2% 51.9%
CpGAN 97.8% 76.4%

from the gallery. The ratio of the number of correctly classified subjects and the entire number of subjects

is computed as the identification rate.

The identification rate of our proposed approach for both WSRI and UND X1 datasets is reported in

Table 2.2. In addition, we compare the performance of our method with some state-of-the-art methods in the

literature such as CpNN [74], PLS [21], bilevel coupled dictionary learning (BCDL) [140], and kernel bilevel

coupled dictionary learning (K-BCDL) [74]. The tabulated results show the improved performance of the

proposed method and its effectiveness in synthesizing the visible modality from the non-visible modality.

2.9.4 NVESD results

We compare our proposed CpGAN with the reported results in the literature on the NVESD dataset.

For the sake of comparison we perform the same split as in [74] on the dataset for the train and test set.

Therefore, we train our proposed framework on training set with 10 subjects and report the rank-1 classifi-

cation performance on the test set of 40 subjects. This database contain two different non-visible modalities,

namely, MWIR and LWIR. Table 2.3 shows the reported results of our proposed method and as well as the

other state-of-the-art models. As it is shown in Table 2.3, our proposed method performance surpasses the

other methods in the literature for both MWIR-to-visible and LWIR-to-visble face recognition.

2.9.5 CASIA results

In this experiment, we compare our results with the results reported in [141]. For the sake of fair

comparison, we perform the same set of experiments as in [141]. The dataset has two views in which View1

is used for the parameter tuning and View2 with 10 different setup is used for testing. Number of images

in HFB dataset is about 1,000 visible images and 1,500 NIR images during the testing phase. The CASIA

NIR-VIS 2.0 restricts algorithms to one gallery per subject during the testing phase. Therefore, there are

only 358 gallery images for the comparison, while there are about 6,000 probe NIR images for testing.
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Table 2.3: Results of the proposed method and the baseline methods for MWIR and LWIR on NVESD dataset

Method MWIR LWIR
PLS 82.4% 70.4%

BCDL 90.7% 90.6%
K-BCDL 93.3% 92.5%

CpNN 94.4% 89.1%
CpGAN 96.1% 93.9%

Table 2.4: Performance comparison to other baselines on View2 of CASIA NIR-VIS 2.0 dataset.

NIR-VIS 2.0 Rank 1 Std. Dev. FAR=.001
CpNN 33.1% 6.6 76.35

C-CBFD [142] 81.8% 2.3 47.3
[143] 85.9% 0.9 78.0
[144] 86.2% 0.98 81.3
[145] 95.74% 0.52 91.03
[141] 92.6% 0.64 81.6

CpGAN 96.63% 0.56 87.05

In addition to the higher number of images in NIR-VIS 2.0, some of the images in this dataset has more

challenging images with difficult poses, while the HFB images were taken in a more controlled environment.

Moreover, the restriction of one image per gallery subject, makes the NIR-VIS 2.0 dataset more challenging.

Table 2.4 and 2.5 shows the results of the proposed method compared to the other methods in the literature

for the NIR-VIS 2.0 and HFB datasets, respectively. Following [141], the reported result is the average of 10

different experimental setups. The results show that our method performs very well compared to the other

methods on the NIR-VIR 2.0 dataset which is more challenging. Moreover, since the other methods showed

a good performance on the HFB dataset, even a little improvement is significant.

Table 2.5: Performance comparison to other baselines on View2 of CASIA HFB 2.0 dataset.

HFB Rank 1 FAR=.01 FAR=.001
CpNN 39.8% 84.4 72.49

IDNet [119] 80.9% 70.4 36.2
P-RS [23] 87.8% 98.2 95.8

C-DFD [146] 92.2% 85.6 65.5
THFM [147] 99.28% 99.66 98.42

[144] 99.38% - 92.25
[141] 99.52% 98.6 91.8

CpGAN 99.64% 98.4 89.7
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Figure 2.5: Overall CMC curves from testing PLS, DPM, CpNN, PLS◦DPM, PLS◦CpNN, GAN-VFS, and CpGAN using
polarimetric and thermal probe samples, matching against a visible spectrum gallery.

2.9.6 Polarimetric thermal results

For the polarimetric thermal face dataset, we consider the same CpGAN architecture. We pass S0, S1,

and S2 to the NVis-GAN’s three channels as the input as shown in Fig. 2.3.

In each experiment the dataset is partitioned randomly into the training and testing sets. The same set of

training and testing data is used to evaluate PLS, DPM, CpNN, PLS◦DPM, PLS◦CpNN, GAN-VFS [78],

and the proposed CpGAN network. Fig. 2.5 shows the overall cumulative matching characteristics (CMC)

curves for our proposed method and the other state-of-the-art methods over all the three different data

ranges as well as the expressions data at Range 1. For the sake of comparison, in addition to the polari-

metric thermal-to-visible face recognition performance, Fig. 2.5 also shows the results for the conventional

thermal-to-visible face recognition for some of the methods, namely PLS, PLS◦DPM, PLS◦CpNN, CpNN,

and CpGAN. In the conventional thermal-to-visible face recognition, all the mentioned methods exactly

follow the same procedure as before, with only using S0 modality. Fig. 2.5 illustrates that by exploiting

the polarization information of the thermal spectrum it enhances the cross-spectrum face recognition per-

formance compared to the conventional one. Fig. 2.5 also shows the superior performance of our approach

compared to the state-of-the-art methods. In addition, our method could achieve prefect accuracy of 1 at
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Figure 2.6: Comparison of visible face images synthesized with different experimental configurations. (a) Raw polarimet-
ric image (S0 is just shown in here). (b) Ground truth visible images. (c) Reconstructed images with Lcpl + LE . (d)
Reconstructed images with Lcpl + LE + LGAN . (e) Reconstructed images with CpGAN (Eq. 2.16).

Scenario Rank-1 Identification Rate
Probe PLS DPM CpNN PLS◦DPM PLS◦CpNN GAN-VFS CpDCNN CpGAN

Overall Polar 0.5867 0.8054 0.8290 0.8979 0.9045 0.9382 0.9408 0.9549
Therm 0.5305 0.7531 0.7872 0.8409 0.8452 0.8561 0.8857 0.8905

Expressions Polar 0.5658 0.8324 0.8597 0.9565 0.9559 0.9473 0.9637 0.9684
Therm 0.6276 0.7887 0.8213 0.8898 0.8907 0.8934 0.9124 0.9176

Range 1 Baseline Polar 0.7410 0.9092 0.9207 0.9646 0.9646 0.9653 0.9721 0.9867
Therm 0.6211 0.8778 0.9102 0.9417 0.9388 0.9412 0.9534 0.9637

Range 2 Baseline Polar 0.5570 0.8229 0.8489 0.9105 0.9187 0.9263 0.9317 0.9659
Therm 0.5197 0.7532 0.7904 0.8578 0.8586 0.8701 0.8868 0.8993

Range 3 Baseline Polar 0.3396 0.6033 0.6253 0.6445 0.6739 0.8491 0.8346 0.8987
Therm 0.3448 0.5219 0.5588 0.5768 0.6014 0.7559 0.7754 0.7912

Table 2.6: Rank-1 identification rate for cross-spectrum face recognition using polarimetric thermal and conventional ther-
mal (S0) probe imagery.

Rank-5 and above.

Table 2.6 tabulates the Rank-1 identification rates for five different scenarios: overall (which corre-

sponds to Fig. 2.5), Range 1 expressions, Range 1 baseline, Range 2 baseline, and Range 3 baseline. In our

proposed approach, exploiting polarization information enhance the Rank-1 identification rate by 1.87%,

5.13%, 4.49%, and 5.92% for Range 1 baseline, Range 1 expression, Range 2 baseline, and Range 3 base-

line compared to the conventional thermal-to-visible face recognition. This table reveals that using deep

coupled generative adversarial network technique with the contrastive loss function to transform different

modalities into a distinctive common embedding subspace is superior to the other embedding techniques

such as PLS◦CpNN. It also shows the effectiveness of our method in exploiting polarization information to

improve the cross-spectrum face recognition problem.
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Figure 2.7: The ROC curves corresponding to the ablation study.

2.10 Ablation study

In order to illustrate the effect of adding different loss functions and their improvement in our proposed

framework, we perform a study with the following evaluations using the polarimetic dataset: 1) Polar-to-

visible using the coupled framework with using only Lcpl + LE loss, 2) Polar-to-visible using the proposed

framework with Lcpl + LE + LGAN loss functions, and 3) Polar-to-visible with all the loss functions in the

proposed framework (2.16). Fig. 2.6 shows the reconstruction results for a random subject in this dataset. It

can be conclude from Fig. 2.6 (c), that using Lcpl + LE loss it results in a blurry image and missing high

frequency details. However, adding LGAN loss function (2.12) to the framework leads to a sharper and more

vivid images. Moreover, by adding the perceptual loss to the NVis-GAN sub-network, the results become

more visually pleasing by removing some artifacts added by LGAN .

For better understanding of different loss functions and their effect on the proposed framework results,

we plot the receiver operation characteristic (ROC) curves corresponding to the mentioned three different

settings of the framework. As it is shown in Fig. 2.7 the LGAN has an important rule in the enhancement of

our proposed approach. Also, adding a perceptual loss enhances the face recognition performance as well

as generating visually more realistic images.
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2.11 Conclusion

We have proposed two methods in this chapter. While CpDCNN uses the coupled deep network to

bring the two modalities close to each other in the embedding domain the other (CpGAN) uses a coupled

generative adversarial network to synthesize visible image from a non-visible image for the heterogeneous

face recognition task. CpDCNN contains two VGG-based networks while CpGAN contains two GAN

based sub-networks dedicated to visible and non-visible input images. CpGAN is capable of transforming

the visible and non-visible modalities into a common discriminative embedding subspace and synthesizing

the visible photos from that subspace. In order to efficiently synthesizing a realistic visible image from the

non-visible modality a densely connected encoder-decoder structure is used as the generator in each sub-

network. An ablation study was performed to demonstrate the enhancement obtained by different losses

in the CpGAN method. Here, our main focus of accuracy improvement and we did not investigate about

the timing of training or inference. The experiments on different HFR datasets with different range of

electromagnetic spectrum showed the effectiveness of the CpGAN method compared to the other state-

of-the-art methods. The results also revealed that both proposed frameworks could exploit polarimetric

thermal information to enhance the thermal-to-visible face recognition performance. However, the proposed

CpGAN showed a better performance compared to the CpDCNN.
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Chapter 3

Face Recognition Assisted by Facial

Attributes

3.1 Introduction

In recent years, there has been significant amount of research in Heterogeneous Face Recognition

(HFR) [11]. The main issue in HFR is to match the visible face image to a face image that has been

captured in another domain such as in infrared spectrum [11], or polarimetric [14] due to the significant

phenomenological difference as well as the lack of training data. Infrared images are categorized into two

major groups of reflection and emission. The reflection category, which contains near infrared (NIR) and

shortwave infrared (SWIR) bands, is more informative about the facial details and it is very similar to the

visible imagery. Due to this reflective phenomenology of the NIR and SWIR, there has been a significant

performance on NIR-to-visible face recognition accuracy [12] and to some extent for SWIR-to-visible face

recognition accuracy [13].

Multi-task learning (MTL) has been vastly applied in computer vision and biometrics problems. It basi-

cally attempts to solve correlated tasks concurrently with the help of knowledge sharing between tasks. [148]

employed MTL technique to predict attributes such as age, gender, race, etc. Face photo can be viewed as

having some positive or negative hidden relation with some of its soft facial biometric traits.

In this chapter, we propose two different methods to utilize the face attributes. The first approach is an

attribute-assisted sketch recognition framework which uses relevant facial attributes, provided by a victim,

to enhance the performance of our deep sketch recognition method. Our approach simultaneously learns

a common embedding features of sketch and photo image by minimizing two supervisory loss functions,
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namely the facial attributes identification and sketch-photo verification loss functions (tasks). Attribute

identification task classifies photo and attribute assisted sketch images into a set of facial attributes, while

verification task is to classify a pair of sketch-photo as belonging to the same person or not. The attribute

identification loss is trying to pull the common features of photo and attribute assisted sketch closer in the

shared latent subspace if they belong to the same set of attributes and push them apart if they belong to two

different sets of attributes. Therefore, the learned features contain rich variations and can classify the photos

and sketches to the classes containing the same sets of attributes in a latent feature subspace.

In the second approach, we propose an Attribute Guided Coupled Generative Adversarial Network

(AGC-GAN), which considers the CNN weight sharing followed by the dedicated weights which are re-

sponsible for learning the representative features for each specific face attribute. The network also tries to

find the common embedding space between the polarimetric and thermal utilizing coupling structure and

adversarial training. Optimizing the coupled network by the guidance of the facial attributes leads to a more

discriminative embedding space and can be utilized to enhance the performance of the main task which is

face recognition.

In summary, the main contributions of this chapter include the following:

• A novel deep learning approach utilizing the facial attributes to improve sketch-photo recognition perfor-

mance.

• A joint loss function which is based on an identification-verification framework in which the identification

part is responsible for the facial attribute classification and the verification part is responsible for

creating a common embedding subspace between the sketch and photo modalities. This loss function

helps the proposed coupled deep architecture to produce a more discriminative embedding subspace

which leads to a better sketch-photo recognition performance.

• Our method is able to fuse textural information of forensic sketches and complementary facial attributes

such as skin color and hair color implicitly.

• A novel polarimetric thermal-to-visible face recognition system is proposed in which AGC-GAN is em-

ployed for synthesizing visible faces from the polarimetric thermal images using facial attributes.

• A multi-tasking framework is proposed to predict facial attributes from the polarimetric thermal faces. To

the best of our knowledge, no such demonstration has been proposed in the literature.
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Figure 3.1: Attribute-assisted deep convolutional neural network. P-DCNN (upper network) and SA-DCNN (lower net-
work) embed the photos and a pair of (sketch, attribute) into a common latent subspace.

• Extensive experiments are conducted on ARL polarimetric facial database [14] and the proposed method

is compared to recent state-of-the-art methods.

3.2 First approach (Sketch-photo Recognition)

The network parameters in the proposed framework are learned by minimizing two supervisory loss

functions namely the losses due to the sketch-photo verification and facial attribute identification tasks [149].

In the following we describe these two supervisory loss functions in details:

3.2.1 Sketch-Photo Verification Task:

Sketch-photo verification is the final objective of the proposed model which is identification of the sus-

pect sketch in a gallery of mugshots. For this reason, we coupled two VGG-16 like networks one dedicated

to the photo image domain (P-DCNN) and the other one to the sketch and complementary facial attributes

modalities (SA-DCNN). Each DCNN performs a non-linear transformation on the input. The ultimate goal

of our proposed attribute-assisted deep convolutional neural network, as shown in Figure 3.1, is to find the

global deep features representing the relationship between sketches and their corresponding images. In or-

der to find the common embedding space between these two different modalities we coupled two VGG-16

structured networks (P-DCNN and SA-DCNN) via a contrastive loss function [62]. This function (`cont)
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Figure 3.2: Proposed network using two GAN based sub-networks (Vis-GAN and Pol-GAN) coupled by contrastive loss
function. The input to Pol-GAN is polarimetric data (S0, S1, S2). The facial attributes are predicted from both sub-networks
(Vis-GAN, Pol-GAN) in a multi-tasking paradigm.

pulls the genuine pairs (i.e., a face photo image with its own corresponding sketch image) towards each

other into a common latent feature subspace and push the impostor pairs (i.e., a photo image with sketch

image from another subject) apart from each other (see Fig. 3.3). Similar to [62], the contrastive loss is of

the form:

`cont(z1(xi), z2(sj , attj), ycont) = (3.1)

(1− ycont)Lgen(D(z1(xi), z2(sj , attj)) + ycontLimp(D(z1(xi), z2(sj , attj)) ,

where xi is the input for the P-DCNN (i.e., a photo image), and (sj , attj) is the input for the SA-DCNN (i.e.,

an sketch image with its corresponding attributes provided by the eye witness). ycont is a binary label, Lgen

and Limp represent the partial loss functions for the genuine and impostor pairs, respectively. z1 and z2 are

the DNN-based embedding functions, which transform xi and (sj , attj) into a common latent embedding

subspace, respectively, and D(z1(xi), z2(sj , attj)) indicates the Euclidean distance between the embedded

data in the common feature subspace. The binary label, ycont, is assigned a value of 0 when both modalities,

i.e., photo and sketch, form a genuine pair, or, equivalently, the inputs are from the same subject. On the

contrary, when the inputs are from different identities, which means they form an impostor pair, ycont is
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equal to 1. In addition, Lgen and Limp are defined as follows:

Lgen(D(z1(xi), z2(sj , attj))) =
1

2
D(z1(xi), z2(sj , attj))

2

for yi = yj ,

(3.2)

Limp(D(z1(xi), z2(sj , attj))) = (3.3)

1

2
max(0,m−D(z1(xi), z2(sj , attj)))

2 for yi 6= yj .

Therefore, the total loss function for the training dataset can be written as:

L1 = 1/N2
N∑
i=1

N∑
j=1

`cont(z1(xi), z2(sj , attj), ycont) , (3.4)

where N is the number of samples. It should be noted that the contrastive loss function [62] considers the

subjects’ labels inherently. Therefore, it has the ability to find a discriminative embedding space by em-

ploying the data labels in contrast to some other metrics such as the Euclidean distance. This discriminative

embedding space would be useful in identifying an sketch probe against a gallery of mugshots. However, in

our framework we incorporate the facial attribute identification task in addition to the contrastive function to

make the embedding space more discriminative. The facial attributes identification task assigns each sketch

or image domain to a set of attributes. The attributes are predicted using both the P-DCNN and SA-DCNN

networks in a multi-tasking manner. In the following subsection, we describe the multi-tasking problem in

the context of attribute prediction.

3.2.2 Multi-Attribute Prediction and Identification Task:

The objective of this model is to predict a set of attributes using a face photo or an sketch. Therefore, in

this architecture a face photo (face sketch) is presented to the network as an input and a set of attributes are

predicted. Suppose the input is an image xi ∈ X , and its class label is yi ∈ Y for i = 1, . . . , N where N is

the number of the training samples. Soft biometric traits, contain T different facial attributes or binary class

labels provided by the eye witness. Therefore, in this framework we denote them as yt for t = 1, . . . , T .

The loss function is defined as:
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Figure 3.3: Visualization of the common latent subspace by leveraging facial attributes classification and verification loss
functions simultaneously. Solid circles represent the contrastive margin in the embedding domain and the dashed circles
depict the attributes classification. For the sake of clarity the contrastive margin is depicted for two Ids out of six Ids.

L2 =1/N

N∑
i=1

T∑
t=1

`(ft1(z1(xi)), y
t
i) , (3.5)

where ` is a proper loss function (e.g., cross entropy) and ft1(z1(xi)) is a binary classifier for the attribute

t operated on the output of P-DCNN. Learning multiple CNNs separately is not optimal since different

tasks may have some hidden relationships with each other and may share some common features. This is

supported by [150] where they train a CNN features for the face recognition task and they used it directly for

the face attribute estimation. Therefore, our network shares a big portion of its parameters among different

tasks in order to enhance the performance of the recognition task. Thus, the loss function (3.5) can be

reformulated as follows:

L2 = 1/N
N∑
i=1

T∑
t=1

`(ft1(z1(xi, wc1)× wt1), yti) , (3.6)

where ` is the cross entropy loss function. wc1 is the shared network parameters between all the tasks and

wt1 represents the remaining parameters which are assigned separately for each facial attribute task.

The same procedure is performed in the other network (SA-DCNN) with an sketch as input. However,

there are some attributes such as hair color and skin color which do not exist in the sketch modality while
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they inherently exist in the RGB images. These are the soft biometric traits which is provided by the

eye witness description. Therefore, these complementary soft biometric traits are given to the SA-DCNN

network which is dedicated to sketch modality. The SA-DCNN network is also responsible to estimate a set

of soft biometric attributes. It should be noted that although some of the attributes in the output are given

to the network from the beginning, but this attributes are fused with sketch information through the network

layers. Therefore, it is worth to estimate them accurately. Also, the set of attributes which are given to the

network are not necessarily the same as the set of attributes predicted by the network.

