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Abstract

Power line communication (PLC) is the technology in which the data signals of a
communication system are transmitted through the conductors of a power delivery
infrastructure. The unique environment of the PLC channels create specific chal-
lenges and requirements, which need to be modeled and analyzed properly in order
to obtain a clear understanding of the communication system as well as attaining
the ability to further improve the performance and reliability of the transmission.
Moreover, the demand for increased data throughput as well as increased reliability
and robustness of the transmission is of fundamental importance in any commu-
nication system as it is in PLC systems. In order to address these challenges and
demands, the concept of multichannel PLC is studied and developed in this the-
sis. Multichannel PLC in this context is referred to the transmission of multiple
information-carrying signals though the power line channel from one source to one
destination.

We study multiple scenarios of multichannel data transmission in order to cover the
diverse situations and requirements of a PLC transmission. One of the multichan-
nel scenarios discussed in this thesis is the multiple-input multiple-output (MIMO)
transmission, in which multiple data signals are transmitted via spatially separated
PLC channels. Another scenario discussed in this thesis is the cooperative transmis-
sion between the source and destination of a PLC system by means of intermediate
relay nodes in the network. Finally, the multiband transmission by utilizing differ-
ent parts of the available PLC spectrum is studied. The core objective of this thesis
is to develop and study novel algorithms and models to address the challenges and
problems introduced in different scenarios of the multichannel PLC. These prob-
lems can be categorized as the channel selection problem for MIMO transmission,
the relay selection problem for the cooperative communication, and the spectrum
assignment problem for the multiband transmission. The basis of all these problems
is a decision making problem, which can greatly influence the performance of the
system.

To address these decision making problems, a powerful mathematical tool, namely
the multi-armed bandit model, is used to model the different problems emerging in
different scenarios of the multichannel PLC. This modeling approach is then used
as a building block for developing machine learning algorithms in order to solve
the aforementioned selection problems. Finally, novel machine learning algorithms
are developed and their performances are analyzed and assessed. It is shown that
the machine learning approach can considerably improve the performance of the
multichannel PLC systems compared to the existing state of the art approaches,
by enabling the selecting agent, i.e. the PLC transmitter, to perform intelligent
decisions which improves the overall performance.
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Zusammenfassung

Die Power-Line-Communication (PLC) ist die Technologie, bei der die Datensignale
eines Kommunikationssystems über die Leiter einer Energieversorgungsinfrastruk-
tur übertragen werden. Die einzigartige Umgebung der PLC-Kanäle stellt konkrete
Herausforderungen und Anforderungen dar, die modelliert und analysiert werden
müssen, um ein klares Verständnis des Kommunikationssystems zu erhalten und die
Fähigkeit zur Verbesserung der Leistung und Zuverlässigkeit der Übertragung zu er-
reichen. Darüber hinaus ist in Kommunikationssystem die Nachfrage nach erhöhtem
Datendurchsatz, sowie erhöhter Zuverlässigkeit und Robustheit der Übertragung
von grundlegender Bedeutung. Um diesen Herausforderungen und Anforderungen
gerecht zu werden, wird in dieser Arbeit das Konzept der Mehrkanal-PLC unter-
sucht und weiterentwickelt. Die Mehrkanal-PLC wird in diesem Zusammenhang
auf die Übertragung mehrerer informationstragenden Signale über den PLC-Kanal
von einer Quelle zu einem Ziel bezogen.

Wir untersuchen mehrere Szenarien der Mehrkanal-Datenübertragung, um die vielfälti-
gen Anforderungen einer PLC-Übertragung zu behandeln. Eines der in dieser
Arbeit besprochenen Mehrkanal-Szenarien ist die Multiple-Input-Multiple-Output-
Übertragung (MIMO), bei der mehrere Datensignale über räumlich getrennte PLC-
Kanäle übertragen werden. Ein weiteres Szenario, das in dieser Arbeit diskutiert
wird, ist die kooperative Übertragung zwischen der Quelle und dem Ziel eines
PLC-Systems mittels Zwischenrelais als Knoten im Netzwerk. Schließlich wird die
Multiband-Übertragung unter Verwendung unterschiedlicher Teile des verfügbaren
PLC-Spektrums untersucht. Das Kernziel dieser Arbeit ist es, neuartige Algorith-
men und Modelle zu entwickeln und zu untersuchen, um die Herausforderungen und
Probleme zu lösen, die in verschiedenen Szenarien der Mehrkanal-PLC existieren.
Diese Probleme sind als das Kanalauswahlproblem für die MIMO-Übertragung,
das Relaiauswahlproblem für die kooperative Kommunikation und das Spektrum-
Zuweisungsproblem für die Multibandübertragung kategorisiert werden. Die Basis
all dieser Probleme ist ein Entscheidungsproblem, das die Leistungsfähigkeit des
Systems stark beeinflussen kann.

