11 research outputs found

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Coherent and Non-coherent Techniques for Cooperative Communications

    Get PDF
    Future wireless network may consist of a cluster of low-complexity battery-powered nodes or mobile stations (MS). Information is propagated from one location in the network to another by cooperation and relaying. Due to the channel fading or node failure, one or more relaying links could become unreliable during multiple-hop relaying. Inspired by conventional multiple-input multiple-output (MIMO) techniques exploiting multiple co-located transmit antennas to introduce temporal and spatial diversity, the error performance and robustness against channel fading of a multiple-hop cooperative network could be significantly improved by creating a virtual antenna array (VAA) with various distributed MIMO techniques. In this thesis, we concentrate on the low-complexity distributed MIMO designed for both coherent and non-coherent diversity signal reception at the destination node. Further improvement on the network throughput as well as spectral efficiency could be achieved by extending the concept of unidirectional relaying to bidirectional cooperative communication. Physical-layer network coding (PLNC) assisted distributed space-time block coding (STBC) scheme as well as non-coherent PLNC aided distributed differential STBC system are proposed. It is confirmed by the theoretical analysis that both approaches have the potential for offering full spatial diversity gain.    Furthermore, differential encoding and non-coherent detection techniques are generally associated with performance degradation due to the doubled noise variance. More importantly, conventional differential schemes suffer from the incapability of recovering the source information in time-varying channels owing to the assumption of static channel model used in the derivation of non-coherent detection algorithm. Several low-complexity solutions are proposed and studied in this thesis, which are able to compensate the performance loss caused by non-coherent detection and guarantee the reliable recovery of information in applications with high mobility. A substantial amount of iteration gain is achieved by combining the differential encoding with error-correction code and sufficient interleaving, which allows iterative possessing at the receiver

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Communications protocols for wireless sensor networks in perturbed environment

    Get PDF
    This thesis is mainly in the Smart Grid (SG) domain. SGs improve the safety of electrical networks and allow a more adapted use of electricity storage, available in a limited way. SGs also increase overall energy efficiency by reducing peak consumption. The use of this technology is the most appropriate solution because it allows more efficient energy management. In this context, manufacturers such as Hydro-Quebec deploy sensor networks in the nerve centers to control major equipment. To reduce deployment costs and cabling complexity, the option of a wireless sensor network seems the most obvious solution. However, deploying a sensor network requires in-depth knowledge of the environment. High voltages substations are strategic points in the power grid and generate impulse noise that can degrade the performance of wireless communications. The works in this thesis are focused on the development of high performance communication protocols for the profoundly disturbed environments. For this purpose, we have proposed an approach based on the concatenation of rank metric and convolutional coding with orthogonal frequency division multiplexing. This technique is very efficient in reducing the bursty nature of impulsive noise while having a quite low level of complexity. Another solution based on a multi-antenna system is also designed. We have proposed a cooperative closed-loop coded MIMO system based on rank metric code and max−dmin precoder. The second technique is also an optimal solution for both improving the reliability of the system and energy saving in wireless sensor networks