Suppose the input is an sketch sj ∈ S, and its class label yj ∈ Y for j = 1, . . . , N where N is the

number of the training samples. The facial attributes provided by the eye witness are also given to the

network as an input, denoted as att for the sake of clarity. The loss function will be defined as:

L3 =1/N

N∑
j=1

T∑
t=1

`(ft2(z2(sj , attj)), y
t
j) , (3.7)

where ` is the cross entropy loss function and ft2(z2(sj , attj)) is a binary classifier for the attribute t op-

erated on the output of SA-DCNN. Here, as in P-DCNN network , we share a big portion of the network

parameters among different tasks in order to enhance the performance of the recognition task. Therefore,

the loss function (3.7) can be reformulated as follows:

L3 =1/N

N∑
j=1

T∑
t=1

`(ft2(z2(sj , attj , wc2)× wt2), ytj) , (3.8)

where wc2 is the shared features between all the tasks. wt2 represents the remaining features which are

assigned separately for each soft biometric prediction task.

3.2.3 Total Loss Function:

The total loss function LT for the whole framework can be written as (See Fig. 3.1) :
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LT = L1 + λ1L2 + λ2L3 = 1/N2
N∑
i=1

N∑
j=1

`cont(z1(xi), z2(sj , attj), ycont)

+ λ1/N
N∑
i=1

T∑
t=1

`(ft1(z1(xi)), y
t
i) + λ2/N

N∑
j=1

T∑
t=1

`(ft2(z2(sj , attj)), y
t
j) ,

(3.9)

where the first term is the sketch-photo verification and the second and the third terms are the facial at-

tributes classification loss for the P-DCNN network and SA-DCNN network, respectively. λ1 and λ2 are the

hyper-parameters which weight facial identification cost functions of the P-DCNN network and SA-DCNN

network, respectively. As it was mentioned earlier, the contrastive loss function has the ability to find a dis-

criminative embedding space by employing the data labels. However, due to loss functions from the facial

attributes classification term for photo (3.5) and for sketch (3.7), minimizing LT will boost the discrimina-

tion in the common embedding domain. In another words, using just the contrastive loss it does not consider

whether two subjects share similar facial attributes or not. Using the facial attribute classification, it enables

the embedding space to be more discriminative from the attributes point of view.

Consider a subject sketch with Id#1 (see Fig. 3.3). The contrastive loss function causes the corre-

sponding photos from Id#1 to move closer to Id#1′s sketch and other Ids′ photos to move farther away.

Now, using the contrastive loss function in conjunction with the attribute classification makes Id#2 to move

closer to Id#1 since they share the same set of attributes (see Fig. 3.3). In other words, it differentiates be-

tween different impostors of Id#1. The same procedure is performed for the other identities during the

training process. Figure 3.3 visualizes the overall concept of our joint loss function. As it is depicted,

jointly training the model based on verification and facial identification will lead to a more discriminative

embedding subspace which considers both the facial attributes and the geometrical relationship between the

forensic sketches and photos.

During the testing phase, given a test probe with its facial attributes (st, attt), the proposed AADCNN

method transforms it to the common latent embedding domain, z2(st, attt). In fact, after training our deep

coupled network model, it has the ability to transform the photo and sketch images into a common dis-

criminative embedding space. Therefore, the galley of the photo images is transformed to the mentioned

embedding space. Eventually, the sketch image is identified, by calculating the minimum Euclidean distance

between the transformed sketch prob and gallery of mugshots as follows:
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Figure 3.4: Visualization of the common latent subspace by leveraging facial attributes prediction loss function. Solid
circles represent the contrastive margin and the dashed circles depict the attributes classification. For the sake of clarity the
contrastive margin is depicted for two Ids out of four Ids.

x∗i =argmin
xi

D(z1(xi), z2(st, attt))

for i = 1, 2, ..,M ,

(3.10)

where (st, attt) is an sketch probe with its facial attribute provided by the eye witness and x∗i is the selected

matching person within the gallery of mugshots of size M .

3.3 Second approach (Polarimetric-visible Recongition)

The proposed AGC-GAN [151] is illustrated in Fig. 3.2. The proposed approach consists of two coupled

generators and two discriminators. Each generator is also responsible to predict facial attributes in a multi-

tasking paradigm. In the following we explain these modules in detail.

3.3.1 Deep Coupled Framework

The final objective of the proposed model is identification of polarimetric faces which we do not have

access to them during the training phase. For this reason, we couple two U-net networks [152] one is

dedicated to the visible spectrum (Vis-GAN) and the other network is dedicated to the polarimetric spectrum

(Pol-GAN). Each network performs a non-linear transformation of the input space. The final objective of our



Seyed Mehdi Iranmanesh Chapter 3. Face Recognition Assisted by Facial Attributes 43

proposed AGC-GAN is to find the global deep features representing the relationship between polarimetric

face images and their corresponding visible ones. In order to find a common latent embedding subspace

between these two different domains we couple two networks (Vis-GAN and Pol-GAN) via a contrastive

loss function [62]. This loss function (`cont) pulls the genuine pairs (i.e., a visible face image with its own

corresponding polarimetric face image) towards each other into a common latent feature subspace and push

the impostor pairs (i.e., a visible face image of a subject with another subject’s polarimetric face image)

apart from each other (see Fig. 3.2). Similar to [62], our contrastive loss is of the form:

`cont(z1(y
i
vis), z2(y

j
pol), ycont) = (3.11)

(1− ycont)Lgen(D(z1(y
i
vis), z2(y

j
pol)) + ycontLimp(D(z1(y

i
vis), z2(y

j
pol)) ,

where yivis is the input for the Vis-GAN (i.e., visible face image), and yjpol is the input for the pol-GAN

(i.e., polarimetric face images). ycont is a binary label, Lgen and Limp represent the partial loss functions

for the genuine and impostor pairs, respectively, and D(z1(y
i
vis), z2(y

j
pol)) indicates the Euclidean distance

between the embedded data in the common feature subspace. z1(.) and z2(.) are the deep convolutional

neural network based embedding functions, which transform yivis and yjpol into a common latent embedding

subspace, respectively. The binary label, ycont, is assigned a value of 0 when both modalities, i.e., visible

and polarimetric, form a genuine pair, or, equivalently, the inputs are from the same class (cli = clj). On

the contrary, when the inputs are from different classes, which means they form an impostor pair, ycont is

equal to 1. In addition, Lgen and Limp are defined as follows:

Lgen(D(z1(y
i
vis), z2(y

j
pol))) =

1

2
||z1(yivis), z2(y

j
pol)||

2
2

for cli = clj .

(3.12)

Limp(D(z1(y
i
vis), z2(y

j
pol))) = (3.13)

1

2
max(0,m− ||z1(yivis), z2(y

j
pol)||

2
2) for cli 6= clj .

Therefore, the coupling loss function can be written as:

Lcpl = 1/N2
N∑
i=1

N∑
j=1

`cont(z1(y
i
vis), z2(y

j
pol), ycont) , (3.14)
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where N is the number of samples. It should be noted that the contrastive loss function (3.14) considers

the subjects’ labels implicitly. Therefore, it has the ability to find a discriminative embedding space by

employing the data labels in contrast to some other metrics such as the Euclidean distance. This discrimina-

tive embedding space would be useful in identifying a polarimetric probe photo against a gallery of visible

photos.

3.3.2 Multi-Attribute Prediction and Identification Task:

The objective of this model is to predict a set of attributes using a visible or polarimetric face image.

Therefore, in this architecture a visible face image (polarimetric face image) is presented to the network as

an input and a set of attributes are predicted. Suppose the input is an image yivis ∈ Y , and its class label is

cli ∈ CL for i = 1, . . . , N where N is the number of the training samples. Soft biometric traits, contain

T different facial attributes or binary class labels. Therefore, in this framework we denote them as clt for

t = 1, . . . , T . Learning multiple CNNs separately is not optimal since different tasks may have some hidden

relationships with each other and may share some common features. This is supported by [150] where they

train a CNN features for the face recognition task and they used it directly for the face attribute estimation.

Therefore, our network shares a big portion of its parameters among different tasks in order to enhance the

performance of the recognition task. Thus, the loss function is as follows:

Lavis = 1/N

N∑
i=1

T∑
t=1

`(f tvis(z1(y
i
vis)× wtvis), cli,t) , (3.15)

where ` is a proper loss function (e.g., cross entropy) and f tvis(.) is a binary classifier for the attribute t

operated on the bottleneck of Vis-GAN (see Fig. 3.2). wtvis represents the remaining parameters which are

assigned separately for each facial attribute task.

The same procedure is performed in the other network (Pol-GAN) with a polarimetric thermal image as

input. The Pol-GAN network is also responsible to estimate a set of soft biometric attributes. Therefore, the

loss function is:

Lapol =1/N

N∑
j=1

T∑
t=1

`(f tpol(z2(y
j
pol)× w

t
pol), cl

j,t) , (3.16)
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Table 3.1: Facial attributes used in this work.

Facial Attributes Arched Eyebrows, Big Lips, Big nose, Bushy Eyebrows, Bald,
Mustache, Narrow Eyes, Beard, Mouth Slightly Open, Young

where ` is the cross entropy loss function and f tpol(.) is a binary classifier for the attribute t operated on the

bottleneck of Pol-GAN (see Fig. 3.2). wtpol represents the remaining features which are assigned separately

for each facial attribute prediction task. The total attribute prediction loss function is:

La = Lavis + Lapol. (3.17)

3.3.3 Generative adversarial loss

Let Gvis and Gpol denote the generators that synthesize the visible images from the visible and polari-

metric images, respectively. To synthesize the output and to make sure that the synthesized images generated

by the two generators are indistinguishable from the corresponding ground truth visible image, we utilized

the GAN loss function [123]. As it is shown in Fig. 3.2, the first generator Gvis is responsible to generate

a visible image when the network is conditioned on a visible image. On the other hand, the second gener-

ator Gpol tries to generate the visible image from the polarimetric image which is a more challenging task

compared to the first generator. Therefore, the total loss for the coupled GAN is as follows:

LGAN = Lvis + Lpol, (3.18)

where the GAN loss function related to the Vis-GAN is given as:

Lvis = min
Gvis

max
Dvis

Exi∼Pvis(x)
[logD(xi|yivis)] + Ez∼Pz [log(1−D(G(z|yivis)))],

where yivis is the visible image used as condition for the Vis-GAN and xi is the real data. It should be noted

that for the Vis-GAN the real data xi and the condition yivis are the same. Similarly the loss for the Pol-GAN

is given as:
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Lpol = min
Gpol

max
Dpol

Exj∼Pvis(x)
[logD(xj |yjpol)] + Ez∼Pz [log(1−D(G(z|yjpol)))],

where yjpol is the polarimetric image used as condition for the Pol-GAN and xj is the real data. It should be

noted that xi is the same as xj if they refer to the same person (cli = clj) and otherwise they are not the

same.

3.3.4 Overall loss function

The proposed approach contains the following loss function: the EuclideanLEvis andLEpol
losses which

are enforced on the recovered visible images from the Vis-GAN and Pol-GAN networks, respectively, are

defined as follows:

LEvis = ||Gvis(z|yivis)− xi||22, (3.19)

LEpol
= ||Gpol(z|yjpol)− x

j ||22, (3.20)

LE = LEvis + LEpol
. (3.21)

The GAN loss is added to generate more sharp images with the use of adversarial loss. In addition,

based on the usage of perceptual loss in low-level vision tasks [130], the perceptual loss is added to the

Pol-GAN to preserve more photo realistic details as follows:

LPpol
=

1

CpWpHp

Cp∑
c=1

Wp∑
w=1

Hp∑
h=1

||V (Gpol(z|yjpol))
c,w,h − V (xj)c,w,h||,

where xj is the ground truth visible image, Gpol(z|yjpol) is the output of Pol-GAN generator. V(.) represents

a non-linear CNN transformation and Cp,Wp, Hp are the dimension of a particular layer in V . It should be

noted that the perceptual loss is just used in the Pol-GAN. Similarly, we utilized a perceptual attribute loss

which measures the difference between the facial attributes of the synthesized images and the real image.

The pre-trained model needs to capture the facial attributes. Therefore, we fine-tune the pre-trained VGG-

Face [153] on ten annotated facial attributes as tabulated in Table 3.1. Afterward, this network (attribute

predictor) is utilized for perceptual attribute loss on Vis-GAN and Pol-GAN as follows:
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Lpavis = ||A(Gvis(z|yivis))−A(xi)||22, (3.22)

Lpapol = ||A(Gpol(z|yjpol))−A(xj)||22, (3.23)

Lpa = Lpavis + Lpapol. (3.24)

where A is the fine-tuned VGG-Face network. Lpa is the perceptual attribute loss function which composed

of the attribute loss function for Vis-GAN (Lpavis) and Pol-GAN (Lpapol) sub-networks.

Finally, the coupling loss function (3.14) is added to train both networks Vis-GAN and Pol-GAN jointly

to make the embedding space of the mentioned networks as close as possible and to preserve a more dis-

criminative and distinguishable shared space. Therefore, the total loss function is as follows:

LT = Lcpl + λ1LE + λ2LGAN + λ3La + λ4LPpol + λ5Lpa,

where λ1, λ2, λ3, λ4, and λ5 are the hyper-parameters which weight different loss functions in the total loss

function.

3.3.5 Testing phase

During the testing phase, only the Pol-GAN is used. For a given test probe ytpol, Pol-GAN is employed in

the proposed AGC-GAN to synthesize the visible image Gpol(z|ytpol) = x̂tvis. Eventually, the identification

of face recognition is done, by calculating the minimum Euclidean distance between the synthesized image

from the polarimetric prob and visible gallery images as follows:

xtvis = argmin
xivis

||xivis, x̂tvis|| , (3.25)

where x̂tvis is the synthesized probe face image and xtvis is the selected matching visible face image within

the gallery of face images. In addition, the Pol-GAN sub-network can be employed to predict the facial

attributes for the polarimetric face probe. The predicted facial attributes also can be used to find the person

of interest in the visible databases.
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3.4 Experiments (First approach: Sketch-photo recognition)

3.4.1 Implementation Details and Data Description

For the first approach, we used a VGG-16 like network [132] in our sketch-photo recognition frame-

work. The VGG-16 neural network comprised of five major convolutional components which are connected

in series. The first two components, Conv1 − 64 and Conv2 − 128 consists of the following layers: a

convolutional layer, a rectified linear unit layer, a second convolutional layer, a second rectified linear unit

layer, and a max pooling layer. The remaining three components contain one additional convolutional layer

and a rectified linear unit layer. The only difference between our CNN network and the VGG-16 is in the

last component, where the last three convolutional layers of VGG16 with the size of 512, are replaced with

two convolutional layers of 256, and one convolutional layer of 64 respectively for the sake of parameter

reduction. Also the network uses global pooling instead of the max pooling in the last component which

results in a feature vector of size 64. The network which is dedicated to photo domain (P-DCNN) takes

an RGB photo as an input and the other sketch-attribute network (SA-DCNN) gets an input consisting of

multiple channels as shown in Fig. 3.1. The first channel is dedicated to a gray-scale sketch and the other

channels are filled with 0 or 1 depending on the presence or absence of the attribute in the subject.

Experiment is performed using four main datasets, namely CUHK Face Sketch dataset (CUFS) [154]

(containing 311 pairs), IIIT-D sketch dataset [155] (containing 238 viewed pairs, 140 semi-forensic pairs,

and 190 forensic pairs), PRIP Viewed Software Generated Composite database (PRIP-VSGC) [19] (contain-

ing composite sketch and digital image pairs), extended-PRIP dataset (e-PRIP) [1], and unviewed Memory

Gap Database (MGDB) [32] (containing 100 pairs). Since we are using the facial attribute classification

in our proposed method, we utilized the CelebFaces Attributes dataset (CelebA) [156] (consisting of 200

k face images along with their attribute vectors of 40 attributes such as gender, face characteristics, skin

color, hair color, etc.) to initialize the network. Since the CelebA dataset does not contain the sketch images

we generated a synthetic sketch by employing xDOG [157] filter on each image. Twelve facial attributes

namely bald, black hair, blond hair, brown hair, gray hair, male, Asian, Indian, White, Black, eye glasses

and pale skin out of 40 attributes were selected. Since none of the sketch datasets used in this chapter have

any facial attribute annotation, we utilized MOON [158], which is a well-known method in facial attributes

recognition, in order to annotate them.

We pre-trained our deep coupled architecture using synthetic sketch-photo pair from the CelebA dataset.
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Figure 3.5: A sample of different augmentation techniques.

Table 3.2: Experimental Setup

Setup Name Testing Dataset Training Dataset Train Size Gallery Size Prob Size
S1 e-PRIP e-PRIP 48 75 75
S2 e-PRIP e-PRIP 48 1500 75

S3
IIIT-D Semi-forensic

CUFS, IIIT-D Viewed, CUFSF, e-PRIP 1968 1500
135

MGDB Unviewed 100

We used the final weights to initialize the network in all of our training scenarios. Since our coupled

DNN has a large number of parameters and the size of the sketch datasets is relatively small it is prone to

overfitting. In order to avoid the overfitting problem, we utilized multiple augmentation techniques namely

deformation, scale and crop, and flipping. In the following we explain each method in details (see Fig. 3.5 ).

1- Deformation: Deforms the sketch and photos to compensate for the problem of geometrically mis-

matching between the sketch image and its corresponding photo. The deformation is performed by translat-

ing 25 preselected points with random magnitude and direction.

2- Scale and crop: One of the main mismatch problems between sketch images and their corresponding

images is the ratio deformation. To address this problem, this method upscale the sketches and photos to

several random sizes, and then cut a 250× 200 crop from the center of the scaled image.

3- Flipping: In this method, the images are randomly flipped horizontally.

During the training phase, instead of picking the impostor pairs randomely, we considered an strategy to

select them. For each genuine pair, we considered four impostor pairs. Two of the impostors were selected

among the subjects which are sharing the same set of facial attributes and the other two were selected among

the subjects which have different sets of attributes. This selection technique made the framework to see more

variant impostors and also helped to avoid the overfitting problem.

3.4.2 Performance Evaluation:

Our proposed framework identify a person of interest in the galley of mugshots utilizing a sketch probe

and a set of facial attributes provided. In this section, we compare our approach with several state-of-the-art
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methods which are using both sketch and attributes and some other methods which are just using the sketch

without using any attributes.

In order to evaluate performance of our method and compare with other methods, three different exper-

iments are performed. For the sake of fair comparison, the first two experiment setups are adopted from [1].

In the first experimental setup which is the baseline (S1), the database is partitioned into two parts: training

which is performed on 40% of the data and the remaining portion of the data is used for testing. e-PRIP

dataset containing 123 subjects is used in this setup. Therefore, 48 identities are used in the training set and

75 subjects are considered for the testing phase. Only two out of the four different composite sketch datasets

utilized in [1] are public at the time of writing this thesis. These two public datasets were created by Identi-

Kit tool, and FACES tool and were used by Asian and Indian artists respectively. In the second experimental

setup, called S2, the gallery is extended to 1500 subjects. In this chapter, the gallery is expanded utilizing

WVU Multi-Modal [159], IIIT-D sketch, Multiple Encounter Dataset (MEDS) [160], and CUFS datasets.

The facial attributes of the extended galley are obtained using MOON [158]. The training and probe datasets

are the same as S1. The purpose of this experiment is to assess the robustness of the proposed method with a

relatively large number of subject candidates. Finally, the method is evaluated on an unseen dataset. In this

experimental setup (S3), we trained the network on IIIT-D Viewed, CUFS, and e-PRIP datasets and then

tested it on IIIT-D Semi-forensic pairs and MGDB Unviewed. This setup represents the level of dependency

of the network on the sketch styles in the training datasets. Table 3.2 shows different scenarios and the size

of training set, prob and gallery for each scenario.

In the experiments, different values were selected for λ1 and λ2. We report our best results which belong

to λ1=λ2=1. The evaluation performance is validated using ten fold random cross validation and the results

are compared with the state-of-the-art approaches.

3.4.3 Results:

In [1], they propose an approach called attribute feedback to study the effect of facial attributes on

their recognition system. They reported the rank 10 accuracy of 58.4% and 53.1% for the prob sketches

generated by the Indian (Faces) and Asian (Identi-Kit) artists, respectively. Another approach called SGR-

DA [2] utilizes the sketch modality without using the facial attribute information. They reported the rank 10

accuracy of 70% on the Identi-Kit dataset. On the other hand, our proposed approach accuracy was 76.4%

and 72.3% on the Faces and Identi-Kit, respectively. We also consider a baseline version of our proposed
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Figure 3.6: CMC curves of our proposed framework versus Mittal et al. algorithms [1] in the extended gallery experimental
setup (S2) for the Indian dataset

method which is only based on the contrastive loss function and does not consider the facial attributes. This

way, we could observe the benefit of utilizing the facial attributes in our framework. The baseline network

has an accuracy of 69.1% and 67.6%, on Faces and Identi-Kit datasets, respectively. The results demonstrate

that our method outperforms all the previous methods in the literature and also express the effectiveness of

our framework in utilizing the facial attributes compare to the baseline. It should be noted that, the baseline

framework outperform the state-of-the-art methods except SGR-DA [2] which support the superiority of

deep models over the shallow models (see Table 3.3).

