5,939 research outputs found

    Towards building information modelling for existing structures

    Get PDF
    The transformation of cities from the industrial age (unsustainable) to the knowledge age (sustainable) is essentially a ‘whole life cycle’ process consisting of; planning, development, operation, reuse and renewal. During this transformation, a multi-disciplinary knowledge base, created from studies and research about the built environment aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc is critical. Although there are a growing number of applications of 3D VR modelling applications, some built environment applications such as disaster management, environmental simulations, computer aided architectural design and planning require more sophisticated models beyond 3D graphical visualization such as multifunctional, interoperable, intelligent, and multi-representational. Advanced digital mapping technologies such as 3D laser scanner technologies can be are enablers for effective e-planning, consultation and communication of users’ views during the planning, design, construction and lifecycle process of the built environment. For example, the 3D laser scanner enables digital documentation of buildings, sites and physical objects for reconstruction and restoration. It also facilitates the creation of educational resources within the built environment, as well as the reconstruction of the built environment. These technologies can be used to drive the productivity gains by promoting a free-flow of information between departments, divisions, offices, and sites; and between themselves, their contractors and partners when the data captured via those technologies are processed and modelled into BIM (Building Information Modelling). The use of these technologies is key enablers to the creation of new approaches to the ‘Whole Life Cycle’ process within the built and human environment for the 21st century. The paper describes the research towards Building Information Modelling for existing structures via the point cloud data captured by the 3D laser scanner technology. A case study building is elaborated to demonstrate how to produce 3D CAD models and BIM models of existing structures based on designated technique

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Technology Integration around the Geographic Information: A State of the Art

    Get PDF
    One of the elements that have popularized and facilitated the use of geographical information on a variety of computational applications has been the use of Web maps; this has opened new research challenges on different subjects, from locating places and people, the study of social behavior or the analyzing of the hidden structures of the terms used in a natural language query used for locating a place. However, the use of geographic information under technological features is not new, instead it has been part of a development and technological integration process. This paper presents a state of the art review about the application of geographic information under different approaches: its use on location based services, the collaborative user participation on it, its contextual-awareness, its use in the Semantic Web and the challenges of its use in natural languge queries. Finally, a prototype that integrates most of these areas is presented

    Obvious: a meta-toolkit to encapsulate information visualization toolkits. One toolkit to bind them all

    Get PDF
    This article describes “Obvious”: a meta-toolkit that abstracts and encapsulates information visualization toolkits implemented in the Java language. It intends to unify their use and postpone the choice of which concrete toolkit(s) to use later-on in the development of visual analytics applications. We also report on the lessons we have learned when wrapping popular toolkits with Obvious, namely Prefuse, the InfoVis Toolkit, partly Improvise, JUNG and other data management libraries. We show several examples on the uses of Obvious, how the different toolkits can be combined, for instance sharing their data models. We also show how Weka and RapidMiner, two popular machine-learning toolkits, have been wrapped with Obvious and can be used directly with all the other wrapped toolkits. We expect Obvious to start a co-evolution process: Obvious is meant to evolve when more components of Information Visualization systems will become consensual. It is also designed to help information visualization systems adhere to the best practices to provide a higher level of interoperability and leverage the domain of visual analytics

    Modeling emergency management data by UML as an extension of geographic data sharing model: AST approach

    Get PDF
    Applying GIS functionality provides a powerful decision support in various application areas and the basis to integrate policies directed to citizens, business, and governments. The focus is changing toward integrating these functions to find optimal solutions to complex problems. As an integral part of this approach, geographic data sharing model for Turkey were developed as a new approach that enables using the data corporately and effectively. General features of this model are object-oriented model, based on ISO/TC211 standards and INSPIRE Data Specifications, describing nationwide unique object identifiers, and defining a mechanism to manage object changes through time. The model is fully described with Unified Modeling Language (UML) class diagram. This can be a starting point for geographic data providers in Turkey to create sector models like Emergency Management that has importance because of the increasing number of natural and man-made disasters. In emergency management, this sector model can provide the most appropriate data to many "Actors" that behave as emergency response organizations such as fire and medical departments. Actors work in "Sectors" such as fire department and urban security. Each sector is responsible for "Activities" such as traffic control, fighting dire, emission, and so on. "Tasks" such as registering incident, fire response, and evacuating area are performed by actors and part of activity. These tasks produce information for emergency response and require information based on the base data model. By this way, geographic data models of emergency response are designed and discussed with "Actor-Sector-Activity-Task" classes as an extension of the base model with some cases from Turkey

    Towards Semantic Integration of Heterogeneous Sensor Data with Indigenous Knowledge for Drought Forecasting

    Full text link
    In the Internet of Things (IoT) domain, various heterogeneous ubiquitous devices would be able to connect and communicate with each other seamlessly, irrespective of the domain. Semantic representation of data through detailed standardized annotation has shown to improve the integration of the interconnected heterogeneous devices. However, the semantic representation of these heterogeneous data sources for environmental monitoring systems is not yet well supported. To achieve the maximum benefits of IoT for drought forecasting, a dedicated semantic middleware solution is required. This research proposes a middleware that semantically represents and integrates heterogeneous data sources with indigenous knowledge based on a unified ontology for an accurate IoT-based drought early warning system (DEWS).Comment: 5 pages, 3 figures, In Proceedings of the Doctoral Symposium of the 16th International Middleware Conference (Middleware Doct Symposium 2015), Ivan Beschastnikh and Wouter Joosen (Eds.). ACM, New York, NY, US
    • 

    corecore