Um diese Probleme lösen zu können, wird ein mathematisches Werkzeug, nämlich
das mehrarmige Bandit-Modell, verwendet, um die verschiedenen Probleme zu mod-
ellieren, die sich in verschiedenen Szenarien der Mehrkanal-PLC ergeben. Dieser
Modellierungsansatz wird als Baustein für die Entwicklung von maschinellen Ler-
nalgorithmen verwendet, um die zuvor beschriebenen Auswahlprobleme zu lösen.
Schließlich werden neuartige maschinelle Lernalgorithmen entwickelt und ihre Leis-
tungen analysiert sowie bewertet. Es zeigt sich, dass der maschinelle Lernansatz
die Leistungsfähigkeit der Mehrkanal-PLC-Systeme im Vergleich zu den bestehen-
den Ansätzen des Standes der Technik erheblich verbessern kann, indem es dem
Auswahlagenten, d.h. dem PLC-Sender, ermöglicht, intelligente Entscheidungen
durchzuführen, die die Gesamtleistung verbessern.
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Chapter 1

Introduction

1.1 State of the Art

The use of electrical power delivery wires to provide data transmission capabilities
to power delivery networks, is known as power line communication (PLC). In a
PLC system, the data signal is transmitted as a differential voltage signal between
any two conductors of the power line infrastructure. This differential signal prop-
agates through the power lines from the data source to the destination, providing
a PLC communication channel which its features depend on the transmission line
characteristics as well as the connected loads to the power line network.

Figure 1.1 depicts an example of a power line network with three wires denoted as
Line (L), Neutral (N), and Protective Earth (PE). In this figure, three differential
voltage signals, ∆vi,in, i ∈ {1, 2, 3}, are shown which indicate the signals which are
produced between phase, neutral, and protective earth wires at the transmitter.
These signals travel through the power line network and can be detected at the
receiver as ∆vj,out, j ∈ {1, 2, 3} signals. However, in a real PLC system, due to the
Kirchhoff’s law, one of the signals are always dependent to the other two signals
and hence cannot contain information. The transmitted signal is subject to channel
fading, noise, and interference as well as frequency and phase offsets. The main
purpose of a PLC system design is to combat these obstacles and secure a reliable
communication.

Power Line

Network

Δv1,in

Δv2,in
Δv3,in

L

N

PE

L

N

PE

Δv
1,out

Δv2,out
Δv3,out

Figure 1.1: An example of PLC input and output voltage signals.
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The concept of PLC is almost as old as the power delivery networks themselves.
However, the amount of research in this area was relatively small until the late
1990s, when the interest in PLC research grew exponentially ever since. The wide
range of applications in which PLC can prove useful and the number of associated
challenges, resulted in gathering a substantial attention from the research commu-
nity as well as industry in the past two decades. The PLC usage covers a wide range
of applications such as in-home PLC in association with smart homes, communi-
cation in smart grids, communication in transport systems for instance in-vehicle
communication, etc. The main advantages of using PLC for the aforementioned
applications are twofold. Firstly, the cost of installation and infrastructures are
considerably lower than other means of communication. The reason for that is the
existing wires and power delivery infrastructures in most of the places where other
means of communication are not available. Secondly, PLC can facilitate communi-
cation between some nodes in a network which are otherwise not connected to each
other for data transmission. For instance, PLC can make communication through
certain obstacles possible whereas other means of communication are proved incom-
petent.

Since power lines were not originally designed for data transmission, the PLC chan-
nel is proved to be a harsh environment for communication. The PLC channel is
subject to frequency-selective fading, background noise, time-variant synchronous
as well as asynchronous impulsive noise, and narrowband interference from other
signals operating in the same frequency range as the transmitted signal. One of the
major challenges in the PLC research is the appropriate modeling of the channel
fading and noise of the PLC channel. The existing models for other communication
media (for instance wireless communication) have proven inadequate for the PLC
channel due to the unique characteristics of the PLC channel. Therefore, chan-
nel and noise modeling for PLC has attracted the attention of researchers and a
few attempts have been made in this regard. Generally, the channel modeling ap-
proaches in PLC applications are either based on the transmission line theory or
the multipath nature of the signal propagation in transmission lines.

MCU
Protocol

Networking

Application

Modem

PHY

MAC

Signal Processing

DAC/ADC

Filtering

Amplification

Coupling Circuit

Capacitive/Inductive

Protection

Isolation

Power Supply

Power Line

AC/DC

Figure 1.2: Architecture of a PLC transceiver.

Furthermore, the existence of multiple conductor in power line infrastructure gave
rise to the idea of multiple-input multiple-output (MIMO) transmission in PLC.
Today, different MIMO processing options, with the purpose of increasing data rates
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and communication reliability, are in operation in major wireless cellular systems as
well as wireless local area networks. This has been the motivation for the research
in MIMO PLC with hopes of increased data rates (in case of spatial multiplexing) or
improved transmission reliability (in case of spatial diversity and space-time coding).
However, utilization of MIMO signal processing concepts in PLC applications is not
without its own challenges. Namely, the existence of power line conductors in the
vicinity of each other throughout the length of the PLC channel, results in a spatial
correlation between the MIMO channels which may degrade the performance of
the transmission. Moreover, other uses of multiple channel transmission such as
cooperative transmission and multiband transmission has been proposed in the
PLC literature. In all of these schemes the main focus of the system design is to
increase the reliability and performance of the communication.