To evaluate the effectiveness of our proposed method by using a relatively large galley of mugshots, the

same experiments were performed on the extended experimental setup (S2). Figure 3.6 shows the results

of our method as well as the other methods for the extended galley of 1500 subjects. The results depicts

that our approach outperforms the method in [1] by nearly 14% for rank 50 which shows the robustness

of our algorithm utilizing the facial attributes. We compared our method with SGR-DA [2] for the Identi-

Kit dataset, since [1] does not provide the results on this dataset. Figure 3.7 shows the superiority of

our proposed method compared to SGR-DA. As shown in Fig. 3.7, although SGR-DA outperformed our

baseline network in S1 scenario (see Table 3.3), its results were not as promising as our proposed method

in the extended experimental setup (S2). Also, our attribute-assisted method outperformed our baseline

method to support the effectiveness of utilizing the attributes in relatively large gallery of mugshots as well.

Eventually, we evaluated the robustness of our proposed method in S3 experimental setup in which
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Figure 3.7: CMC curves of our proposed framework versus SGR-DA algorithm [2] in the extended gallery experimental
setup (S2) for the Identi-Kit dataset

Table 3.3: Rank-10 identification accuracy (%) on the e-PRIP composite sketch database (S1 experimental setup).

Algorithm Faces (In) IdentiKit (As)
Mittal et al. [161] 53.3 ± 1.4 45.3 ± 1.5
Mittal et al. [88] 60.2 ± 2.9 52.0 ± 2.4
Mittal et al. [1] 58.4 ± 1.1 53.1 ± 1.0
SGR-DA [2] - 70
Ours without attributes 69.1 ± 1.5 67.6 ± 1.9
Ours with attributes 76.4 ± 1.2 72.3 ± 0.8
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Figure 3.8: CMC curves of our proposed framework versus our baseline framework (without using attributes) for experi-
mental setup (S3). The results support the robustness of our approach to different sketch styles.

the network is trained on more than 1900 sketch-photo pairs and is tested on two unseen datasets, namely

MGDB Unviewed and IIIT-D Semi-forensic datasets. In this scenario the gallery of mugshots was also

extended to 1500. We repeated this experimental scenario for our baseline method which is not utilizing the

facial attributes. As shown in Fig. 3.8, the proposed method showed a better performance in this scenario on

both datasets compared to the baseline method indicating the advantage of facial attributes in the proposed

method on unseen datasets.

3.5 Experiments (Second approach: Polarimetric-visible recognition)

3.5.1 Implementation Details

A U-net structure [152] is employed as the network for the generator since it is able to address the

vanishing gradient problem as well as better capturing large receptive field. Also, a patch-based discrimina-

tor [162] is used in the proposed method and it is trained iteratively with the generator. The entire network

is trained in Pytorch. For the sake of training AGC-GAN, the hyper-parameters for all the loss functions

considered as one except for the perceptual loss Lppol and perceptual attribute loss Lpa which is equal to

0.5. For training we used Adam optimizer [133] with the first-order momentum of 0.5, the learning rate

of 0.0002, and batch size of 4. For the generator the ReLU activation, and for the discriminator the Leaky

ReLU activation with the slope of 0.2 is considered. The perceptual loss is assessed on relu3-1 layer in the

pre-trained VGG [120] model. In order to fine-tune the attribute predictor network utilized for perceptual

attribute loss, we manually annotate images with the attributes tabulated in Table 3.1.
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Figure 3.9: Overall CMC curves from testing DPM, CpNN, PLS◦DPM, PLS◦CpNN, GAN-VFS, and AGC-GAN using
polarimetric and thermal probe samples, matching against a visible spectrum gallery.

3.5.2 Results

We evaluate the proposed face recognition method compared with several recent works [24, 75, 74, 14,

70, 78] on the ARL Multi-modal Face database [14].

Polarimetric Thermal Face dataset [14] comprises polarimetric LWIR face images and their corresponding

visible spectrum related to 60 subjects. Data was collected at three different distances: Range 1 (2.5 m),

Range 2 (5 m), and Range 3 (7.5 m). At each range two different conditions, including baseline and expres-

sion are considered. In the baseline condition the subject is asked to keep a neutral expression looking at

the polarimetric thermal sensor. On the other hand, in the expression condition the subject is asked to count

out numerically from one upwards which results in different expressions in the mouth and to the eyes and

consequently different variations in the facial imagery.

To increase the correlation between the two modalities of visible and thermal, each modality was pre-

processed. We applied a band-pass filter so called difference of Gaussians (DoG), to emphasize the edges in

addition to removing high and low frequency noise.

We pass S0, S1, and S2 to the Pol-GAN’s three channels as the input as shown in Fig. 3.2. The training

set is used to transform the visible and polarimetric features to a shared latent embedding subspace. Also

at the same time, the network tries to synthesize visible modality from the shared latent subspace in the

GAN framework. To train the network, the genuine and impostor pairs are constructed. The genuine pair
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Table 3.4: Rank-1 identification rate for cross-spectrum face recognition using polarimetric thermal and conventional ther-
mal (S0) probe imagery.

Scenario Rank-1 Identification Rate
Probe PLS DPM CpNN PLS◦DPM PLS◦CpNN GAN-VFS AGC-GAN

Overall Polar 0.5867 0.8054 0.8290 0.8979 0.9045 0.9382 0.9654
Therm 0.5305 0.7531 0.7872 0.8409 0.8452 0.8561 0.8925

Expressions Polar 0.5658 0.8324 0.8597 0.9565 0.9559 0.9473 0.9733
Therm 0.6276 0.7887 0.8213 0.8898 0.8907 0.8934 0.9217

Range 1 Baseline Polar 0.7410 0.9092 0.9207 0.9646 0.9646 0.9653 0.9883
Therm 0.6211 0.8778 0.9102 0.9417 0.9388 0.9412 0.9659

Range 2 Baseline Polar 0.5570 0.8229 0.8489 0.9105 0.9187 0.9263 0.9643
Therm 0.5197 0.7532 0.7904 0.8578 0.8586 0.8701 0.9178

Range 3 Baseline Polar 0.3396 0.6033 0.6253 0.6445 0.6739 0.8491 0.9068
Therm 0.3448 0.5219 0.5588 0.5768 0.6014 0.7559 0.8124

is constructed from the same subject images in two different modalities. For the impostor pair, a different

subject is selected for each modality. In general, the number of the generated impostor pairs are significantly

larger than the genuine pairs. For the sake of balancing the training set, we consider the same number of

genuine and impostor pair. After training the model, during the testing phase, only the polarimetric network

is used for the evaluation. For a given probe, the network is used to synthesize the visible image. Afterwards,

the Euclidean distance is used to match the synthesize image to its closest image from the gallery. The

ratio of the number of correctly classified subjects and the entire number of subjects is computed as the

identification rate.

In each experiment the dataset is partitioned to train and test randomly. The same set of train and test is

used to evaluate PLS [24], DPM [75], CpNN [74], PLS◦DPM [14], PLS◦CpNN [70], GAN-VFS [78], and

the proposed AGC-GAN network. Fig. 3.9 shows the overall cumulative matching characteristics (CMC)

curves for our proposed method and the other state-of-the-art methods over all the three different ranges

as well as the expressions data at Range 1. For the sake of comparison, in addition to the polarimetric

thermal-to-visible face recognition performance, Fig. 3.9 also shows the results for the conventional thermal-

to-visible face recognition for some of the methods, namely PLS◦DPM, PLS◦CpNN, CpNN, and AGC-

GAN. In the conventional thermal-to-visible face recognition, all the mentioned methods exactly follow the

same procedure as before, with only using S0 modality. Fig. 3.9 illustrates that exploiting the polarization

information of the thermal spectrum enhances cross-spectrum face recognition performance compared to

the conventional one. Fig. 3.9 also shows the superior performance of our approach compared to the state-

of-the-art methods. In addition, our method could achieve prefect accuracy of 1 at Rank-4 and above.
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Table 3.5: Attribute prediction of the polarimetric face images using the proposed method and other frameworks and
comparing it with the attribute prediction of visible faces.

Facial Attributes Arched Eyebrows Big Lips Big Nose Bushy Eyebrows Bald Mustache Narrow Eyes Beard Mouth Slightly Open Young
Visible faces 96.7 98.4 99.1 95.9 99.3 99.4 95.7 98.9 97.7 96.9

Polar face 53.7 55.8 57.1 51.2 58.9 62.8 54.4 59.8 57.6 52.7
Polar faces (fine-tune) 78.2 83.9 85.3 80.7 88.4 89.3 79.3 88.9 81.9 76.5

Pol-GAN Network 89.6 95.3 96.6 90.4 96.2 95.2 91.9 94.8 93.7 91.1

Table 3.4 tabulates the Rank-1 identification rates for five different scenarios: overall (which corre-

sponds to Fig. 3.9), Range 1 expressions, Range 1 baseline, Range 2 baseline, and Range 3 baseline. In our

proposed approach, exploiting polarization information enhance the Rank-1 identification rate by 2.24%,

5.16%, 4.65%, and 9.44% for Range 1 baseline, Range 1 expression, Range 2 baseline, and Range 3 base-

line compared to the conventional thermal-to-visible face recognition. This table reveals that using deep

coupled generative adversarial network technique with the contrastive loss function as well as utilizing fa-

cial attributes to transform different modalities into a distinctive common embedding subspace is superior

to the other embedding techniques such as PLS◦CpNN. It also shows the effectiveness of our method in

exploiting polarization information to improve the cross-spectrum face recognition problem.

3.6 Ablation study

In order to illustrate the effect of adding different loss functions and their improvement in our proposed

framework, we perform an study with the following evaluations using the polarimetic dataset: 1) Polar-to-

visible using the coupled framework with using only Lcpl + LE loss, 2) Polar-to-visible using the proposed

framework with Lcpl + LE + LGAN + Lppol + Lpa loss functions, and 3) Polar-to-visible with all the loss

functions in the proposed framework.

We plot the receiver operation characteristic (ROC) curves corresponding to the mentioned three differ-

ent settings of the framework in the task of face verification. As it is shown in Fig. 3.10 the LGAN has an

important rule in the enhancement of our proposed approach by transforming the polarimetric modality to

the visible one. Moreover, adding facial attribute prediction loss enhances the face recognition performance.

The reason behind this is because using facial attributes loss in addition to contrastive loss function leads to

a more discriminative embedding space and this leads to a better face recognition performance. Consider

a polarimetric subject with Id#2 (see Fig. 3.4). The contrastive loss function causes the corresponding

visible images from Id#2 to move closer to Id#2′s polarimetric and other Ids′ visible images to move
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Figure 3.10: The ROC curves corresponding to the ablation study.

farther away. Now, using the contrastive loss function in conjunction with the attribute classification makes

Id#1 to move closer to Id#2 since they share the same set of attributes (see Fig. 3.4). In other words, it

differentiates between different impostors of Id#2. The same procedure is performed for the other identities

during the training process. Fig. 3.4 visualizes the overall concept of adding facial attributes prediction loss

function. As it is depicted, addition of attribute prediction loss leads to a more discriminative embedding

subspace. This leads to a better face recognition performance as it is shown in Fig. 3.10.

3.7 Attribute Prediction from Polarimetric thermal

One of the benefits of the proposed AGC-GAN is predicting facial attributes directly from polarimetric

thermal modality. These attributes can be utilized directly or can be fused with other modalities to enhance

recognition performance. In order to illustrate the effectiveness of the proposed method we performed at-

tribute prediction in four different scenarios: 1) Attribute prediction of visible images with the attribute

predictor. 2) Attribute prediction of polarimteric images with the attribute predictor. 3) Attribute prediction

of polarimetric images with the fine-tuned attribute predictor. In this case, we fine-tuned the attribute pre-

dictor with the annotated polarimetric images and used it for the task of attribute prediction in the testing

phase. 4) Attribute prediction of the polarimetric images using the Pol-GAN network from the proposed

AGC-GAN. Table 3.5 shows the result of the prediction for the four mentioned frameworks. Although,
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fine-tuning the attribute predictor increased the prediction performance (framework #3), but still its perfor-

mance is less than our proposed framework. The proposed framework could outperform the other methods

in polarimetric face recognition and it has a comparable performance to attribute prediction from the visible

face images.

3.8 Conclusion

We have introduced a novel approach to exploit facial attributes information for the purpose of sketch-

photo and polarimetric thermal-to-visible face recognition. In the first approach we proposed to use coupled

deep neural network with facial attributes provided by eye witnesses. We simultaneously minimize the cost

functions due to the facial attribute identification as well as the sketch-photo verification in order to increase

inter-personal variations between different subjects with different sets of facial attributes and reducing intra-

personal variations in the latent feature subspace. The combination of the two cost functions leads to a

significantly more discriminative embedding subspace compared to the subspace that is created by either one

of them. In the second approach, AGC-GAN contains two GAN based sub-networks dedicated to visible

and polarimetric input images. This network is capable of transforming the visible and polarimetric thermal

modalities into a common discriminative embedding subspace and synthesizing the visible photos from that

subspace. It simultaneously minimizes the cost functions due to the facial attribute identification in addition

to the other cost functions in order to increase inter-personal variations between different subjects with

different sets of facial attributes in the latent feature subspace. This leads to a more discriminative embedding

subspace. An ablation study was performed to demonstrate the enhancement obtained by different losses

in the proposed method. Our main focus was on the accuracy performance and we did not consider the

training or inference timing. We compared our method with state-of-the-art polarimetric thermal-to-visible

face recognition methods and showed the superiority of our method over them.
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Chapter 4

Soft Biometrics as a Privileged Data to

Improve Deep Face Recognition

4.1 Introduction

In our approach, we propose a new framework where we learn features in a common latent subspace

between the soft and hard biometric pairs of training data. We develop this framework based on a new

training scheme, which empowers the network to outperform other networks with the same topology that are

trained with no auxiliary data. More specifically, our proposed training scheme has the ability of transferring

information from the auxiliary data and help the network to learn a more discriminative feature about the

primary data. To this end, we utilize a coupled deep neural network (Cp-DNN) architecture which consists

of a deep network (Net-I) dedicated for the primary image data coupled with another network (Net-S)

dedicated for the auxiliary soft biometrics data, which together discover a common latent subspace between

the two modalities during the training stage. This shared common feature subspace has a unique property;

the Euclidean distance between the latent feature vectors from different modalities with the same identity

are close in this latent subspace, while their Euclidean distance for different identities are far from each

other.

In another framework, we investigate the concept of LUPI in the multi-task learning (MTL) paradigm.

A face photo can be viewed as having some positive or negative hidden relation with some of its soft facial

biometric traits. For example, a face with goatee beard has a male gender and this can help the classifier

to refine the search space for the task of face recognition. Although, the soft biometric traits are correlated,

they can be heterogeneous in data-type and scale [163] and semantic meaning [164]. While some soft
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biometric traits such as height and age are ordinal, other soft biometric traits such as race and gender are

nominal. Therefore, these two categories of face attributes belong to different heterogeneous data-types. In

the MTL framework, we consider the early stage weight sharing which is mainly the CNN weights followed

by the dedicated weights which are responsible for learning the representative features for each specific

face attribute (privileged soft biometric trait). The first part of the network shares the same weights among

different tasks in order to exploit a common information between different kinds of tasks by capturing the

relationships between them. As a result, the trained embedding space is more discriminative and can be

utilized to enhance the performance of the main task which is face recognition.

For the purpose of assessment, we study the problem of face recognition using paired image-attribute

data, while the attributes (i.e., soft biometrics) are only available during the training phase. The performance

of the proposed scheme is evaluated on four different datasets, namely CelebA [156], Morph [165], Bio-

cop [159], and CMU-PIE [166] datasets. Our experimental results show that the proposed training scheme

helps our architectures to transfer latent information from the auxiliary data to learn better discriminative

features and to increase the overall recognition performance.

4.2 Related works

In computer vision and biometrics, it is a common trend to have more than one modality as the source of

information. These modalities can vary from visual images to soft biometrics or a sequence of text data. Soft

biometric traits can be applied to many useful applications. They can be directly used in a unimodal system

for some applications [38] or can be fused with some primary biometric traits. This fusion is usually done for

the sake of improvement in the recognition of a biometric trait. Jain et.al [167], considered a hybrid system

which combined soft biometrics such as age, gender, and ethnicity with fingerprint in order to enhance the

overall matching accuracy. There are some other notable research such as [168], [169], and [170] where soft

biometrics are fused with the classical hard biometric traits. The task of using all modalities in a learning

process, when they are available in both training and testing phases, has been studied under the context of

multimodal or multiview learning. Different methodologies are proposed in the literature for this paradigm

from feature stacking, in which features of different modalities are simply concatenated, to the fusion of

modalities in early or late stages [42].

On the contrary, in this chapter we are addressing the problem of employing auxiliary information,



Seyed Mehdi Iranmanesh Chapter 4. Soft Biometrics as a Privileged Data to Improve Deep Face Recognition 61

Figure 4.1: VGG-16 first 13 convolutional layers architecture.

which is only available during the training phase and not in the testing phase. Different settings of this

problem have been investigated in the literature. In [171], a canonical correlation analysis based method was

proposed for spectral clustering with paired data. The novelty of their method was that they used a distinct

similarity measure for each modality. A shared feature space is found in [172] in which the Euclidean

distance is meaningful for intra and inter modalities. [173] has proposed two visual annotator rationales for

visual recognition. These rationales were then used as extra information to improve the absolute recognition

accuracy.

The concept of LUPI was introduced in [41], for the first time, under the context of SVM+. In their

methodology, the auxiliary data, or privileged information, was employed to predict the slack variables of

an SVM classifier [174]. Since then, the idea of using privileged information has been vastly investigated

in the literature and has been applied to different applications and contexts, e.g., object localization [175],

facial feature detection [42], and metric learning [176]. In [42], the privileged information is used to

distinguish between ”easy to classify” and ”hard to classify” examples. They showed that an extra source

of information, such as text, bounding box, or attribute, can help a classifier to do a better classification in

object recognition tasks. A framework was introduced in [92] to embed the main data into the latent feature

subspace such that the mutual information between the embedded data and auxiliary data is maximized.

The concept of learning latent shared representation has also been studied in the area of transfer learning

and domain adaptation. Authors in [177] have proposed a framework to learn the mapping from the available

modalities to a new unseen modality using unlabeled data. An approach has been introduced in [178] to find

a shared representation between RGB and depth modalities during the training phase. The authors used the

extracted shared subspace from the training phase in order to help RGB modality during the testing phase.

Hoffman et. al. [179] proposed an approach to enrich RGB information using depth data during the training

phase as side information. They trained a hallucinating convolution neural network with the depth data in
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Figure 4.2: Proposed Cp-DNN model (Net-I+Net-S) using face images and soft biometric attributes for face classification
during the training phase on Morph, Biocop and CelebA datasets. In the case of CMU multi-PIE dataset Net-S will be
replaced with another Net-I.

order to utilize it jointly with the RGB network during the test time and boost accuracy in object detection

tasks.

Multi-task learning has been vastly applied in computer vision and biometrics problems. It basically

attempts to solve correlated tasks concurrently with the help of knowledge sharing between tasks. In [180]

it was shown that MTL can boost the performance of different tasks. The early MTL approaches tried to

improve the performance by finding the relationship among different tasks [181]. Afterwards, in [182] an

MTL approach was utilized to find the common features between different tasks. In [183], the authors intro-

duced an outlier matrix and introduced outliers that shared common features with other tasks and claimed

that due to the high dimensionality of the data, the assumption of sharing features among different tasks

is not reasonable. In other works [184, 185], the authors utilized techniques such as structure sparsity for

feature selection in order to select meaningful common features. [148, 186] employed MTL technique to

predict attributes such as age, gender, race, etc.

There is a growing interest on employing soft biometrics as complementary side information to low-level

hard biometrics features. Authors in [187, 188] proposed fusion methods to combine these two different

modalities. However, the soft biometric traits are considered to be available both during the training and

testing phases. Our approach looks at this problem in a different way. We consider the case when soft

biometric information does not exist during the testing phase, and we only have them during the training

phase.

