1,755 research outputs found

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices

    Reusable garbled gates for new fully homomorphic encryption service

    Get PDF
    In this paper, we propose a novel way to provide a fully homomorphic encryption service, namely by using garbled circuits. From a high level perspective, garbled circuits and fully homomorphic encryption, both aim at implementing complex computation on ciphertexts. We define a new cryptographic primitive named reusable garbled gate, which comes from the area of garbled circuits, then based on this new primitive we show that it is very easy to construct a fully homomorphic encryption. However, the instantiation of reusable garbled gates is rather difficult, in fact, we can only instantiate this new primitive based on indistinguishable obfuscation. Furthermore, reusable garbled gates can be a core component for constructing the reusable garbled circuits, which can reduce the communication complexity of them from O(n) to O(1). We believe that reusable garbled gates promise a new way to provide fully homomorphic encryption and reusable garbled circuits service fast.Peer ReviewedPostprint (author's final draft

    How Privacy-Enhanced Technologies (Pets) are Transforming Digital Healthcare Delivery

    Get PDF
    Privacy Enhancing Technologies (PETs) are playing a crucial role in maturing digital healthcare delivery for mainstream adaption from both a social and regulatory perspective. Different PETs are improving different aspects of digital healthcare delivery, and we have chosen seven of them to observe in the context of their influence on digital healthcare and their use cases. Homomorphic encryption can provide data security when healthcare data is being collected from individuals via IoT or IoMT devices. It’s also a key facilitator for large-scale healthcare data pooling from multiple sources for analytics without compromising privacy. Secure Multi-Party Computation (SMPC) facilitates safe data transfer between patients and healthcare professionals, and other relevant entities. Generative Adversarial Networks (GANs) can be used to generate larger data sets from smaller training data sets directly obtained from the patients, to train AI and ML algorithms. Differential Privacy (DP) focuses on combining multiple data sets for collective or individual processing without compromising privacy. However, its addition of noise to obscure data has some technical limitations. Zero-Knowledge Proof (ZKP) can facilitate safe verifications/validation protocols to establish connections between healthcare devices without straining their hardware capacities. Federated learning leans quite heavily towards training AI/ML algorithms on multiple data sets without margining or compromising the privacy of the constituents of any dataset. Obfuscation can be used in different stages of healthcare delivery to obscure healthcare data.

    Cloud-based homomorphic encryption for privacy-preserving machine learning in clinical decision support

    Get PDF
    While privacy and security concerns dominate public cloud services, Homomorphic Encryption (HE) is seen as an emerging solution that ensures secure processing of sensitive data via untrusted networks in the public cloud or by third-party cloud vendors. It relies on the fact that some encryption algorithms display the property of homomorphism, which allows them to manipulate data meaningfully while still in encrypted form; although there are major stumbling blocks to overcome before the technology is considered mature for production cloud environments. Such a framework would find particular relevance in Clinical Decision Support (CDS) applications deployed in the public cloud. CDS applications have an important computational and analytical role over confidential healthcare information with the aim of supporting decision-making in clinical practice. Machine Learning (ML) is employed in CDS applications that typically learn and can personalise actions based on individual behaviour. A relatively simple-to-implement, common and consistent framework is sought that can overcome most limitations of Fully Homomorphic Encryption (FHE) in order to offer an expanded and flexible set of HE capabilities. In the absence of a significant breakthrough in FHE efficiency and practical use, it would appear that a solution relying on client interactions is the best known entity for meeting the requirements of private CDS-based computation, so long as security is not significantly compromised. A hybrid solution is introduced, that intersperses limited two-party interactions amongst the main homomorphic computations, allowing exchange of both numerical and logical cryptographic contexts in addition to resolving other major FHE limitations. Interactions involve the use of client-based ciphertext decryptions blinded by data obfuscation techniques, to maintain privacy. This thesis explores the middle ground whereby HE schemes can provide improved and efficient arbitrary computational functionality over a significantly reduced two-party network interaction model involving data obfuscation techniques. This compromise allows for the powerful capabilities of HE to be leveraged, providing a more uniform, flexible and general approach to privacy-preserving system integration, which is suitable for cloud deployment. The proposed platform is uniquely designed to make HE more practical for mainstream clinical application use, equipped with a rich set of capabilities and potentially very complex depth of HE operations. Such a solution would be suitable for the long-term privacy preserving-processing requirements of a cloud-based CDS system, which would typically require complex combinatorial logic, workflow and ML capabilities

    A Review on Cloud Data Security Challenges and existing Countermeasures in Cloud Computing

    Get PDF
    Cloud computing (CC) is among the most rapidly evolving computer technologies. That is the required accessibility of network assets, mainly information storage with processing authority without the requirement for particular and direct user administration. CC is a collection of public and private data centers that provide a single platform for clients throughout the Internet. The growing volume of personal and sensitive information acquired through supervisory authorities demands the usage of the cloud not just for information storage and for data processing at cloud assets. Nevertheless, due to safety issues raised by recent data leaks, it is recommended that unprotected sensitive data not be sent to public clouds. This document provides a detailed appraisal of the research regarding data protection and privacy problems, data encrypting, and data obfuscation, including remedies for cloud data storage. The most up-to-date technologies and approaches for cloud data security are examined. This research also examines several current strategies for addressing cloud security concerns. The performance of each approach is then compared based on its characteristics, benefits, and shortcomings. Finally, go at a few active cloud storage data security study fields
    • …
    corecore