    Multichannel power line communication

    Get PDF
    Power line communication (PLC) is the technology in which the data signals of a communication system are transmitted through the conductors of a power delivery infrastructure. The unique environment of the PLC channels create specific challenges and requirements, which need to be modeled and analyzed properly in order to obtain a clear understanding of the communication system as well as attaining the ability to further improve the performance and reliability of the transmission. Moreover, the demand for increased data throughput as well as increased reliability and robustness of the transmission is of fundamental importance in any communication system as it is in PLC systems. In order to address these challenges and demands, the concept of multichannel PLC is studied and developed in this thesis. Multichannel PLC in this context is referred to the transmission of multiple information-carrying signals though the power line channel from one source to one destination. We study multiple scenarios of multichannel data transmission in order to cover the diverse situations and requirements of a PLC transmission. One of the multichannel scenarios discussed in this thesis is the multiple-input multiple-output (MIMO) transmission, in which multiple data signals are transmitted via spatially separated PLC channels. Another scenario discussed in this thesis is the cooperative transmission between the source and destination of a PLC system by means of intermediate relay nodes in the network. Finally, the multiband transmission by utilizing different parts of the available PLC spectrum is studied. The core objective of this thesis is to develop and study novel algorithms and models to address the challenges and problems introduced in different scenarios of the multichannel PLC. These problems can be categorized as the channel selection problem for MIMO transmission, the relay selection problem for the cooperative communication, and the spectrum assignment problem for the multiband transmission. The basis of all these problems is a decision making problem, which can greatly influence the performance of the system. To address these decision making problems, a powerful mathematical tool, namely the multi-armed bandit model, is used to model the different problems emerging in different scenarios of the multichannel PLC. This modeling approach is then used as a building block for developing machine learning algorithms in order to solve the aforementioned selection problems. Finally, novel machine learning algorithms are developed and their performances are analyzed and assessed. It is shown that the machine learning approach can considerably improve the performance of the multichannel PLC systems compared to the existing state of the art approaches, by enabling the selecting agent, i.e. the PLC transmitter, to perform intelligent decisions which improves the overall performance.Die Power-Line-Communication (PLC) ist die Technologie, bei der die Datensignale eines Kommunikationssystems über die Leiter einer Energieversorgungsinfrastruktur übertragen werden. Die einzigartige Umgebung der PLC-Kanäle stellt konkrete Herausforderungen und Anforderungen dar, die modelliert und analysiert werden müssen, um ein klares Verständnis des Kommunikationssystems zu erhalten und die Fähigkeit zur Verbesserung der Leistung und Zuverlässigkeit der Übertragung zu erreichen. Darüber hinaus ist in Kommunikationssystem die Nachfrage nach erhöhtem Datendurchsatz, sowie erhöhter Zuverlässigkeit und Robustheit der Übertragung von grundlegender Bedeutung. Um diesen Herausforderungen und Anforderungen gerecht zu werden, wird in dieser Arbeit das Konzept der Mehrkanal-PLC untersucht und weiterentwickelt. Die Mehrkanal-PLC wird in diesem Zusammenhang auf die Übertragung mehrerer informationstragenden Signale über den PLC-Kanal von einer Quelle zu einem Ziel bezogen. Wir untersuchen mehrere Szenarien der Mehrkanal-Datenübertragung, um die vielfältigen Anforderungen einer PLC-Übertragung zu behandeln. Eines der in dieser Arbeit besprochenen Mehrkanal-Szenarien ist die Multiple-Input-Multiple-Output-Übertragung (MIMO), bei der mehrere Datensignale über räumlich getrennte PLC-Kanäle übertragen werden. Ein weiteres Szenario, das in dieser Arbeit diskutiert wird, ist die kooperative Übertragung zwischen der Quelle und dem Ziel eines PLC-Systems mittels Zwischenrelais als Knoten im Netzwerk. Schließlich wird die Multiband-Übertragung unter Verwendung unterschiedlicher Teile des verfügbaren PLC-Spektrums untersucht. Das Kernziel dieser Arbeit ist es, neuartige Algorithmen und Modelle zu entwickeln und zu untersuchen, um die Herausforderungen und Probleme zu lösen, die in verschiedenen Szenarien der Mehrkanal-PLC existieren. Diese Probleme sind als das Kanalauswahlproblem für die MIMO-Übertragung, das Relaiauswahlproblem für die kooperative Kommunikation und das Spektrum-Zuweisungsproblem für die Multibandübertragung kategorisiert werden. Die Basis all dieser Probleme ist ein Entscheidungsproblem, das die Leistungsfähigkeit des Systems stark beeinflussen kann. Um diese Probleme lösen zu können, wird ein mathematisches Werkzeug, nämlich das mehrarmige Bandit-Modell, verwendet, um die verschiedenen Probleme zu modellieren, die sich in verschiedenen Szenarien der Mehrkanal-PLC ergeben. Dieser Modellierungsansatz wird als Baustein für die Entwicklung von maschinellen Lernalgorithmen verwendet, um die zuvor beschriebenen Auswahlprobleme zu lösen. Schließlich werden neuartige maschinelle Lernalgorithmen entwickelt und ihre Leistungen analysiert sowie bewertet. Es zeigt sich, dass der maschinelle Lernansatz die Leistungsfähigkeit der Mehrkanal-PLC-Systeme im Vergleich zu den bestehenden Ans\"atzen des Standes der Technik erheblich verbessern kann, indem es dem Auswahlagenten, d.h. dem PLC-Sender, ermöglicht, intelligente Entscheidungen durchzuführen, die die Gesamtleistung verbessern

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    corecore