In this chapter, two face recognition approaches are proposed (Cp-DNN, and MTL-LUPI). Both ap-

proaches are developed for two main tasks, namely face classification and face verification. Our first ap-

proach employs Cp-DNN, in which soft biometric data is used only during the training phase, to improve
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the accuracy of the trained network. The soft biometric attributes, which play the role of privileged data in

our work, are not discriminative enough to perform a high accurate identification on their own, and they can

change over time as well. However, we make use of them in the training phase to improve the performance

of our deep convolutional neural network (CNN) dedicated for our primary data during the testing phase. In

the second approach MTL-LUPI, we utilize the MTL technique, to predict the privileged soft biometric traits

and adjust the network common features in a way to enhance the main goal which is the face recognition

task.

4.3 Methodology

In traditional machine learning algorithms, a training set comprises of pairs of input and output. For

example, in image classification, the input is an image xi ∈ X , and the output is its class label yi ∈ Y

for i = 1, . . . , N where N is the number of the training samples. The goal is to find a prediction function

f : X → Y . However, in our work, for each pair (xi, yi) we are also given an extra information xpi where

in the literature it is called the privileged information. This extra information is only available during the

training phase. Similar to the traditional algorithms, we aim to learn a prediction function fL : X → Y but

also exploiting the privileged data.

4.3.1 Traditional supervised algorithms

In general, when there is no privileged information, the parameters of the prediction function f , can be

learned by minimizing an appropriate loss function as follows:

L1 = 1/N

N∑
i=1

`(f(xi), yi) , (4.1)

where ` is a desirable loss function, e.g., categorical cross entropy for multi-class classification. The pre-

diction function f could be any of the popular classifiers in the literature, such as SVM [41], LVQ [189],

or a multilayer perceptron (MLP). However, deep convolutional neural networks [120], which is a recent

topic of interest in the literature, has successfully been applied to many computer vision problems. Hence,

we selected a VGG-16 architecture (Fig. 4.1) as our basic prediction function. In the following section, the

topology of our network is described in details.
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Figure 4.3: Proposed Cp-DNN framework using face images and soft biometric attributes for face verification during the
training phase.

4.3.2 Learning using privileged information via coupled deep neural network

Several different techniques are proposed in the current literature on LUPI for making use of privileged

information during the training phase. Authors in [92] added a mutual information term as a regulariza-

tion factor to the cost function in Eq. 4.1. However, they pointed out a serious drawback that the labels

of the samples are neglected in their loss function for LUPI, or, in other words, their LUPI technique is

unsupervised. In contrast, we utilize a supervised loss function, which considers the sample labels. To that

end, we use a contrastive loss function [62] (`cont) to pull the genuine pairs (i.e., a face image with its own

corresponding soft biometric attributes), into a common feature subspace, toward each other and push the

impostor pairs (i.e., a face image with another subject’s soft biometric attributes) apart from each other (see

Fig. 4.2). Similar to [62], the contrastive loss is of the form:

`cont(z1(xi), z2(x
p
j ), ycont) = (4.2)

(1− ycont)Lgen(D(z1(xi), z2(x
p
j )) + ycontLimp(D(z1(xi), z2(x

p
j )) ,

where xi is the input for the main view (face image), and xpj is the input for the privileged view (soft

biometric attributes). Lgen and Limp represent the partial loss functions for the genuine and impostor pairs,

respectively, and D(z1(xi), z2(x
p
j )) indicates the Euclidean distance between the embedded data in the

common feature subspace. ycont is a binary label which is assigned a value of 0 when both modalities, i.e.,
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main and privileged, form a genuine pair, or, equivalently, when the inputs are from the same class. On the

contrary, when the inputs are from different classes, which means they form an impostor pair, ycont is equal

to 1. In addition, Lgen and Limp are defined as follows:

Lgen(D(z1(xi), z2(x
p
j ))) =

1

2
D(z1(xi), z2(x

p
j ))

2

for yi = yj ,

(4.3)

Limp(D(z1(xi), z2(x
p
j ))) = (4.4)

1

2
max(0,m−D(z1(xi), z2(x

p
j )))

2 for yi 6= yj .

Therefore, the main loss function can be written as:

L2 = 1/N

N∑
i=1

(`(fL(z1(xi)), yi) + 1/N2
N∑
i=1

N∑
j=1

`cont(z1(xi), z2(x
p
j ), ycont) , (4.5)

where the first term is the classification/verification term and the second term is the coupling term. z1 and

z2 are the DNN-based embedding functions, which transform xi and xpj into a common latent embedding

subspace. As it was mentioned earlier, the contrastive loss function has the ability to find a discriminative

embedding space by employing the data labels. Due to the classification/verification term in (4.5), mini-

mizing L2 will boost the discriminative common space of the main data, xi. However, it does not enforce

a discriminative ability on the common subspace for the privileged data. Therefore, we add a classification

loss term `(fP (.)) for the privileged data to the total loss function as follows (as shown in Fig. 4.2):

L3 = 1/N

N∑
i=1

(`(fL(z1(xi)), yi)

+ 1/N
N∑
j=1

`(fP (z2(x
p
j )), yj) + 1/N2

N∑
i=1

N∑
j=1

`cont(z1(xi), z2(x
p
j ), ycont) ,

(4.6)

where fL(.), and fP (.) are the classification functions which operate on z1, and z2, respectively (See Net-I

and Net-S in Fig. 4.2). To visualize the common latent embedding subspace generated by the Net-I mod-

ule (see Fig. 4.2), in the Cp-DNN framework for the Morph dataset trained according to (4.6), we reduced

its dimensionality using principal component analysis (PCA) [190]. Afterwards, t-Distributed stochastic

neighbor embedding (t-SNE) [191] is employed to project the transformed common features into two di-
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Figure 4.4: Common embedding subspace of Net-I training based on our proposed Cp-DNN framework (Net-I + Net-S) vs.
training based on baseline network (Net-I) for four different groups of 5 classes (classification of Morph).

mensions. The final two dimensional embedding features are depicted in Fig. 4.4. The plots related to the

Net-I embedding subspace which is trained using the (4.6) (Net-I + Net-S) show a more discriminative sub-

space compared to the base-model which is trained according to the Eq. 4.1 (Net-I). This emphasizes the

effectiveness of our proposed network.

During the testing phase, for a given test sample xi, only the prediction function fL is used for the pre-

diction (illustrated in Fig. 4.5), because its corresponding privileged information is not available. However,

having fP in the training phase will help to find a more discriminative common subspace which conse-

quently leads to a better prediction performance in the testing phase.

We applied this paradigm for face classification and verification tasks. For classification task (see

Fig. 4.2), `(fL(.)) and `(fP (.)) terms in (4.6) are the cross entropy loss functions, and for the verifica-

tion task, `(fL(.)) and `(fP (.)) are the contrastive loss functions (see Fig. 4.3). Therefore, the total loss

function for the classification is given by:

L4 = 1/N
N∑
i=1

M∑
k=1

yk(xi)log(fL(z1(xi)))

+ 1/N

N∑
j=1

M∑
k=1

yk(x
p
j )log(fP (z2(x

p
j ))) + 1/N2

N∑
i=1

N∑
j=1

`cont(z1(xi), z2(x
p
j ), ycont) ,

(4.7)

where yk, k = 1, ...M indicates the class labels. xi and xpj refer to the main and privileged samples,
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respectively, for i, j = 1, ..., N . fL(.), and fP (.) are the predicted class labels for xi, and xj , respectively.

In the case of verification, the total loss function is defined as follows:

L5 = 1/N2
N∑
i=1

N∑
j=1

(`cont1(z1(xi), z1(xj), ycont1) + `cont2(z2(x
p
i ), z2(x

p
j ), ycont2)+

`cont3(z1(xi), z2(x
p
j ), ycont3)) ,

(4.8)

where the first and second loss terms `cont1, `cont2 are the verification terms for the main samples (xi, xj) and

the privileged samples (xpi , x
p
j ), respectively and the third loss term `cont3 is the coupling term (see Fig. 4.3).

ycont1 , ycont2 , and ycont3 are the binary labels which are assigned to Siamese-I, Siamese-S, and coupling

Siamese-I and Siamese-S, respectively. While the whole approach remains the same for the classification

and verification tasks, but their network structures are different. For verification task, we used a coupled

Siamese network [62] which consists of a Siamese network dedicated for the verification task using the

primary face dataset (Siamese-I) coupled with another Siamese network dedicated for their soft biometrics

dataset (Siamese-S). In summary, the DNN architectures which are used for classification and verification

during the training and testing stages are shown in Figs. 4.2, 4.3, 4.5, and 4.8.

4.3.3 Learning using privileged information via a multi-task learning architecture

Our goal is to simultaneously train the network layers using the face images (hard biometrics) and

the face attributes (soft biometric traits). In this approach, instead of considering two different networks

dedicated for the main data and the privileged information during the training phase, instead we consider to

train them both simultaneously using only one network. However, considering the privileged information

as an input to the network is not a good idea since the network does not have an access to such an input

during the testing phase. In the proposed MTL architecture (see Fig. 4.6) the network gets the main data

(face images) as an input and tries to estimate the privilege information in addition to the main task (i.e.,

classification/verification). Therefore, the network is jointly trained for both the face recognition task as

well as the face attributes prediction tasks. Suppose the input is an image xi ∈ X , and the output is its

class label yi ∈ Y for i = 1, . . . , N where N is the number of training samples. Also, the privileged soft

biometric traits, contain T different face attributes or class labels. Thus, in this framework we denote them

as yt for t = 1, . . . , T . The loss function is defined as below:
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L6 = 1/N
N∑
i=1

(`(fL(xi), yi) + 1/N
N∑
i=1

T∑
t=1

(`(f t(xi), y
t
i) , (4.9)

where f t(.) is the specific function for attribute prediction of task t. Note that the second term of the

loss function is added because of the privileged soft biometric traits. However, learning multiple CNNs

separately is not optimal since different tasks might have some hidden relationships with each other and

may share some common features. This is supported by [150] where they train a CNN features for the face

recognition task and they use it directly for the face attribute estimation. Therefore, our network also shares

CNN features among different tasks in order to enhance the performance of the face recognition task. The

loss function (4.9) can now be reformulated as follows:

L7 = 1/N

N∑
i=1

(`(fL(z(xi, wc)× wL), yi) + 1/N

N∑
i=1

T∑
t=1

(`(f t(z(xi, wc)× wt), yti) , (4.10)

where wc is the shared weights between all the tasks including the face recognition task. wL and wt for

t = 1, . . . , T represent the remaining weights which are assigned separately for the main task and the

privileged soft biometric tasks, respectively (see Fig. 4.6). Our MTL-LUPI framework is applied for the

tasks of classification and verification.

While the whole approach remains the same for the classification and verification tasks, but their net-

work structures are different. In the classification task, `(fL(.)) would be replaced by a cross entropy loss

function. However, in the verification task, we use a Siamese network [62] for the primary face dataset

(Siamese-I). Each attribute predictor of the Siamese-I is trained for a particular privileged task as shown in

Fig. 4.7. Therefore, the total loss for MTL-LUPI in the case of verification would be:

L8 = 1/N2
N∑
i=1

N∑
j=1

(`cont(z(xi, wc), z(xj , wc), ycont)

+
T∑
t=1

(`(f ti (z(xi, wc)× wt), yti) +
T∑
t=1

(`(f tj (z(xj , wc)× wt), ytj)) ,

(4.11)

where (xi, xj) is a pair of face images and `cont is a loss function for the verification task with ycont label.
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Figure 4.5: Classification framework during the testing phase.

Figure 4.6: Classification using face images (primary data) in MTL-LUPI framework during the training phase.

t = 1, . . . , T indicate the different tasks which are exploited from the privileged soft biometric traits. For

simplicity we consider the same loss function for all the attribute tasks but this can be generalized for tasks

to use different loss functions. yti , y
t
j are the real class labels (privileged information) and f ti (.), f

t
j (.) are the

predicted class labels of the (xi, xj) pair for the task t. wc is the common weights for the verification and

attribute tasks. wti and wtj represent the remaining weights which are assigned separately for the privileged

soft biometric task t dedicated to the input face images xi and xj , respectively (see Fig. 4.7).

4.4 Experiments

We divided the experiments into two parts, namely classification and verification tasks. For the classifi-

cation task, we compared our results with two state-of-the-art LUPI approaches, i.e., SVM+ and LMIBPI [92],

on four different benchmark datasets, namely Morph [165], Biocop [159], CelebA [156], and CMU Multi-

PIE [166]. We consider two different approaches to utilize the privileged information (soft biometrcis) for

the classification task, namely Cp-DNN (Net-I+Net-S) and MTL-LUPI. Similarly, for the verification task,
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Figure 4.7: Verification using face images in MTL-LUPI framework during the training phase.

we evaluate the effect of using the privileged soft biometrics in two different LUPI frameworks namely

Cp-DNN (Siamese-I+Siamese-S), and MTL-LUPI. We explain each framework separately and eventually

we compare the results with each other and the base-model. The experiments are conducted using NVidia

Titan GPU (12 GB).

CelebA- The images of this dataset come from the Celeb-Face dataset [65] along with their attribute vectors

of 40 attributes such as gender, face characteristics, skin color, hair color, etc. CelebA dataset contains

200K images of 10K different identities. Since in the CelebA dataset the identities of the images are not

provided, we consider the gender attribute, i.e., male or female, as the image label and the remaining 39

features as the soft biometric data. We use this dataset for gender verification and classification.

Morph dataset [192] consists of two albums I, II . Album I contains more than 1K face images and album

II has more than 55K images, respectively. Each face image has three soft biometrics traits namely: age,

gender, and race. The age in the dataset is distributed in the range of 15-68. In this chapter, we consider 8

different classes to cover the age range since the main goal is not age estimation. In total the dataset images

are related to more than 10K subjects. There are 103 subjects with more than 15 samples, which enables us

to use this dataset for classification and verification tasks.

CMU Multi-PIE dataset [166] consists of 337 identities, from 15 different view points and 19 illumination

conditions. This dataset contains 750K images collected in four different sessions. We use frontal view

point of the face images as the main data and 45 degree point view as the auxiliary data. This dataset is

utilized only for the sake of classification task.
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Dataset fc1 fc2 softmax
Morph 256 128 103
Biocop 512 512 400
CelebA 256 128 2
CMU Multi-PIE 256 256 129

Table 4.1: Output sizes of the fc layers in Net-I for the Cp-DNN framework

Biocop dataset [159] is collected under four disjoint years; 2008, 2009, 2012 and 2013. Each label consists

of different biometric modalities for each subject; face, iris, fingerprint, palm print, hand geometry, voice

and soft biometric traits including age, gender, ethnicity, hair color, eye color, beard, mustache, weight, and

height.

Under each label, the biometrics are acquired during either one or two separate sessions. The 2012 and

2013 databases contain 2K subjects [159]. For the task of classification and verification we used the face

images of 2012 and 2013 subjects with their corresponding soft biometric traits. We randomly select 400

subjects from the dataset and perform the classification task on them. In the verification task, we construct

genuine and impostor pairs from 600 subjects and test the framework on the remaining subjects.

4.4.1 Classification task using coupling framework (Cp-DNN: Net-I+Net-S)

Our coupled deep architecture is applied to all four datasets. We use different architectures for the main

data (face images) and the privileged data (attributes). The network for face images (Net-I) composed of 13

convolutional layers of VGG-16 [132] (see Fig. 4.1), pre-trained on the CMU Multi-PIE dataset, followed

by three fully connected layers with different output sizes. All the convolutional and fully connected layers,

except the last fully connected layer, are equipped with the Relu activation function. For the sake of clas-

sification, softmax activation is used for the last fully connected layer. Table 4.1 shows the size of the fully

connected layers as well as the softmax layer for different datasets. The network for the soft biometric data

(Net-S) consists of three fully connected layers. The size for each fully connected layer in Net-S is shown

in Table 4.2. The first fully connected layers of the Net-I and Net-S are coupled together via the contrastive

loss. The network structure is depicted in Fig. 4.2. However, for the CMU Multi-PIE dataset, the second

network dedicated to the auxiliary data has the same structure as the first one since the privileged data are

the 45 degree view face images.

Implementation details. We randomly divided all the datasets into three parts, i.e., training (%70),

validation (%15) and testing (%15). For training, the number of genuine and impostor pairs are very high,
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Figure 4.8: Verification framework during the testing phase.

therefore, we randomly selected 20K genuine pairs and 20K impostor pairs. Each pair contains five entries,

[xi, x
p
j , yi, y

p
j , ycont] where xi is the input of the Net-I (cropped face) with the class label yi, x

p
j is the input

of the Net-S (attributes) with the class label ypj , and ycont is the binary label which is 0 when xi and xpj

belong to the same class, and it is equal to 1 otherwise. For the purpose of validation, we randomly selected

7.5K impostor and 7.5K genuine pairs. Similarly, we randomly selected 7.5K impostor and 7.5K genuine

pairs for the testing phase. During the validation/testing of a probe the soft biometric data is not available,

therefore, we only use Net-I as illustrated in Fig. 4.5. Therefore, each probe sample in validation and testing

only contains two entries, [xi, yi], in which yi is used for evaluating the classification accuracy. We also

consider a base-model when there is no soft biometric data available during the training phase. In this case,

we only have Net-I in the training, validation, and testing phases. By comparing the results of our model

with the base-model, we can evaluate whether the privileged soft biometric data (only available during the

training) would improve the classification accuracy or not and if so what is the percentage in improvement.

In addition to the base-model, we also compared our results with two state-of-the-art LUPI approaches,

namely SVM+ and LMIBPI. Since these approaches are binary classifiers, we compared the results of the

gender classification task on CelebA with them. The SVM+ and LMIBPI are trained using the features

extracted from the first fully connected layer of the Net-I (in the base-model case) as the main input, and

the soft biometric vectors as the auxiliary input. For the Morph, Biocop, and CMU Multi-PIE dataset, we

constructed a multi-class SVM+, and a multi-class LMIBPI by training 103, 400, and 129 one-versus-all

binary SVM+, and LMIBPI classifiers, respectively. We also compare our results with the classical SVM

which could also be considered as a base-classifier.
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Dataset fc1 fc2 softmax
Morph 256 128 103
Biocop 512 512 400
CelebA 256 128 2

Table 4.2: Output sizes of the fc layers in Net-S for the Cp-DNN framework

Figure 4.9: Overall cumulative matching characteristics (CMC) curves for CMU Multi-PIE, Morph, and Biocop datasets.

4.4.2 Classification task using MTL framework (MTL-LUPI)

Our MTL-LUPI Framework composed of 13 convolutional layers of VGG-16 (see Fig. 4.1), pre-trained

on the CMU Multi-PIE dataset, followed by two fully connected layers shared by all the tasks and finally

a separate fully connected layer for each individual task (see Fig. 4.6). The size of the last fully connected

layer for each task depends on the number of classes within each attribute. For example, in the binary

attribute classification for gender the size of the fully connected layer is two, but in other tasks such as race

or hair color the size would be more than two. All the convolutional and fully connected layers, except the

last fully connected layer, are equipped withRelu activation function. For the last fully connected, softmax

was considered for the classification of each individual task. Table 4.3, shows the size of the shared fully

connected layers and the last fully connected layer for each task on different datasets. Depending on the

dataset, the types of the available soft biometrics are variant. Also, the number of classes for the same

attribute can be different depending on the dataset. For example, in the Biocop dataset, hair color has six

classes while it has only three different classes in the CelebA dataset.

Dataset fc1 fc2 main task Age Gender Race Eye color Hair color Beard Mustache Eye glasses
Morph 256 128 103 8 2 2 7 7 7 7 7

Biocop 512 512 400 7 2 7 6 6 2 2 7

CelebA 256 128 2 7 2 7 7 3 2 2 2

Table 4.3: size of shared fully connected layers and the last fully connected layer for different tasks (MTL-LUPI framework)
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Base-classifier LUPI
Dataset SVM Net-I SVM+ LMIBPI Net-I + Net-S MTL-LUPI
Morph 73.45 89.95 77.14 75.69 94.02 92.4
Biocop 89.65 94.7 92.14 92.78 96.3 97.9
CelebA 95.82 99.2 95.61 95.54 99.6 99.7
CMU Multi-PIE 82.31 89.6 84.68 86.43 92.7 -

Table 4.4: Classification results of our proposed methods (Cp-DNN:Net-I+Net-S and MTL-LUPI), our baseline method
(Net-I), LMIBPI, SVM, and SVM+ on Morph, Biocop, CelebA, and CMU Multi-PIE datasets.

