3,364 research outputs found

    3D Object Class Detection in the Wild

    Full text link
    Object class detection has been a synonym for 2D bounding box localization for the longest time, fueled by the success of powerful statistical learning techniques, combined with robust image representations. Only recently, there has been a growing interest in revisiting the promise of computer vision from the early days: to precisely delineate the contents of a visual scene, object by object, in 3D. In this paper, we draw from recent advances in object detection and 2D-3D object lifting in order to design an object class detector that is particularly tailored towards 3D object class detection. Our 3D object class detection method consists of several stages gradually enriching the object detection output with object viewpoint, keypoints and 3D shape estimates. Following careful design, in each stage it constantly improves the performance and achieves state-ofthe-art performance in simultaneous 2D bounding box and viewpoint estimation on the challenging Pascal3D+ dataset

    Object Detection based on Region Decomposition and Assembly

    Full text link
    Region-based object detection infers object regions for one or more categories in an image. Due to the recent advances in deep learning and region proposal methods, object detectors based on convolutional neural networks (CNNs) have been flourishing and provided the promising detection results. However, the detection accuracy is degraded often because of the low discriminability of object CNN features caused by occlusions and inaccurate region proposals. In this paper, we therefore propose a region decomposition and assembly detector (R-DAD) for more accurate object detection. In the proposed R-DAD, we first decompose an object region into multiple small regions. To capture an entire appearance and part details of the object jointly, we extract CNN features within the whole object region and decomposed regions. We then learn the semantic relations between the object and its parts by combining the multi-region features stage by stage with region assembly blocks, and use the combined and high-level semantic features for the object classification and localization. In addition, for more accurate region proposals, we propose a multi-scale proposal layer that can generate object proposals of various scales. We integrate the R-DAD into several feature extractors, and prove the distinct performance improvement on PASCAL07/12 and MSCOCO18 compared to the recent convolutional detectors.Comment: Accepted to 2019 AAAI Conference on Artificial Intelligence (AAAI

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    • …
    corecore