Implementation details. We randomly divided all the datasets into three parts, i.e., training (%70),

validation (%15) and testing (%15). Each input sample to the network contains three entries, [xi, yi, y
t]

where xi is the input cropped face with the class label yi, and yt is the class label for the privileged task t.

During the validation, and testing phases of a probe, the soft biometric data is not available. Moreover, in

the testing phase, the network would be able to do the attribute prediction as well as the classification task.

For the sake of comparison, we also consider a base-model when there is no MTL framework. It should be

noted that the base-model for this framework is the same as the base-model for the coupling architecture

(Cp-DNN) and we only have Net-I during the training, validation, and testing phases.

4.4.3 Classification results

Table 4.4, lists the classification accuracy results. For all the four datasets, both LUPI-based Cp-DNN

and MTL-LUPI show better performance compared to SVM+ and LMIBPI. In addition, they outperform the

base-model (Net-I), highlighting the usefulness of the privileged information in the proposed frameworks.

For the CelebA dataset, Net-I already shows a very high classification accuracy. Therefore, even a little

improvement is worthy. In the Cp-DNN framwork, privileged data helped to improve the classification

accuracy by 4.5%, 1.7%, and 5.8% for Morph, Biocop, and CMU Multi-PIE datasets, respectively. When

compared to Net-I. MTL-LUPI enhanced the classification accuracy by 2.7% and 3.4% in the Morph and

Biocop datasets, respectively, by utilizing the privileged information. It should be noted that MTL-LUPI

cannot be applied to the CMU Multi-PIE dataset since this dataset does not have the soft biometric traits and

the privilege information is just the face images at 45 degree. Furthermore, Net-I has better performance

compared to SVM+ and LMIBPI, highlighting the superiority of our deep model over the shallow models.

The evaluation performance is validated using ten fold random cross validation. Fig. 4.9 shows the

overall cumulative matching characteristics (CMC) curves of our proposed methods and the baseline model

for the Morph, Biocop, and CMU Multi-PIE datasets.
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Base-model LUPI
Dataset Siamese-I Siamese-I + Siamese-S MTL-LUPI
Morph 87.37 90.66 91.53
Biocop 87.6 88.27 90.07
CelebA 96.1 96.8 97.3

Table 4.5: Verification results for the proposed methods (Cp-DNN: Siamese-I+Siamese-S and MTL-LUPI) and baseline
model on Morph, Biocop, and CelebA datasets.

Figure 4.10: ROC curves for verification results for our proposed methods (Cp-DNN:Siamese-I+Siamese-S and MTL-
LUPI), and baseline model (Siamese-I) on Morph, and Biocop datasets.

4.4.4 Verification task using coupling framework (Cp-DNN: Siamese-I+Siamese-S)

For the verification task, we train two Siamese DNNs that are coupled together. We utilize a Siamese

structure, which means its underlying networks share their weights with each other. Each Siamese network

consists of two identical VGG-16 nets when the first 13 convolutional layers of the VGG-16 nets are pre-

trained on the CMU Multi-PIE dataset, followed by 2 fully connected layers, which have 256 and 128

nodes, respectively. The whole structure is displayed in Fig 4.3. The output of Siamese-I network acts as

the embedding function z1(xi, xj). Since the input of this Siamese network are the cropped face images, we

refer to it as Siamese-I. For z2(x
p
i , x

p
j ), we use an MLP-based Siamese structure in which each MLP contains

two fully connected layers, each of which has 128 nodes. Since the input of this Siamese network is the

soft biometrics data, it is denoted by Siamese-S in this chapter. The output of the upper branch in Siamese-I

is coupled with the output of the lower branch in Siamese-S by the contrastive loss, Lcont3, as shown in

Fig. 4.3. Since the weights in Siamese-I and Siamese-S are shared, it does not matter which branches in

Siamese networks are coupled.

Implementation details. The same network architecture is used for all the datasets (Morph, Bio-Cup,

and CelebA). We randomly divided the datasets into three parts, i.e., training (%70), validation (%15)
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and testing (%15). For the training part, the number of genuine and impostor pairs are very high, there-

fore, we randomly selected 20K genuine and 20K impostor pairs. Each pair contains seven entries,

[xi, xj , x
p
i , x

p
j , ycont1, ycont2, ycont3] where xi and xj are the inputs to the Siamese-I, xpi and xpj are the

inputs to the Siamese-S, and ycont1, ycont2, and ycont3 are binary labels which are 0 when the inputs in

(xi, xj), (xpi , x
p
j ), and (xi, x

p
j ) come from the same class, respectively, and are equal to 1 otherwise. For

validation phase, due to the high number of pairs we randomly selected 7.5K impostor and 7.5K genuine

pairs. Similar to the validation phase, we randomly selected 7.5K impostor and 7.5K genuine pairs for the

testing phase. During the validation and testing phases the soft biometric data is not available. Therefore,

we only use Siamese-I in these phases (see Fig. 4.8). Thus, each pair in the validation and testing phases

contains three entries, [xi, xj , ycont1]. We also consider the case when there is no soft biometric data in the

training. In this case, we only have Siamese-I in all the training, validation, and testing phases. Similar to

the classification experiments, the results of our model is compared with the results of the base-model to

evaluate the effectiveness of the privileged soft biometric data on the verification performance improvement.

4.4.5 Verification task using MTL framework (MTL-LUPI)

For the verification task in MTL-LUPI framework, we train a Siamese DNN consisting of two identical

VGG-16 nets when the first 13 convolutional layers of the VGG-16 nets are pre-trained on the CMU Multi-

PIE dataset, followed by two fully connected layers shared between all the tasks and finally at the last layer

we have a bank of fully connected layers each dedicated for a different task. The size of the two shared fully

connected layers for all the datasets are 256 and 128 respectively. The whole structure is displayed in Fig

4.7. The size of the last fully connected depends on number of tasks’ classes. All the common weights of

different tasks are shared among two VGG-16 nets in the Siamese network. The last fully connected layers

which are dedicated for each task are not shared between the two VGG-16 nets in order to help the network

to estimate each task separately, by utilizing the shallow subnetworks at the end. All the convolutional and

fully connected layers, except the last fully connected layer, are equipped with Relu activation function.

The last fully connected softmax was considered for the classification of each individual task.

Implementation details. The same network architecture is used in all the datasets (Morph, Bio-Cup,

and CelebA). We randomly divided the datasets into three parts, i.e., training (%70), validation (%15) and

testing (%15). For the training part, we randomly selected 20K genuine and 20K impostor pairs. Each pair

contains five entries, [xi, xj , ycont, y
t
i , y

t
j ] where xi and xj are the inputs to the network, and ycont is a binary
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label which is 0 when the inputs xi and xj come from the same class and is equal to 1 otherwise. yti , and ytj

are the class labels for the privileged task t related to xi, and xj , respectively.

For validation phase, we randomly selected 7.5K impostor and 7.5K genuine pairs. Similar to val-

idation, we randomly selected 7.5K impostor and 7.5K genuine pairs for the testing phase. During the

validation and testing phases the soft biometric data is not available. Therefore, we only use the Siamese

network to do the verification task in these phases although it can be used to predict the attributes if needed.

Thus, each pair in the validation and testing phases contains three entries, [xi, xj , ycont]. We compared the

result of this architecture with the Cp-DNN framework and the base-model.

4.4.6 Verification results

The verification results for the Morph, Biocop, and CelebA datasets are listed in Table 4.5. The results

show that both proposed methods exploit the privileged soft biometrics to improve the performance of ver-

ification task on all the datasets. Cp-DNN framework (Siamise-I+Siamese-S) could enhance the Morph,

Biocop, and CelebA datasets by 3.8%, 0.7%, and 0.7%, respectively. On the other hand, the MTL-LUPI

framework generally shows a better performance compared to the Cp-DNN framework and enhanced the

verification results of the base-model by 4.7%, 2.8%, and 1.2% on the Morph, Biocop, and CelebA datasets,

respectively. The ROC curves of verification results on the Morph and Biocop datasets are shown in Fig 5.4.

The same as the classification experiments, the evaluation performance is validated using ten fold random

cross validation. The results indicate that the Cp-DNN framework did not significantly improve the perfor-

mance of the baseline network on the Biocop and CelebA datasets while the MTL-LUPI had slightly better

performance in all the datasets.

4.5 Conclusion

We have introduced a new approach to exploit additional information in the form of soft biometrics

during the training phase for the purpose of face recognition performance enhancement. In this work, two

different architectures Cp-DNN and MTL-LUPI were employed in the training phase. In Cp-DNN a cou-

pled DNN architecture is employed in the training phase, which discovers a discriminative latent common

subspace utilizing soft biometrics and RGB images. On the other hand, the MTL-LUPI approach considers

the privileged information as extra tasks which the network tries to estimate simultaneously with the main
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task using the image data. The proposed approaches have been evaluated on two different tasks of face

classification and verification. We have compared our method with two state-of-the-art LUPI methods in the

literature for the task of face classification and showed the superiority of our method over them. Moreover,

to the best of our knowledge, the privileged information has not been used in the LUPI framework for the

verification task. We also compared our two LUPI-based algorithms with each other and with the base-

model where there is no privileged information. During the inference time, the architecture degenerates to

the baseline for both frameworks. Therefore the inference time for LUPI-based algorithm is the same as

the baseline. While both methods showed relatively the same amount of improvement in the face classifi-

cation task performance depending on the datasets, the MTL-LUPI algorithm showed a better results in the

verification task compared to the Cp-DNN which is one direction for further studies. Also, the results have

revealed that the soft biometrics information could be more helpful for the task of classification compared

to the verification which still needs to be investigated more in the future works.
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Chapter 5

Attribute Adaptive Margin Softmax Loss

using Privileged Information

5.1 Introduction

A multimodal recognition system with multiple modalities, such as the face, fingerprint, and iris, is

expected to be more reliable and accurate due to the utilization of different sources of information. However,

acquisition of this information is costly and a tedious task which can affect the popularity and ease of using

multimodal recognition systems. On the other hand, there are some informative traits, such as age, gender,

ethnicity, race, and hair color, which are not distinctive enough for the sake of recognition, but still can act as

complementary information to other primary information, such as face and fingerprint. These traits, which

are known as soft biometrics, can improve recognition algorithms performance.

The design of a recognition system comprises two major phases, namely training and testing. However,

in some cases, there are extra information which is only available during the training phase and is missing

during the testing phase. In other words, the training data is augmented with some extra auxiliary informa-

tion. For example, in object recognition, the labeled images may be annotated with texts which can provide

semantic information about the object, or any other extra knowledge, such as the boundary information of

an object which determines the exact location of a specific object [193]. This extra information can be

regarded as an auxiliary to the primary modality of the data. Unlike the domain adaptation and transfer

learning problems in which the data is similar in both the source and target domains but statistically differ-

ent [194, 195], here, the available data in the source domain has an extra modality which is not available in

the target domain.
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Figure 5.1: The proposed framework employs attributes information to improve the semantic correlation of the faces in
the embedding space. Top and bottom figures illustrate the deep embedding of faces using the proposed and conventional
methods, respectively.

The concept of learning using privileged information (LUPI) was introduced in [196], for the first time,

under the context of SVM+. In their methodology, the auxiliary data, or privileged information, was em-

ployed to predict the slack variables of an SVM classifier [197]. Since then, the idea of using privileged

information has been vastly investigated in the literature and has been applied to different applications and

contexts, e.g., object localization [198], facial feature detection [199], and metric learning [200]. A frame-

work was introduced in [193] to embed the main data into the latent feature subspace such that the mutual

information between the embedded data and auxiliary data is maximized.

Softmax loss is widely used in training CNN features [201], which is specified as a combination of

the last fully connected layer, a softmax function and a crossentropy loss [202]. However, features through

softmax loss are learned with limited discriminative power. To address the limitation, various supervision

objectives have been proposed to enhance the discriminativeness of the learned features, such as contrastive

loss [203], triplet loss [204], center loss [205]. In contrast to most of the other loss functions which use

Euclidean margin, [206, 207, 208] showed the effectiveness of angular margin to squeeze each class. How-

ever, these methods have an implicit hypothesis that all the classes have sufficient samples to describe their

distributions, so that a constant margin is enough to equally squeeze each intra-class variations. However

this is not the case in many public unbalanced datasets.
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Figure 5.2: Decision margins of different loss functions for three different classes C1, C2, and C3 (in blue, yellow, and green,
respectively). The dashed line represents the decision boundary, and the grey areas are the decision margins.

Our proposed training scheme has the ability to transfer information from the auxiliary data and help

the network to learn a more discriminative features regarding the primary data (see Fig. 5.1 (b)). To this

end, we propose a novel loss function, Attribute Adaptive Margin Softmax Loss (ATAM), to adaptively

find the appropriate margins utilizing attributes during training phase. Specifically, we make the margin m

particular and learnable and directly train the network to find the adaptive margins. We show its important

applications to face recognition and person re-identification. Note such tasks can be assessed under either

closed- or open-set protocol. The open-set protocol is harder since the testing classes may be unseen from

the training classes. It usually requires discriminative feature representations with built-in large margins,

which are embodied in our approach.

Our method is motivated by the observation that the minority classes often encompasses very few sam-

ples with high degree of visual variability. The scarcity and high variability makes the neighborhood of

these samples easy to be invaded by other imposter nearest neighbors. To this end, we propose to learn an

embedding utilizing attributes along with a novel loss function to ameliorate the invasion. For the purpose

of assessment, we study the problem of face recognition and person re-identification using paired image-

attribute data, while the attributes (i.e., soft biometrics) are only available during the training phase (see

Fig. 5.3).

The major contributions of this chapter are: i) rewriting the angular softmax loss using a set of inter-class
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Figure 5.3: Proposed ATAM loss utilizing privileged attributes.

margins, ii) proposing a framework enhanced by auxiliary information to learn these margins simultaneously

during the training, iii) providing an example for the auxiliary information by means of the discrepancy

between the attributes. The performance of the proposed scheme is evaluated on five different datasets,

namely MegaFace [209], YTF [210], LFW [3], Market-1501 [211], and DukeMTMC-reID [212] datasets.

On both of the mentioned tasks, we demonstrate the superiority of ATAM loss with performance on par with

the state of the art.

5.2 Methodology

In this section we detail our methodology [213]. First we revisit the A-Softmax [206] which maps faces

on the hyperspace manifold. Then we present our proposed attribute adaptive margin Softmax loss which

exploits the attributes to learn more discriminative feature space.

5.2.1 A-Softmax

Lets begin with the most widely used Softmax loss. The Softmax loss maximizes the posterior proba-

bility of each class to separate features of different classes. Its formulation is provided as follows:

Ls = − 1

N

N∑
i=1

log
eW

T
yi
zi+byi∑M

j=1 e
WT

j zi+bj
, (5.1)

where Wj ∈ Rd is the weights of last layer of class j with d dimension and bj ∈ R is the bias term.

zi ∈ Rd is the learned feature of sample i, and yi is the ground truth class label. N and M are the number of

samples and classes, respectively. The inherent angular distribution of learned deep features by Softmax loss
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suggests using cosine distance as the metric instead of using Euclidean distance [206]. Modified Softmax

loss normalizes the weights ||Wi||= 1 and zero the biases as follows:

Lm = − 1

N

N∑
i=1

log
e||zi||cos(θyi,i)∑M
j=1 e

||zi||cos(θj,i)
. (5.2)

Given a query point, the model compares its angle with weights of different classes and select the one

with minimum angle. Although the features learned using modified Softmax have angular boundary, they

are not necessarily discriminative enough. SphereFace [206] proposed a natural way to produce the angular

margins through an A-Softmax loss. The angle between a query point and target class is multiplied by the

margin parameter m:

La−s = − 1

N

N∑
i=1

log
e||zi||ψ(θyi,i)

e||zi||ψ(θyi,i) +
∑

j 6=yi e
||zi||cos(θj,i)

, (5.3)

where ψ(θyi , i) is a monotonically decreasing angle function and defined as (−1)k cos(mθyi , i) − 2k, and

θyi , i ∈ [
kπ

m
,
(k + 1)π

m
], k ∈ [0,m− 1] to compensate for the limitation of θyi , i in cos(mθyi , i). While A-

Softmax loss manually tunem to squeeze the intra-class variation and increase the angular distance between

different classes, it fails to consider the feature distribution in the hyperspace manifold. Other works such as

CosFace [207] and ArcFace [208] also have similar assumption and consider same distributions for different

classes. Thus, they fail to exploit the holistic feature space. [214, 215] tried to address this limitation by

designing a new loss function and constructing a weighted combination with A-Softmax loss function.

Here, we propose a natural way to learn and tune m in an end-to-end fashion in order to make the the

holistic feature space more discriminative and consider the inter-class space between different classes via

their attributes.

5.2.2 Attribute Adaptive Margin Softmax Loss

Given an Image I and its specific attribute set a, we propose to learn adaptive margins which discrimi-

nate the holistic feature space and reflects the characteristics of corresponding attribute in the image. If there

are k attributes
k × (k − 1)

2
margins can be learned in the feature space. The proposed model architecture

is composed of a feature extraction branch (CNN) combined with a small network from attributes. The

attribute network is a MLP network which is responsible for learning margins. Concretely, attribute sets

aj , ayi (each of which has dimensionality of k) related to the specific samples from classes j, yi, respec-
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tively, are fused with simple concatenation and further fed into three subsequent FC layers (MLP network)

to obtain the specific margin (mj,yi or myi,j).

The margin m is usually set manually in SphereFace [206], and also kept constant during the training

phase. In order to address the problem mentioned above and have a better holistic feature space, we propose

to have a learnable attribute-specific parameter m. The Eq. 5.3 can be modified as follows:

LATAM = − 1

N

N∑
i=1

log
e||zi||cos(θyi,i)

e||zi||cos(θyi,i) +
∑

j 6=yi e
||zi||cos(

θj,i
mj,yi

)

, (5.4)

where mj,yi is the score that is provided by the attribute network (MLP network) with the input [aj , ayi ]

(where [, ] is the concatenation operation). Note that since we want the margins to be greater or equal to

1 (myi,j ≥ 1), we normalize the output of MLP network using ReLU function. Afterwards, this positive

score is added to 1 (see Fig 5.2). This transformation (ReLU(mj,yi) + 1) ensures that mj,yi = 1 in the

worst case situation. Both of the CNN and MLP branches are trained jointly using Eq. 5.4 in an end-to-end

fashion.

5.2.3 Discussion

In this subsection we compare our proposed ATAM loss with Softmax, A-Softmax [206], and Arc-

Face [208] as illustrated in Fig. 5.1 (a). For simplicity of analysis, we consider three classes of C1, C2, and

C3.

Softmax decision boundary depends on both magnitudes of weight vectors and cosine of angles, which

results in an overlapping decision area (margin ¡ 0) in the cosine space. The popular A-Softmax reduces

intra-class variations and allocates equal space for each class, without considering its sample distribution. In

contrast to A-Softmax which has a nonlinear angular margin, ArcFace has a constant linear angular margin

throughout the whole interval. However, it still fails to capture the true distribution of each class in the

holistic feature space leading to not accurate margins between classes.

We introduce learnable attribute-specific margins (m1,2, m1,3, and m2,3 in Fig. 5.1 (a)) by utilizing

the privileged attribute information during the training phase. This loss intrinsically takes attributes into

account in a unified loss function leading to the more discriminative holistic feature space. The attribute-

specific margins discriminate embedding domain into different clusters and each cluster may have one or
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Method Protocol MF1 Rank1 MF1 Veri.
Beijing FaceAll Norm 1600 Large 64.80 67.11
Google - FaceNet v8 [204] Large 70.49 86.47
NTechLAB - facenx large Large 73.30 85.08

SIATMMLAB TencentVision Large 74.20 87.27
DeepSense V2 Large 81.29 95.99

YouTu Lab Large 83.29 91.34
Vocord - deepVo V3 Large 91.76 94.96

CosFace [207] Large 82.72 96.65
UniformFace [214] Large 79.98 95.36
AdaptiveFace [215] Large 95.02 95.61

Softmax Large 71.37 73.05
SphereFace [206] Large 92.24 93.42

CosFace [207] Large 93.94 94.11
ArcFace [208] Large 94.64 94.85

ATAM Large 96.51 97.14

Table 5.1: Face identification and verification evaluation on MF1. “Rank 1” refers to rank-1 face identification accuracy
and “Veri.” refers to face verification TAR under 10−6 FAR.

more classes. This also embraces the multimodality of class distribution: it preserves not only locality

across the same-class with different attributes but also discrimination between classes. Hence, it is capable

of preserving discrimination in any local neighborhood, and forming local class boundaries with the most

discriminative samples with regards to the attributes (More distant classes contain more different attributes:

class C2 (yellow) is placed between class C1 (blue) and class C3 (green) due to the more discrepancy

between the attributes of C1 and C3 compared to C1 and C2 in Fig. 5.1 (a)).

UniformFace [214] and AdaptiveFace [215] also try to make the embedding space more efficient and

discriminative. UniformFace address this by adding another loss function to A-Softmax loss with another

hyperparameter in a similar fashion to old joint loss functions (i.e. different combination of contrastive

loss or center loss with softmax). It disperses classes in the embedding domain uniformly which does not

reflect the true underlying distributions of classes. Adaptive loss also tackles this issue by adjusting margin

m adaptively. However, it also introduce extra hyperparameter λ to jointly train additional loss with the

modified A-Softmax. The additional loss function is taking the average of all classes’ margins leading to

overlooking specific margin for each class.

The proposed loss utilizes the privileged information to learn the margins that are usually set manually in

other loss functions such as cosFace loss. Our method enhances the training of the feature extractor network

in two ways. First, instead of defining a global margin that is constant for all the classes, it defines k(k-1)/2

margins for the pairs of classes with different attribute information. Second, we incorporate the attribute
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information to adaptively control the inter-class margins and regularize the distribution of the features in the

embeddings. Hence, in contrast to the previous approaches that impose a global prior for the separability of

the class distributions, ATAM enables the training framework to carefully exploit the auxiliary information

to learn the distribution of the features based on a set of adaptive priors constructed using the local properties

of inter-class relationships, i.e., relative discrepancy of attributes. After the training, we solely use the feature

extractor network for the face recognition/ re-id.

5.3 Experiments

In this section we conduct extensive experiments on five datasets to demonstrate the effectiveness of our

proposed method. First, we describe the implementation setup of the proposed model in subsection 5.3.1.

Eventually, we compare the proposed ATAM to other baselines for two tasks of face recognition and person

re-identification in subsections 5.3.2 and 5.3.3, respectively.

5.3.1 Implementation Details

We adopt ResNet [216] as the base network of our proposed model. We performed standard prepro-

cessing on faces. MTCNN [217] is used to detect and align each face via five landmarks (two eyes, two

mouth corners and nose) from train and test sets. Afterwards, we cropped the image into 112 × 112. We

also normalized each pixel in RGB images by subtracting 127.5 and then dividing by 128.

All CNN models in the experiments use the same architecture in this work, which is a 50-layer residual

network [216]. It contains four residual blocks and finally gets a 512 dimensional feature by average pooling.

The networks are trained using Stochastic Gradient Descent (SGD) on TITANX GPUs and the batch size

is set to fill all the GPU memory. The initial value for the learning rate is set to 0.1 and multiplied by 0.9

in intervals of five epochs until its value is less than or equal to 10−6. All models are trained for 600K

iterations.

Training: We trained our model on the refined MSCeleb-1M [218] dataset. MS-Celeb-1M originally

contained about 10M images from 100K identities. We removed the images which were far away from the

class centers to enhance the quality of the training data and cleared the identities with less than 3 images to

diminish the long-tail distribution [208, 219]. The refined MS-Celeb-1M dataset contained 85K identities

with 3.84M images. The face images are horizontally flipped for data augmentation.
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Figure 5.4: ROC curves for matching face images for different methods on LFW [3].

Evaluation Setup: For each image, we extract features only from the original image as the final rep-

resentation. We didn’t extract features from both the original image and the flipped one and concatenate

them as the final representation. Therefore, the dimension of the final representation is 512 for each image.

The score is measured by the cosine distance of two features. Eventually, verification and identification are

conducted by thresholding and ranking the scores.

5.3.2 Face Recognition: Overall Benchmark Comparisons

Experiments on MegaFace.

MegaFace [209] is one of the most challenging testing benchmark for large-scale face identification

and verification, which intends to assess the performance of face recognition models at the million scale of

distractors. The gallery set of MegaFace is a subset of Flickr photos, contains more than one million face

images. The probe sets are two existing databases: FaceScrub [220] and FGNet. The FaceScrub dataset

contains 106,863 face images of 530 celebrities. The FGNet dataset is mainly used for testing age invariant

face recognition, with 1002 face images from 82 persons.

We evaluated the proposed ATAM loss on FaceScrub of MegaFace Challenge 1, including both face

identification and verification tasks. We followed the protocol of large training set as the training dataset

contains more than 0.5M images, where the identities appearing in FaceScrub were removed from the train-
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Method Training size #Models LFW YTF
Deep Face 4M 3 97.4 91.4
FaceNet 200M 1 99.7 95.1
DeepFR 2.6M 1 98.9 97.3

DeepID2+ 300K 25 99.5 93.2
Center Face 0.7M 1 99.3 94.9

Baidu 1.3M 1 99.1 -
SphereFace 0.5M 1 99.4 95.0

CosFace 5M∗ 1 99.7 97.6
UniformFace 6.1M 1 99.8 97.7
AdaptiveFace 5M 1 99.6 -

Softmax 5M 1 98.8 95.7
SphereFace 5M 1 99.6 96.6

CosFace 5M 1 99.5 96.2
ArcFace 5M 1 99.6 96.8
ATAM 5M 1 99.7 97.9

Table 5.2: Face verification (%) on the LFW and YTF datasets. “*” indicates although the dataset of CosFace contains 5M
images, it is composed of several public datasets and a private face dataset, containing about more than 90K identities.

ing set. In addition, there are some noisy images from FaceScrub and MegaFace, hence we used the noises

list proposed by [208] to clean it.

We employed an attribute predictor to predict the attributes for the MegaFace training set. In [221], an

ontology of 40 facial attributes are defined. We utilized the predicted attributes as an input in our proposed

ATAM loss. For fair comparison, we implemented the Softmax, A-Softmax, CosFace, ArcFace, and our

ATAM loss with the same architecture. Table 5.1 shows the results of our models trained on the large proto-

col of MegaFace. The proposed model obtains the best performance on both identification and verification

tasks, compared with related methods including SphereFace, ArcFace, and AdaptiveFace. This shows the

effectiveness of the proposed ATAM loss through the final recognition rates on the MegaFace dataset.

Experiments on YTF and LFW.

We evaluated our proposed model on the widely-used YTF [210] and LFW [3] datasets. YTF contains

3,425 videos of 1,595 different persons downloaded from YouTube, with different variations of pose, illu-

mination and expression, which is a popular dataset for unconstrained face recognition. In YTF, there are

about 2.15 videos available for each person and a video clip has 181.3 frames on average. LFW [3] is a

famous image dataset for face recognition, which contains 13,233 images from 5,749 different identities.

The images are captured from the web in wild conditions, varying in pose, illumination, expression, age and

background, leading to large intra-class variations.

We followed the standard protocol of unrestricted with labeled outside data [222] to evaluate our model,
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and reported the result on the 5,000 and 6,000 pair testing images from YTF and LFW, respectively. From

the table 5.2, we observed that the usage of ATAM loss boosts the performance of 1.1% on YTF compared to

ArcFace with the same training data. It should be noted that the attributes which are passed to the proposed

model during the training, are noisy due the error in the attribute prediction model. However, our proposed

ATAM could exploit them to make the holistic feature space more discriminative and boost face recognition

performance.

5.3.3 Person re-identification:

Person re-identification (reID) goal is to spot the appearance of a same person in different scene.

We evaluated our proposed method on two popular datasets, i.e., Market-1501 [211] and DukeMTMC-

reID [212]. Market-1501 contains 1,501 identities, 12,936 training images and 19,732 gallery images cap-

tured with 6 cameras. We utilized 27 attributes such as gender, hair length, carrying backpack, etc., annotated

by [223]. The DukeMTMC-reID dataset for re-ID has 1,812 identities from eight cameras. There are 1,404

identities appearing in more than two cameras and 408 identities (distractor ID) who appear in only one

camera. We randomly picked 702 IDs as the training set and the remaining 702 IDs as the testing set. In

the testing set, we select one query image for each ID in each camera and put the remaining images in the

gallery. As a result, we get 16,522 training images with 702 identities, 2,228 query images of the other 702

identities, and 17,661 gallery images. We used 23 attributes such as gender, wearing hat, wearing boots,

carrying backpack, etc., annotated by [223].

We adopted two network architectures, i.e. a global feature learning model backboned on ResNet-

50 and a partfeature model named MGN [224]. We used MGN due to its competitive performance and

relatively concise structure. The original MGN uses a Softmax loss on each part feature branch for training.

MGN [224] is one of the state-of-the-art method which can learn multi-granularity part-level features. It

utilizes both Softmax loss and triplet loss to facilitate a joint optimization. Following [225], we only used a

single loss function in implementation of “MGN (ResNet-50)+ ATAM loss” for simplicity. In addition, all

the part features were concatenated into a single feature vector. We evaluate ATAM loss on re-ID task in

Table 5.3.

We make following observations from Table 5.3. First, comparing ATAM loss against state-of-the-art,

we find that ATAM loss achieves competitive re-ID accuracy, with a single loss function and without using

auxiliary loss functions. Second, using privileged attributes, here also improves the accuracy of our proposed
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Method Market-1501 DukeMTMC-reID
R-1 mAP R-1 mAP

PCB [226] (Softmax) 93.8 81.6 83.3 69.2
MGN [224] (Softmax+Triplet) 95.7 86.9 88.7 78.4

JDGL [227] 94.8 86.0 86.6 74.8
APR [223] 84.3 64.7 73.9 55.6

AANet-50 [228] 93.9 82.5 86.4 72.6
ResNet50 + AMSoftmax [229] 92.4 83.7 83.9 68.5
ResNet50 + CircleLoss [225] 94.2 84.9 - -

ResNet50 + ATAM 95.1 86.5 87.8 77.3
MGN + AMSoftmax 95.3 86.6 85.7 72.3
MGN + CircleLoss 96.1 87.4 - -

MGN + ATAM 97.1 88.3 89.6 79.1

Table 5.3: Evaluation of ATAM loss on re-ID task. We report R-1 accuracy (%) and mAP (%).

model which is consistent with the experimental results on face recognition task. Third, comparing ATAM

loss with APR [223] and AANet-50 [228] methods which utilize attributes both in the training and inference

time, we observe the superiority of ATAM loss.

5.4 Conclusion

Most existing methods aim to learn discriminative deep features, encouraging large inter-class distances

and small intra-class variations. However, they ignore the distribution of different classes in the holistic

feature space, which may lead to severe locality and unbalance. Recent deep representation learning meth-

ods typically adopt class re-sampling or cost-sensitive learning schemes. In this chapter, we proposed a

novel approach which introduces the adaptive margins utilizing attributes to adaptively minimize intra-class

variances. On two major deep feature learning tasks, i.e., face recognition and person re-identification, our

feature learning achieves performance on par with the state-of-the-art. We believe that our approach could

be very helpful for unbalanced data training in practice.
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Chapter 6

Robust Facial Landmark Detection via

Aggregation on Geometrically Manipulated

Faces

6.1 Introduction

Facial landmark detection goal is to identify the location of predefined facial landmarks (i.e., tip of the

nose, corner of the eyes, and eyebrows). Reliable landmark estimation is part of the procedure for more

complicated vision tasks. It can be applied to the variant tasks such as 3D face reconstruction [230], head

pose estimation [231], facial reenactment [232], and face recognition [233]. However, it remains challenging

due to the necessity of handling non-rigid shape deformations, occlusions, and appearance variations. For

example, facial landmark detection must handle not only coarse variations such as illumination and head

pose but also finer variations including skin tones and expressions.

Many approaches solve the face alignment problem with multi-tasking approaches. However, the task

of face alignment might not be in parallel with the other tasks. For example, in the classification task, the

output needs to be invariant to small deformations such as translation. However, in tasks such as landmark

localization or image segmentation both the global integration of information as well as maintaining the

local information and pixel-level detail is necessary. The goal of precise landmark localization has led to

evolving new architectures such as dilated convolutions [234], recombinator-networks [235], stacked what

where auto-encoders [236], and hyper-columns [237] where each of them attempts to preserve pixel-level

information.
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Figure 6.1: An input face image is manipulated utilizing geometric perturbations that target important locations of face
images for the task of landmark detection. K different manipulated faces are generated where each of them contains the
important displacements from the input image. The aggregation on these manipulated images leads to robust landmark
detection.

In this chapter, we propose a geometry aggregated network (GEAN) for face alignment which can com-

fortably deal with rich expressions and arbitrary shape variations. We design a novel aggregation framework

which optimizes the landmark locations directly using only one image without requiring any extra prior

which leads to robust alignment given arbitrary face deformations. We provide three different approaches

to produce deformed images using only one image and aggregate them in a weighted manner according to

their amount of displacement to estimate the final locations of the landmarks. Extensive empirical results

indicate the superiority of the proposed method compared to existing methods on challenging datasets with

large shape and appearance variations, i.e., 300-W [238] and ALFW [239].

6.2 Proposed Method

Given a face image I ∈ Rw×h with spatial size W×H , the facial landmark detection algorithm aims to

find a prediction function Φ : RW×H → R2×L which estimates the 2D locations of L landmarks. We seek to
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find a robust and accurate version of Φ by training a deep function through the aggregation of geometrically

manipulated faces. The proposed method [240] consists of different parts which will be described in detail.

6.2.1 Aggregated Landmark Detector.

The proposed approach attempts to provide a robust landmark detection algorithm to compensate for

the lack of a specific mechanism to handle arbitrary shape variations in the literature of landmark detection.

The method builds upon aggregating set of manipulated images to capture robust landmark representation.

Given a face image I , a set of manipulated images are constructed such that Îk = M(I, θk) is the k-th

manipulated face image and θk is its related parameters for the manipulating function M . Considering the

set of manipulated images, we seek a proper choice of M such that aggregating landmark information in

the set {Φ(Î) : k = 1 . . .K} provides a more accurate and robust landmark features compared to Φ(I)

which solely uses the original image I . Therefore, one important key in the aggregated method is answering

the question of “how” to manipulate images. Face images typically have a semantic structure which have a

similar global structure but the local and relative characteristics of facial regions differ between individuals.

Hence, a straightforward and comprehensive choice of the manipulation function M should incorporate

the prior information provided by the global consistency of semantic regions and uniqueness of relative

features which can be interpreted as the ID information. Hence, we build our work based on a choice of M

which incorporates geometric transformations to manipulate relative characteristics of inputs samples while

preserving the semantic and global structure of input faces.

To incorporate ID information, we consider a pretrained face recognizer f : RW×H → Rnz mapping an

input face image to an ID representation z ∈ Rnz , where cardinality of the embedding subspace is nz (typi-

cally set to be 128 [204]). Having f makes it possible to compare IDs of two samples by simply measuring

the `2-norm of their representation in the embedding space. Hence, we geometrically manipulate the input

face image to change its ID. It should be noted that since f is trained on face images, the corresponding

embedding space of IDs captures a meaningful representation of faces. Therefore, the manipulated faces

contain rich information with regards to face IDs.

To manipulate the face image I based on landmark coordinates, we consider coarse landmark locations

P = {(x0, y0), . . . , (xL−1, yL−1)} and define the displacement field d to manipulate the landmark locations.

Given the i-th source landmark (xi, yi), we compute its manipulated version using the displacement vector
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Figure 6.2: Overview of the proposed aggregated framework (GEAN). It consists of four steps: 1) K different manipulated
faces are generated; 2) Each manipulated face is given to the shared landmark detector Φ to extract its landmarks; 3) The
inverse of transformation matrix is applied to the extracted landmarks to compensate for the displacement of step 1; 4) The
normalization score values for each landmark of each branch is calculated and the aggregation is performed to extract the
final landmark locations.

di = (∆xi,∆yi). The manipulated landmark pi + di is as follows:

pi + di = (xi + ∆xi, yi + ∆yi) . (6.1)

We present three different approaches to find a proper displacement (d) for manipulating face images.

6.2.2 Manipulation by Adversarial Attack.

In the first approach we use adversarial attacks [241] to manipulate facial landmarks to fool a face recog-

nizer. Xiao et al. [242], proposed stAdv attack to generate adversarial examples using spatially transforming

benign images. They utilize a displacement field for all the pixels in the input image. Afterward, they com-

puted the corresponding location of pixels in the adversarial image using the displacement field d. However,

optimizing a displacement field for all the pixels in the image is a highly non-convex function. Therefore,

they used the L-BFGS [243], with a linear backtrack search to find the optimal displacement field which is

computationally expensive. Here, our approach considers the fact that the facial landmarks provide highly

discriminative information for face recognition tasks [244]. In fact, face recognition tasks are highly linear

around the original coordinates of the facial landmarks as it is shown in [245].

In contrast to [242] which computes the displacement field for all the pixels, our proposed method is

inspired by [245] and estimates the d only for L landmarks and it does not suffer from the computational

complexity. In addition, it is possible to apply the conventional spatial transformation to transform image.

Therefore, the adversarial (manipulated) image using the transformation T is as follows:
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Î = T (P, P + d, I) , (6.2)

where T is the thin plate spline (TPS) [246] transformation mapping from the source landmarks (control

points) P to the target ones P + d. In order to make the whole framework differentiable with respect to

the landmark locations, we select a differentiable interpolation function (i.e., differentiable bilinear inter-

polation) [247] so that the prediction of the face recognizer is differentiable with respect to the landmark

locations.

In this approach, we employ the gradient of the prediction in a face recognition model to update the

displacement field d and geometrically manipulate the input face image. We extend Dabouei et al. [245]

work in a way to generateK different adversarial faces where each face represents a different ID (K different

IDs will be generated). Considering an input image I , a face recognizer f , and a set of k − 1 manipulated

images SI = {Î1, ...., Îk−1} the cost is defined as follows for the k-th adversarial face:

L =
∑
I′∈SI

||f(T (P, P + d, I))− f(I ′)||2 . (6.3)

Inspired by FGSM [241], we employ the direction of the gradients of the prediction to update the

adversarial landmark locations P+d, in an iterative manner. Considering P+d as P adv, using FGSM [241],

the t-th step of optimization is as follows:

P advt = P advt−1 + ε sign(∇Padv
t−1
L) . (6.4)

In addition, we consider the clipping technique to constrain the displacement field in order to prevent

the model from generating distorted face images. The algorithm continues the optimization for the k-th

landmark locations until min
I′∈SI

{||f(Î) − f(I ′)||2} < τ is failed, where τ is simply the distance threshold

in the embedding space. In this way, we make sure that the k-th manipulated face has a minimum distance

of τ to the other manipulated images in the face embedding subspace. Algorithm 1 shows the proposed

procedure for generating K different manipulated faces.
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Algorithm 1 Adversarial Face Generation
Input: Image I , number of branches K, face recognizer f , distance threshold τ , clipping threshold δ.
Output: Set of adversarial faces S = {Î1, ..., ÎK}.
Initialize Î ← I and S = {I}.
for k = 1 to K do

Ît=0,k ← I;
while min

I′∈SI

{||f(Ît,k)− f(I ′)||2} < τ do

L =
∑

I′∈SI

||f(T (P, P adv
t , I))− f(I ′)||2;

P adv
t+1 = P adv

t + ε sign(∇Padv
t
L);

P adv
t+1 = clip (P adv

t+1 , δ);
Ît+1,k = T (P, P adv

t+1 , I);

S ← {S, Îk};
return S − {I};

6.2.3 Manipulation of Semantic Groups of Landmarks using Adversarial Attacks.

In the first approach, we consider a fast and efficient approach to generate different faces based on the

given face image. However, the first approach does not directly consider the fact that different landmarks

semantically placed in different groups (i.e., landmarks related to lip, left eye, right eye, etc.). This might

lead to generating severely distorted adversarial images.

We added the clipping constraint to mitigate this issue in the first approach. Here, we perform semantic

landmarks grouping [245]. We categorize the landmarks into n semantic groups Pi, i ∈ {1, . . . n}, where

pi,j denotes the j-th landmark in the group i which contains ci landmarks. These groups are formed based

on different semantic regions which construct the face shape (i.e., lip, left eye, right eye, etc.). Semantic

landmark grouping considers a scale and translation for each semantic group, instead of independently

displacing each landmark. This consideration allows us to increase the total amount of displacement while

preserving the global structure of the face.

Let Pi represents the i-th landmark group (e.g., group of landmarks related to the lip). The adversarial

landmark locations which are semantically grouped can be obtained as following:

P advi = αi(Pi − p̄i) + βi , (6.5)

where p̄i =
1

ci

∑ci
j=1 pi,j is the average location of all the landmarks in group Pi, and αi and βi for each

group can be computed using the closed-from solution in [245]. It should be noted that the value of displace-

ment d for each branch used for computing semantic scales and translations is obtained using Algorithm 1.
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The only difference is that we add semantic perturbations constructed by Eq. 6.5 instead of the random

perturbation in line 8 of Algorithm 1. Therefore, the scale and translation of each semantic part of the face

is different from other manipulated images in the set S.

6.2.4 Manipulation of Semantic Group of Landmarks with Known Transformation.

In this approach, we semantically group the landmark locations in the same manner as the previous

approach. Afterward, we uniformly sample ranges [0.9, 1.1]2 and [−0.05×W, 0.05×W ]2 for the scale

and translation of each semantic group, respectively. It may be noted that in the post-processing stage, we

make sure that the semantic inter-group structure is preserved, i.e., eyes region does not interfere with the

eyebrows region and they are symmetric according to each other. Therefore, the heuristic post-processing

limits the above ranges based on the properties of each group. For instance, eyebrows could achieve higher

vertical displacement compared to eyes since there is no semantic part above them to impose a constraint.

6.2.5 Landmark Detector.

Next, the hourglass network proposed in [49] is employed to estimate the facial landmarks location.

Hourglass is designed based on residual blocks [248]. It is a symmetric top-down and bottom-up fully

convolutional network. The residual modules are able to capture high-level features based on the convolu-

tional operation, while they can maintain the original information with the skip connections. The original

information is branched out before downsampling and concatenated together before each up-sampling to

retain the resolution information. Therefore, hourglass is an appropriate topology to capture and consolidate

information from different resolutions and scales.

After manipulating the face images (employing either of the three aforementioned approaches), we

employ the hourglass network, Φ, to extract the landmarks from the manipulated images. The network

Φ is shared among all the branches of the framework as it is shown in Fig. 6.2. Each landmark has a

corresponding detector, which convolutionally extracts a response map. Taking ri as a i-th response map,

we use the weighted mean coordinate as the location of the i-th landmark as follows:

p̂i = (xi, yi) =
1

ζi

H∑
u=1

W∑
v=1

(u, v).ri(u, v) , (6.6)

where H and W are the height and width of the response map which are the same as the spatial size of the
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input image, and ζi =
∑

u,v ri(u, v).

6.2.6 Aggregation.

After extracting the facial landmarks using the shared landmark detector Φ for each of the manipu-

lated face images, we aim to move the predicted landmarks P̂ toward their original locations. Let T be a

transformation that is used to convert the original faces to the manipulated ones (i.e., via adversarial attack

approaches or the known transformation approach). We employ the inverse of the transformation matrix on

the predicted landmarks to compensate for the displacement of them and denote the new landmark locations

as P̃ .

The proposed approach contains a set of landmarks from K branches, i.e., P̃ = {p̃i,k} in which i ∈

{1, . . . , L}, and k ∈ {1, . . . ,K} is the i-th landmark location in k-th branch of the framework. Each

branch considers a score value which normalizes the displacement of landmarks caused by the manipulation

approach (i.e., via adversarial attacks or known transformations) in each branch of the aggregated network

as follows:

Sci,k =

√
∆x2i,k + ∆y2i,k

K∑
k=1

√
∆x2i,k + ∆y2i,k

, (6.7)

where Sci,k represents the displacement value for the i-landmark in the k-th branch. This score is utilized as

a weight to cast appropriate loss punishment in different branches during the optimization of the proposed

aggregated landmark detection as follows:

LT =
1

LK

L∑
i=1

K∑
k=1

Sci,k||p∗i − p̃i,k||2 , (6.8)

where p̃i,k represents the i-th estimated landmark at k-th branch and p∗i indicates the ground truth for i-th

landmark location.

Given a test image, we extract the rough estimation of the landmark coordinates employing the trained

landmark detector Φ in the aggregated approach and consider them as the coarse landmarks P . Afterward,

we perform the manipulation approach on the extracted landmarks P and generate manipulated images.

The extracted landmarks and manipulated images are used in the aggregated framework to produce the final

landmarks. The final landmarks are calculated as follows:
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Figure 6.3: The representative results for three face images from the 300-W dataset. For each face, the first row represents
displacement fields for the aggregated network with K = 3 (the arrows are exaggerated for the sake of illustration). The
second row shows manipulated images using the corresponding displacement field, and the third row represents the ex-
tracted landmarks given the corresponding manipulated images to the landmark detector,Φ(Î). The fourth row represents
landmarks’ locations on the input image I from the base detector (in blue), ground-truth (in green), and GEAN landmark
detector (in magenta), respectively.

Methods ERT [249]

LBF [250]

CFSS [5]

CCL [44]

Two-St. [46]

SAN [251]

ODN [4]

LRef. [10]

GEANad
v

GEANGK

GEANGad
v

AFLW-Full 4.35 4.25 3.92 2.72 2.17 1.91 1.63 1.63 1.69 1.64 1.59
AFLW-Front 2.75 2.74 2.68 2.17 - 1.85 1.38 1.46 1.44 1.38 1.34

Table 6.1: Comparison of different methods based on normalized mean errors (NME) on AFLW dataset.

pfi =
K∑
k=1

Sci,k.(p̃i,k) , (6.9)

where pfi is the coordinate of the i-th landmark employing the proposed aggregated network such that

Φ(I) = P f for L landmark locations.

As it is mentioned in the manuscript, during the training phase the manipulation is performed on the

coarse landmarks’ locations and we have access to them. However, given a test image, we extract the

landmarks using the trained landmark detector Φ and then use them as the coarse landmarks’ locations in

the aggregated framework to predict the final landmark locations.

One question that comes to mind is: what if the predicted landmark locations using the trained landmark

detector Φ are not an accurate representation for the original coarse landmarks? To compensate this issue

and make the conditions equal for the training and testing phases, we add random noise to the ground truth

landmarks such that P = P ∗ + η where P ∗ is the ground truth for landmark coordinates and η is random

noise. Afterward, we employ these landmarks as the coarse landmarks P in the aggregated framework

during the training phase.
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6.3 Experiments

In the following section, we consider three variations of our GEAN approach. GEANadv (6.2.2) repre-

sents the case when the manipulated faces are generated using the adversarial attack approach. GEANGadv

(6.2.3) and GEANGK (6.2.4) represent the cases when the manipulated faces are generated using the se-

mantically grouped adversarially attack and known transformations approach, respectively. In order to show

the effectiveness of GEAN we evaluate its performance on three following datasets:

300-W [238]: The dataset annotates five existing datasets with 68 landmarks: LFPW [252], AFW [253],

HELEN [254], iBug, and XM2VTS. Following the common setting in [251, 46], we consider 3,148 training

images from LFPW, HELEN, and the full set of AFW. The testing dataset is split into three categories of

common, challenging, and full groups. The common group contains 554 testing images from LFPW and

HELEN datasets, and the challenging test set contains 135 images from the IBUG dataset. Combining these

two subsets form the full testing set.

AFLW [239]: This dataset contains 21,997 real-world images with 25,993 faces in total with a large

variety in appearance (e.g., pose, expression, ethnicity, and age) and environmental conditions. This dataset

provides at most 21 landmarks for each face. Having faces with different pose, expression, and occlusion

makes this dataset challenging to train a robust detector. Following the same setting as in [46, 251], we do

not consider the landmark of two ears. This dataset has two different categories of AFLW-Full and AFLW-

Frontal [44]. AFLW-Full contains 20,000 training samples and 4,386 testing samples. AFLW-Front uses the

same set of training samples as in AFLW-Full, but only contains 1,165 samples with the frontal face for the

testing set.

COFW [7]: This dataset contains 1,345 images for training and 507 images for test. Originally this

dataset annotated with 21 landmarks for each face. However, there is a new version of annotation for this

dataset with 68 landmarks for each face [255]. We used a new version of annotation to evaluate proposed

method and comparison with the other methods.

Evaluation: Normalized mean error (NME) and and Cumulative Error Distribution (CED) curve are

usually used as metric to evaluate performance of different methods [44, 46]. Following [250], we use the

inter-ocular distance to normalize mean error on 300-W dataset. For the AFLW dataset we employ the

face size to normalize mean error as there are many faces with inter-ocular distance closing to zero in this

dataset [46].
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Method Common Challenging Full Set
LBF [250] 4.95 11.98 6.32
CFSS [5] 4.73 9.98 5.76

MDM [258] 4.83 10.14 5.88
TCDCN [259] 4.80 8.60 5.54
Two-Stage [46] 4.36 7.42 4.96

RDR [260] 5.03 8.95 5.80
Pose-Invariant [261] 5.43 9.88 6.30

SAN [251] 3.34 6.60 3.98
ODN [4] 3.56 6.67 4.17

LRefNets [10] 2.71 4.78 3.12
GEAN 2.68 4.71 3.05

Table 6.2: Normalized mean errors (NME) on 300-W dataset.

Implementation Details: We employ the face recognition model developed by Schroff et al. [204]

which obtain the state-of-the-art accuracy on the Labeled Faces in the Wild (LFW) [3] dataset as the face

recognizer. We train this model on more than 3.3M training images and the average of 360 images per ID

(subject) from VGGFace2 dataset [256] to recognize 9,101 celebrities. The landmarks are divided to five

different categories based on facial regions as: 1) P1 : right eye and eyebrow, 2) P2 : left eye and eyebrow,

3) P3 : nose, 4) P4 : mouth, and 5) P5 : jaw. The number of landmarks in each group is as: {n1 = 11,

n2 = 11, n3 = 9, n4 = 20, n5 = 17}. We set τ = 0.6, δ to 5% of the width of the bounding box of each

face.

The landmarks’ coordinates are scaled to lie inside the range [−1, 1]2 where (−1,−1) is the top left

corner and (1, 1) is the bottom right corner of the face image. All the coordinates are assumed to be contin-

uous values since TPS has no restriction on the continuity of the coordinates because of the differentiable

bilinear interpolation [247]. The face images are cropped and resized to (256 × 256). We follow the same

setting in [257] and use four stacks of hourglass network for the landmark detection network. We train our

model with the batch size of 8, weight decay of 5× 10−4, and the starting learning rate of 5× 10−5 on two

GPUs. The face bounding boxes are expanded by the ratio of 0.2 and random cropping is performed as data

augmentation.

6.3.1 Comparison with State-of-the-arts Methods:

Results on 300-W. Table 6.2 shows the performance of different facial landmark detection methods on

300-W dataset. We compare our method to the most recent state-of-the-art approaches in the literature [251,

260, 261, 10]. The number of branches in training and testing phases is set to K = 5. Among the three

proposed approaches, we consider GEANGadv as the final proposed method to compare with the state-of-
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Common test set Challenging test set Full test set
Train 1 3 5 7 1 3 5 7 1∗ 1 3 5 7 10 14

1 4.40 3.77 3.48 3.43 5.44 5.35 5.30 5.28 4.80 4.80 4.49 4.07 4.02 4.00 4.03
3 3.67 3.25 3.03 2.98 5.33 5.27 5.18 5.10 4.68 4.46 4.01 3.77 3.74 3.72 3.79
5 3.35 2.99 2.68 2.66 5.26 4.97 4.71 4.67 4.63 4.04 3.64 3.05 3.01 2.99 3.05
7 3.32 2.93 2.65 2.63 5.22 4.90 4.65 4.60 4.59 3.96 3.56 3.00 2.97 2.96 3.00

Table 6.3: Comparison of NME on three test sets of 300-W with different numbers of branches for the training and testing.
The column with asterisk demonstrates the results for evaluating the performance of our model without aggregation.

the-art methods. The results show its superiority compared to the other methods for both types of bounding

boxes. The superiority of the proposed method shows the effect of manipulated images which target the

important locations in the input face image. Aggregation of these images improves the facial landmark

detection by giving more attention to the keypoint locations of the face images.

Results on AFLW. We conduct our experiments on the training/testing splits and the bounding box

provided from [44, 5]. Table 6.1 shows the effectiveness of proposed GEAN. AFLW dataset provides

a comprehensive set of unconstrained images. This dataset contains challenging images with rich facial

expression and poses up to ±120◦ for yaw and ±90◦ for pitch and roll. Evaluation of proposed method on

this challenging dataset shows its robustness to large pose variations. Indeed, the weighted aggregation of

predictions obtained on the set of deformed faces reduces the sensitivity of GEAN to large pose variations.

Results on COFW. Figure 6.4 shows the evaluation of our proposed method in a cross-dataset sce-

nario. We conduct evaluation using the models trained on the 300-W dataset and test them on re-annotated

COFW dataset with 68 landmarks [255]. The comparison is performed using the CED curves as plotted

in Figure 6.4. The best performance belongs to our method (GEAN) with 4.24% mean error compared to

the previous best [10] with 4.40% mean error. This shows the robustness of our method compared to other

state-of-the-art methods in detecting facial landmarks.

Timing of the proposed approach directly depends on the number of branches and also the approach

that we take to generate the manipulated faces. It is shown in [245] that semantically grouping the landmark

locations increases the time of manipulated faces generation. However, it can overcome the problem of face

distortion due to considering the semantic grouping. Therefore, there is a trade-off between the speed and

accuracy of the proposed framework. However, in the case of aggregating with five branches and employing

GEANGadv for generating manipulated faces, the framework runs in 17 FPS with NVIDIA TITAN X GPU.
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Figure 6.4: Comparison results of different methods (ODN [4], CFSS [5], TCDCN [6], RCPR [7], SAPM [8], HPM [9],
LRefNets [10], and GEAN) on COFW dataset.

6.3.2 Ablation Studies

Number of branches: In this section, we observe the effect of adding branches on the performance

of the aggregated framework. We start with k = 1 in which there is no aggregation and one manipulated

image is generated. We increase the number of branches from one to seven and measure the performance of

aggregated network on the common, challenging, and full split of the 300-W dataset.

In addition, the number of branches in the training and testing phases is not necessarily the same. For

example, the number of branches in the aggregated framework can be three while the number of branches in

the testing phase is equal to 10. This is essentially important due to the time complexity of the framework

during the training and testing phases. In addition, one can train the network on two or three branches while

test it on more branches to get more accurate results. Table 6.3 shows the evaluation results of 16 training

and testing combinations, i.e., four different training architectures (K = 1, 3, 5, 7) multiply four different

testing architectures on 300-W common, challenging, respectively. We increased the number of branches to

14 during the inference time on full test set.

As we can observe, the performance will be increased if the number of branches is increased during

the training phase. However, we observe that adding more than five branches to the framework does not

significantly improve the results with the cost of more computational complexity. The same behavior is ob-

served for the testing framework. By increasing the number of branches in the testing phase, the accuracy is
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increased. This is useful when we want to reduce the computational complexity in training and maintaining

the performance in the testing phase to some extent. Considering both accuracy and speed, we choose the

framework with the number of training and testing branches equal to five for the sake of comparison with

state-of-the-art (6.3.1). We also increased the number of branches to 14 on full test set. As it is shown in

Table 6.3, by increasing the numbers to 10 and more the model gains slight improvement in accuracy with

the cost of more computational and complexity. However as the numbers increased to 14, the accuracy drops

and the model with 14 branches has less accuracy with more time complexity (the model has less accuracy

compare to its counterpart with 5 branches).

We also conduct another experiment to demystify the effect of aggregation part in the proposed GEAN.

In this case, GEAN with just one branch is trained on all the deformed and manipulated faces without

the aggregation part. Table 6.3 and Figure 6.4 show the performance of GEAN w/o Agg. compared

to the proposed GEAN. For the sake of fair comparison, we trained the network on the same number of

manipulated face images for both methods. By comparing column (1∗) with column (1) of 300-W full

test set, it is shown that the proposed GEAN which is trained with the exact same faces is superior to

its counterpart without aggregation. Figure 6.4 also confirms the effectiveness of aggregation part and

illustrates the fact that proposed GEAN performs beyond a careful augmentation.

A Comparison between Three Different Variations of GEAN: Three different approaches ofGEANadv,

GEANGadv, and GEANGK have been introduced in this work. Through this section, we evaluate the per-

formance of three different variations of our GEAN method on AFLW dataset. As Table 6.1 shows, both

GEANGadv and GEANGK outperform GEANadv approach. We attribute this to the fact that GEANadv

does not consider grouping different landmarks semantically. This causes inconsistent displacements for the

landmarks of one region (e.g., left eye) and generate distorted images. In addition, the amount of displace-

ment of landmarks in manipulated images might be greater than the manipulated images with the other two

methods. However, this displacement might not be beneficial as it does not consider the general shape of

each face region. Utilizing clipping constraint can mitigate this issue to some extent. However, this approach

still suffers from not considering the semantic groups.

GEANGadv works the best among all three proposed approaches. Several reasons can explain this

superiority. This approach considers the semantic relationship among the landmarks of same regions of

the face. In addition, the manipulated images in this approach have different face IDs from the original

face image. Therefore, in the framework with K branches, the aggregation is performed in K different
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face IDs. This makes this approach to preserve a reasonable relative distance among different groups of

landmarks since it could fool the recognizer to misclassify it. However, this is not necessarily the case for

theGEANGK approach. This makes theGEANGadv to capture more important landmark displacement for

the image manipulation which is beneficial for the aggregation. The advantages of the other two approaches

(i.e., adversarially attack technique in GEANadv and semantic grouping of landmarks in GEANGK) is

unified in GEANGadv which leads to a better landmark detection performance.

6.4 Conclusion

In this chapter, we introduce a novel approach for facial landmark detection. The proposed method is an

aggregated framework in which each branch of the framework contains a manipulated face. Three different

approaches are employed to generate the manipulated faces and two of them perform the manipulation via

the adversarial attacks to fool a face recognizer. This step can decouple from our framework and potentially

used to enhance other landmark detectors [251, 46, 257]. Aggregation of the manipulated faces in different

branches of GEAN leads to robust landmark detection. An ablation study is performed on the number of

branches in training and testing phases and also on the effect different approaches of face image manipu-

lation on the facial landmark detection. The results on the AFLW, 300-W, and COFW datasets show the

superiority of our method compared to the state-of-the-art algorithms.
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Chapter 7

HGAN: Hybrid Generative Adversarial

Network

In this chapter, we propose a simple effective GAN architecture and a training strategy with the goal of

adversarially distilling the explicit information of the data distribution provided by the autoregressive model

in addition to mimicking the real data which leads to generating samples with a distribution very close to the

actual data distribution and helps to avoid possible mode collapse. To resolve the issue of sharp good-looking

samples but poor likelihood estimation in the case of adversarial learning (and vice versa in the case of

maximum likelihood estimation), our proposed hybrid model bridges implicit and explicit learning models

by augmenting the adversarial learning with an additional autoregressive model. Our approach combines the

implicit and explicit density function estimation into a unified objective function. In our model, the HGAN

generator is guided by exploiting the explicit data probability density from the knowledge provided by the

autoregressive model while it is also responsible to learn the data distribution via the adversarial learning.

HGAN model exploits the complementary statistical properties of data obtained from an autoregressive

model by utilizing a GAN to effectively diversify the estimated density function and capturing different

modes of the data distribution as well as avoiding possible mode collapse.

In short, our main contributions are: (i) a novel adversarial model to train a generator in a GAN frame-

work in order to stabilize the training process; (ii) the proposed model is able to estimate the data density by

mimicking an autoregressive model and simultaneously combining it with the adversarial learning process;

(iii) a comprehensive performance evaluation of our proposed method on real-world large-scale datasets of

diverse natural scenes as well as mitigating adversarial examples in a defense scenario.
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Figure 7.1: Proposed HGAN framework with an autoregressive model, a generator, and a discriminator is trained by using
two types of real data.

7.1 Background

7.1.1 Generative Adversarial Nets:

GAN is a min-max game between a generator G and a discriminator D, both parameterized via neural

networks [262]. Training a GAN can be formulated as the following objective function:

min
G

max
D

Ex∼Pdata(x)
[logD(x)] + Ez∼Pz [log(1−D(G(z)))],

where x is from a real data distribution Pdata and z is a sample from a prior distribution Pz . The generator is

a mapping function from z which approximates Pmodel. GAN alternatively optimizes D and G in a minimax

game using stochastic gradient-based algorithm. Generator is prone to map every z to a single x that is most

probable to be recognized as a true data, and this leads to a mode collapse. Another issue with GAN is

that at optimal point of D, minimizing the generator is equal to minimizing the JSD between the true data

distribution and model distribution which is empirically shown to cause the mode collapse by generating

few modes and ignoring other modes [59].
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Figure 7.2: Samples generated by the proposed HGAN compared with the samples generated from DCGAN and AutoGAN
on CIFAR-10.

7.1.2 Autoregressive Models:

Autoregressive models can be designed by using recurrent networks (PixelRNNs) or a CNN (PixelC-

NNs) [263]. These models learn the join distribution of pixels of an image x as a product of conditional

distributions p(xi|x1, ..., xi−1), where xi is a single pixel. The ordering of pixel dependencies is row by row

and in each row, pixel by pixel. Therefore, every pixel (xi) depends on all the pixels above and left of it

(x1, ..., xi−1).

7.1.3 Knowledge distillation:

Knowledge distillation is mostly used in image classification problem where the output of neural net-

work is a probability distribution over categories. The probability is calculated by applying a softmax

function over logits which are the output of the last fully connected layer. Hinton et al. [264] used logits

to transfer the embedded information in a teacher network to student network. In order to train a student

network F to generate student logits F (xi), a parameter called temperature T is introduced. Afterwards,

the generalized softmax layer converts logits vector ti = (t1i , ..., t
C
i ) to a probability distribution qi,

MT (ti) = qi, where qji =
exp(tji/T )∑
k exp(t

k
i /T )

. (7.1)

where higher temperature T produces softer probability over categories.

Hinton et al. [264] proposed to minimize the KL divergence between teacher and student output as
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follows:

LKD(F, T ) =
1

N

N∑
i=1

KL(MT (ti)||MT (F (xi))). (7.2)

In [265] instead of forcing the student to exactly mimic the teacher by minimizing KL-divergence in

Equation (7.2), the knowledge is transferred from teacher to student via discriminator in a GAN-based

approach.

7.2 Proposed Hybrid GAN:

We now present our novel hybrid approach to tackle the problem of mode collapse in GANs [266,

267]. In general, GANs can generate good-looking samples but have intractable likelihoods. On the other

hand, autoregressive models are likelihood-based generative models which can return explicit probability

densities. The idea is to utilize a mixture of these two models rather than a single model as in a typical

GAN.

In our proposed hybrid model, the generator’s first task is to learn the data distribution without any

explicit model just like a regular GAN such that G(z) ' x ∼ Pdata. On the other hand, its second task is to

perform sampling where it samples a random vector z ∼ Pz and maps it to an autoregressive model Pξ such

that G(z) ' xξ ∼ Pξ. This forces our hybrid model to learn the probability density of the autoregressive

model using the adversarial training method. These two tasks together provide a hybrid model which gives

more attention to the likelihood of the data for estimating Pmodel in the data space.

A natural question to ask is why one should use adversarial learning when autoregressive model can

return a tractable likelihood. The reason is that the synthesis from these autoregressive models are difficult

to parallelize and usually inefficient on parallel hardware [268]. Therefore synthesizing image using them is

much slower than a generator. Moreover, it is not practical to perform accurate data manipulation since the

hidden layers of autoregressive models have unknown marginal distributions [112]. However, GAN models

are fast in synthesizing and also can have useful latent space for downstream tasks especially in ones which

have an encoder such as AGE or ALI [269, 270]. Fig. 7.1 illustrates the architecture of our proposed Hybrid

GAN (HGAN) model.

In naive GAN, the odds that the two distributions pg and pdata share support in high-dimensional space,

especially early in training, are very small. If pg and pdata have non-overlapping support the Jensen-Shannon
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Figure 7.3: Training G(z) to mimic the autoregressive model’s output with an adversarial learning process. In this net-
work which we denote as AutoGAN, the real data is obtained from the autoregressive model’s output and fake data is the
generated output from G(z).

divergence is saturated as is locally constant in θ. Also, there might be a large set of near-optimal discrim-

inators whose logistic regression loss is very close to optimum, but each of these possibly provides very

different gradients to the generator. Therefore, training the discriminator might find a different near-optimal

solution each time depending on initialization, even for a fixed gθ and pdata. We instead employ autore-

gressive model to augment the gradient information obtained by ordinary back-propagation. In fact, we are

interested in manipulating the feature space of a discriminator, using the autoregressive model as a tool to

tell us *how* to perform that manipulation.

In our Hybrid GAN, the discriminator observes two types of real inputs: the real data x and the output

of the autoregressive model xξ. The fake input, G(z), is mimicking the output of the autoregressive model

xξ ∼ Pξ in addition to the real data x ∼ Pdata. We consider two terms for the discriminator D, namely

D1 and D2. D1 is the first discriminator which is related to the first task, where G(z) is fake and xξ is real.

D2 is related to the second task, where G(z) is fake and x is real. However, all the parameters are shared

between discriminators D1 and D2 and in fact there is only one discriminator D.

In the first fake input of discriminator, the generator attempts to generate data that is as close as possible

to the autoregressive model’s output. Therefore, the generator’s task is to make G(z) ' xξ ∼ Pξ. However,

for the second round of fake input, the generator tries to fool the discriminator in a way that its generated

data is as close as possible to the real data. Thus, it is responsible to make G(z) ' x ∼ Pdata. While G

acts similar to a typical generator in a regular GAN, our hybrid method tries to maximize the likelihood of
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Figure 7.4: Images generated by our proposed HGAN trained on natural image datasets.

a mixture model by adversarially distilling the properties of autoregressive model.

7.3 Experiments

We show the effectiveness of our proposed approach in different experiments with real-world datasets.

For the fair evaluation, we use the same experimental settings that are identical to prior works [56, 271, 272].

Therefore, we use the results from the latest state-of-the-art GAN-based models to compare with ours.

We used Pytorch [273] to implement our framework. The generator and discriminator architecture is

adopted from DCGAN [274]. In addition, pixelCNN++ [110] architecture is chosen for the autoregressive

model. For training we used Adam optimizer [275] with the first-order momentum of 0.5, the learning rate

of 0.0002, and batch size of 64. For the generator the ReLU activation [276], and for the discriminator the

Leaky ReLU activation with the slope of 0.2 is considered. Weights are initialized from an isotropic Gaus-

sian: N (0, 0.01) and zero biases. To show the effectiveness of the proposed framework, we perform two

types of experiments on MNIST dataset and compare our methods to the other well-know GANs, namely

WGAN [58], MIX+WGAN [113], DFM [117], Improved-GAN [113], ALI [269], BEGAN [277], MAD-

GAN [271], GMAN [278], DCGAN [274], MGAN [272], SNGAN [279], and SAGAN [280]. It should

be noted that our method cannot be compared directly with BigGAN [281] and StyleGAN [282] since the

mentioned models are based on larger models and different settings (i.e., BigGAN is using class conditional

setting or StyleGAN purpose is for having more control over the latent space for high resolution image gen-

eration). Following [271], we reuse the KL-divergence [283] and the number of captured modes [284] as
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Table 7.1: Experiment on MNIST dataset containing 10 different modes.

GAN Variants Chi-square (×105) KL Div
WGAN 1.32 0.614

MIX+WGAN 1.25 0.567
DFM 1.46 0.623

Improved-GAN 1.13 0.436
ALI 2.34 0.875

BEGAN 1.06 0.944
MAD-GAN 0.24 0.145

GMAN 1.86 1.345
DCGAN 0.90 0.322
MGAN 0.32 0.211
SAGAN 0.29 0.148
SNGAN 0.25 0.146
HGAN 0.23 0.141

Table 7.2: Results for the Inception scores on CIFAR-10 dataset.

Objective Inception Score
DCGAN 6.40

AutoGAN 6.17
HGAN 7.46

the criteria for the comparison to illustrate the superiority of our method compared to others. Moreover, we

perform the quantitative experiments on more complicated real-world datasets namely the CIFAR-10 [285]

and STL-10 [286] datasets.

7.3.1 MNIST

The data distribution of the MNIST dataset can be approximated with ten dominant modes. Here,

following [284] we define the term ‘mode’ as a connected component in the data manifold.

For the sake of evaluation, we train a four-layer CNN classifier on the MNIST digits and then apply it

to compute the mode scores in the generated samples from the proposed method. We repeat the procedure

and apply the trained classifier to discover the mode scores on different baseline GAN methods. We also

have the ground truth by measuring the performance of classifier on the MNIST test set. The number of

generated samples from each method is equal to the number of test set which is 10,000. Afterwards, we use

Table 7.3: Results for the test MODE scores on the MNIST dataset.

Objective MODE Score
DCGAN 9.28

AutoGAN 9.32
HGAN 9.51
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Table 7.4: Stacked-MNIST experiment. There are 1,000 modes in the dataset.

GAN Variants KL Div # Mode Covered
WGAN 1.02 868

MIX+WGAN 0.98 874
DFM 1.13 843

Improved-GAN 1.45 847
ALI 2.03 802

BEGAN 1.89 819
MAD-GAN 0.91 890

GMAN 2.17 756
DCGAN 2.15 712
MGAN 0.94 896
SAGAN 0.97 886
SNGAN 0.91 889
HGAN 0.88 891

Chi-square distance and the KL-divergence to compute distance between the two histograms (ground truth

vs. each GAN model). Table 7.1 shows the performance of our proposed HGAN compared to the other

methods. From Table 7.1, it is evident that our proposed method could outperform the other methods in

capturing all the modes in the MNIST dataset.

7.3.2 Stacked and Compositional MNIST

In this experiment, the goal is to explore the performance of our proposed HGAN in a more challenging

scenario. In order to illustrate and compare HGAN with other baselines, we utilized similar setup as in [271].

Authors in [114] created a Stacked MNIST with 25,600 samples where each sample has three channels

stacked together with a random digit from MNIST in each of them. Therefore, the Stacked MNIST contains

1,000 distinct modes in the data distribution. In [287], a similar process is applied to MNIST dataset. They

created the Compositional MNIST whereby they took three random MNIST digits and placed them at three

quadrants of a 64 × 64 dimensional image. This also resulted in a data distribution with 1,000 modes.

Distribution of the generated samples was estimated with a pre-trained MNIST classifier which classifies

the digits in each channel or quadrants, and consequently decides which of the 1,000 modes is generated by

the particular GAN method’s generator.

Table 7.4 and 7.5 show the performance of the proposed method as well as other GAN methods in

terms of the KL divergence and the number of modes recovered for the Stacked and Compositional MNIST

datasets. As shown in Table 7.4, our method outperformed all the other GAN methods in terms of the

KL divergence and the number of captured modes. MGAN surpasses ours in only the number of captured

modes. It is evident from Table 7.5 that our proposed HGAN outperforms all the other baselines in terms of
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Table 7.5: Compositional-MNIST experiment. There are 1,000 modes in the dataset.

GAN Variants KL Div # Mode Covered
WGAN 0.25 1000

MIX+WGAN 0.21 1000
DFM 0.23 965

Improved-GAN 0.67 934
ALI 1.23 967

BEGAN 0.19 999
MAD-GAN 0.074 1000

GMAN 0.57 929
DCGAN 0.18 980
MGAN 0.12 1000
SAGAN 0.095 1000
SNGAN 0.083 1000
HGAN 0.078 1000

Table 7.6: Inception scores on the CIFAR-10 and STL-10 datasets.

Model CIFAR-10 STL-10
Real data 11.24 ± 0.16 26.08 ± 0.26
WGAN 3.82 ± 0.06 −

MIX+WGAN 4.04 ± 0.07 −
DFM 7.72 ± 0.13 8.51 ± 0.13

Improved-GAN 4.36 ± 0.04 −
ALI 5.34 ± 0.05 −

BEGAN 5.62 −
MAD-GAN 7.34 −

GMAN 6.00 ± 0.19 −
DCGAN 6.40 ± 0.05 7.54
MGAN 8.33 ± 0.10 9.22 ± 0.11
SAGAN 7.51 ± 0.15 8.61 ± 0.11
SNGAN 7.58 ± 0.12 8.79 ± 0.14
HGAN 7.46 ± 0.11 8.94 ± 0.13

Table 7.7: FIDs on CIFAR-10 and STL-10 (lower is better).

Model DCGAN DCGAN+TTUR [288] WGAN-GP [289] GAN-GP MGAN SAGAN SNGAN HGAN
CIFAR-10 37.7 36.9 40.2 37.7 26.7 26.3 25.5 26.1

STL-10 - - 55.1 - - 43.6 43.2 42.1

Table 7.8: Classification accuracies of using Defense-GAN and Defense-HGAN strategies on the MNIST dataset with L =
200 and R = 10.

Attack No Attack (Defense-GAN) Defense-GAN No Attack (Defense-HGAN) Defense-HGAN
FGSM (ε = 0.3) 0.989 0.961 0.991 0.974

PGD 0.989 0.956 0.991 0.969
CW (l2 norm) 0.989 0.945 0.991 0.965

Table 7.9: Classification accuracies of using Defense-GAN and Defense-HGAN strategies on the CIFAR-10 dataset with L
= 200 and R = 10.

Attack No Attack (Defense-GAN) Defense-GAN No Attack (Defense-HGAN) Defense-HGAN
FGSM (ε = 0.3) 0.763 0.684 0.794 0.741

PGD 0.763 0.671 0.794 0.738
CW (l2 norm) 0.763 0.646 0.794 0.731
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Figure 7.5: Classification accuracy of Defense-GAN and Defense-HGAN on the MNIST and CIFAR-10 datasets in the case
of no attack and also under FGSM white-box attack with ε = 0.3. (a) MNIST classification accuracy varying L (with R =
10). (b) CIFAR-10 classification accuracy varying L (with R = 10). (c) MNIST classification accuracy varying R (with L =
100). (d) CIFAR-10 classification accuracy varying R (with L = 100).

the KL divergence and it is the closest to the true data distribution. Also, in terms of the number of captured

modes, our method as well as MGAN, MAD-GAN, WGAN, SNGAN and MIX+WGAN capture all the

1,000 modes in the Compositional MNIST experiment.

7.3.3 Real-world Datasets

In this section, the proposed HGAN framework is applied on more complicated real-world datasets to

evaluate its effectiveness on more challenging large-scale image data.

Datasets.

We use two widely-adopted datasets, namely CIFAR-10 [285] and STL-10 [290]. CIFAR-10 dataset

contains 50,000 training images with the resolution of 32×32 for 10 different classes: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck. STL-10 dataset subsampled from the ImageNet [291]

and is more diverse database compared to CIFAR-10. This dataset composed of 100,000 images with the

resolution of 96 × 96. For the sake of fair comparison with the baselines in [117], we follow the same

procedure as in [292] to resize the STL-10 down to 48× 48.

Evaluation Protocols.

For quantitative evaluation, we consider the Inception score which was introduced in [113]. This met-

ric computes exp(Ex[DKL(p(y|x)||p(y))]), where p(y|x) is the conditional label distribution for image x

estimated by the reference Inception model. The metric rewards good and varied samples and is found to

be well-correlated to human judgment. The code provided in [113], is used to compute the Inception score
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for 10 partitions of 50,000 generated samples. For qualitative evaluation of the quality of images generated

by our proposed HGAN framework, we show the samples generated by HGAN which are drawn randomly

rather than cherry-picked.

Inception Results.

Table 7.6 shows the Inception scores obtained by our proposed HGAN method as well as the baselines.

For the fair comparison, only models which are trained completely in an unsupervised manner without the

label information are included in Table 7.6. Also, the reported results on STL-10 for DCGAN and D2GAN

are based on the models trained on 32 × 32 resolution. Table 7.6 shows the superiority of our proposed

HGAN compared to the other methods in the literature for both the STL-10 and CIFAR-10 datasets.

Image Generation.

For the qualitative assessment, we present samples which are randomly selected from the images gener-

ated by the proposed HGAN. It can be seen from Fig. 7.4 that the images generated by HGAN are visually

recognizable images of cars, ships, trucks, birds, airplanes, dogs, and horses in the CIFAR-10 database.

Moreover, in the case of the STL-10 dataset, HGAN is able to produce images including car, trucks, ships,

airplanes, and different kinds of animals including horses, cats, monkeys, deers, and dogs with wider range

of background such as sky, cloudy sky, sea, and forest. These visually appealing images confirms the diver-

sity of the generated samples by HGAN.

7.3.4 Frechet Inception Distance results.

The main disadvantage of the inception score is that it does not compare the statistics of the synthetic

samples and the real world ones. Therefore, we evaluate HGAN using the Frechet Inception Distance (FID)

proposed in [288]. Table 7.7 compares the FIDs obtained by HGAN with baselines collected in [272, 279].

It should be noted that some methods in the literature use the Resnet [293] architecture. Here, for the fair

comparison we show the results of different methods when using DCGAN architecture.

7.3.5 Ablation Study

In the previous sections, we examined the mode coverage of the proposed framework compared to the

other baselines in three separate experiments. In order to show the effectiveness of our HGAN framework,
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we perform another experiment with two different datasets, namely the MNIST and CIFAR-10 datasets. In

this setup, we consider G(z) within two complete separate training approaches. In the first approach, G(z)

is trained as a regular GAN such as a DCGAN, and in the second approach G(z) is trained to mimic the

autoregressive model’s output with an adversarial training. We denote the first approach as DCGAN and the

second approach as AutoGAN. Fig. 7.3 depicts the framework of AutoGAN. We compare the performance

of these two networks with the proposed HGAN in terms of sample quality.

Table 7.3 and 7.2 show the highest Inception/MODE scores [113] of DCGAN, AutoGAN, and HGAN

monitored during the training phase. The samples generated by each of the mentioned methods on the

CIFAR-10 dataset is also shown in Fig. 7.2.

As it is illustrated in Table 7.3 and 7.2, HGAN outperforms both DCGAN and AutoGAN in terms of

sample quality. One possible reason behind this is in HGAN, the addition of adversarially distillation of the

data information from the autoregressive model (pixelCNN++) in the G(z) objective function can stabilize

its optimization, thus avoiding the mode collapse issue. Finally, the hybrid nature of the proposed method

leads to a better performance for both datasets.

7.3.6 Comparison with WGAN in Defense Framework

Despite a very rich research work leading to very interesting GAN algorithms, it is still challenging to

assess which algorithm performs better compared to others. In this experiment we evaluate the effectiveness

of HGAN compared to WGAN in a defense scenario. We believe this could be another way of assessment

for GAN frameworks.

Adversarial examples [294] are neural network inputs which are designed to force misclassification.

These inputs often appear normal to humans while cause the neural network to make inaccurate predictions.

Various defenses have been proposed to mitigate the effect of adversarial attacks [295, 296, 297]. In this

experiment we use our proposed HGAN as a defense mechanism against three different white-box attacks:

Fast Gradient-Sign Method (FGSM) [298], Carlini-Wagner (CW) attack (with l2 norm) [299], and Projected

Gradient Descent (PGD) [300]. For the fair comparison, we adopt the same set of experiment as Defense-

GAN [295]. Instead of using WGAN, we use our proposed HGAN in Defense-GAN framework which we

denote as Defense-HGAN. We also compare Defense-HGAN with Defense-GAN in the case of no attack.

Table 7.8 and 7.9 show the classification performance of our method compared to Defense-GAN on the

MNIST and CIFAR-10 datasets, respectively. It should be noted that the classification accuracy results on the
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MNIST and CIFAR-10 is 0.994 and 0.886, respectively. We note that Defense-HGAN outperforms Defense-

GAN which shows the superiority of our HGAN comparing to WGAN in Defense-GAN framework.

We also compared the effect of different numbers of iterations L and random restarts R for Defense-

GAN and Defense-HGAN on the MNIST and CIFAR-10 datasets. Both methods need to look for an ap-

propriate datapoint in the latent space which leads to generating an image closer to the input image. As

it is shown in Fig. 7.5 classification performance of HGAN is better than Defense-GAN which means that

HGAN could do a better job in capturing the data distribution compared to WGAN on the MNIST and

CIFAR-10 datasets.

7.4 Conclusion

We have proposed a novel approach to address the mode collapse issue in GANs. Our idea is to de-

sign a hybrid model which tries to learn the distribution of data via a mixture of density estimating models

utilizing an autoregressive model and an adversarial learning. For this purpose, we introduce a minimax

game between a generator, an autoregressive model, and a discriminator to optimize the problem of min-

imizing the JSD between Pdata and Pmodel. In our proposed HGAN, the generator is responsible to learn

the autoregressive model output in addition to modeling the real data just like a regular GAN. Distillation

of autoregressive model is beneficial for the HGAN since it also models the distribution of the same data

but in an explicit way. It makes the generator to give more attention to the likelihood of the data and stabi-

lize its optimization. This helps the proposed model to capture more data modes which leads to generating

a more diversified set of images. Comprehensive study on MNIST and also more challenging real-world

datasets show the effectiveness of our HGAN in covering data modes and avoiding mode collapse as well

as generating diverse and visually appealing images.
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