The structure of a PLC transceiver including all the higher layers of communication
is illustrated in Figure 1.2 [1]. The master control unit (MCU) consists of the
protocol, networking and the application layers, whereas the PLC modem consists of
the physical and MAC layers. After performing appropriate signal processing, such
as amplification, filtering, and digital to analog (or analog to digital) conversion,
a coupling circuit is used in order to couple the data signals into the power line
conductors.

1.2 Scope and Contributions of the Thesis

In this thesis, the multichannel power line communication is studied and further
contributions has been made to this field. By multichannel PLC, it is implied that
the communication link between the data source and destination consists of more
than one unique communication channel. This is normally performed in order to
introduce some notion of diversity into the communication system and through this
introduced diversity, the performance and reliability of the communication link can
be improved. We focus on three multichannel PLC scheme, which their descriptions
follows.

– MIMO transmission: data signal as multiple data streams are transmitted
simultaneously through the power line medium, constructing multiple spa-
tially separated MIMO channels, which either results in higher data rates or
increases the reliability and performance of the transmission.

– Multihop transmission: the data is transmitted from source to the destination
via intermediate relay nodes, constructing multiple hops of the transmission
each with its own channel properties. This relay-aided transmission provides
cooperative diversity, which can in turn, increase the reliability of the channel
as well as enabling the communication between long distances.

– Multiband transmission: separate parts of the spectrum are allocated for data
transmission. This transmission can be simultaneous transmission in different
frequency bands or use different frequency bands in different times. This may
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help the communication system to avoid deep fades, narrowband interferences,
tone masks, etc., which can result in increased reliability and performance.

Moreover, in order to introduce selection diversity to MIMO PLC, the problem of
channel selection is studied. Similarly, in order to introduce cooperative diversity
to multihop PLC transmission, the problem of relay selection is studied. Finally,
in order to increase the spectral efficiency of the transmission, the problem of spec-
trum assignment is studied. In all of these problems, a decision has to be made at
the PLC transmitter in form of a certain selection. The decision making process at
the transmitter requires appropriate information about the PLC channels in order
to optimize the decision. However, frequency-selective and time-variant nature of
the PLC channels makes it a challenging task for the PLC transmitter to obtain
channel state information for all communication links, at all time, and all frequen-
cies. Therefore, it is a fair assumption to consider the channel state information
at PLC transmitter unknown. We proposed a class of reinforcement learning algo-
rithms which provides a strong decision making tool to the PLC transmitter. The
selection policies based on these algorithms can be applied to the problems under
study which enables the PLC transmitter to perform proper decisions without any
prior knowledge of the channel.

Multichannel PLC

Figure 1.3: Scope of the thesis.

A visualization of the topics covered in this thesis is depicted in Figure 1.3. A list
of the contributions to the multichannel PLC research which has been presented in
this thesis follows.

– The MIMO PLC system is analyzed.

– The MIMO PLC channel capacity is derived for different levels of information
availability at the transmitter and the receiver.

– The problem of channel selection in MIMO PLC is analyzed.

– The problem of relay selection in cooperative PLC is analyzed.

– The problem of spectrum assignment in multiband PLC is analyzed.

– The above-mentioned problems are modeled by multi-armed bandit problem for-
mulation.
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– Reinforcement learning approach is introduced to PLC applications in order to
solve the above-mentioned problems.

– Novel reinforcement learning algorithms have been designed in order to incorpo-
rate the PLC characteristics and improve the performance of the seminal algo-
rithms.

1.3 List of Publications

The content of this thesis has been published in high quality international academic
papers in the form of journal papers and conference papers. The following is a list
of these publications with a reference to the part of thesis where their contents have
been discussed.

1.3.1 Journal Papers

[J2] Babak Nikfar, Gerd Bumiller, A. J. Han Vinck, Dynamic Spectrum Assignment
for Narrowband Power Line Communication, in preparation for submission.
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[J1] Babak Nikfar, A. J. Han Vinck, Relay Selection in Cooperative Power Line
Communication: A Multi-Armed Bandit Approach, to appear in IEEE/KICS
Journal of Communications and Networks (accepted on 29.07.2016).
The contents of this paper can be found in Chapters 4 and 5.

1.3.2 Conference Papers

[C8] B. Nikfar and G. Bumiller, Real-time Synchronization and Multiband Detection
for Narrowband Power Line Communication, IEEE International Symposium on
Power Line Communications and Its Applications (ISPLC), Madrid, Spain, April
2017.
Some of the contents of this paper can be found in Chapter 4.
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PLC with Mutual Coupling, Workshop on Power Line Communication (WSPLC),
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[C3] B. Nikfar, T. Akbudak, and A. J. H. Vinck, MIMO Capacity of Class A Impul-
sive Noise Channel for Different Levels of Information Availability at Transmitter,
IEEE International Symposium on Power Line Communications and Its Applica-
tions (ISPLC), Glasgow, Scotland, April 2014.
The contents of this paper can be found in Chapter 3.
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1.3.3 Copyright Information

Parts of this thesis have already been published as journal articles and in conference
and workshop proceedings as listed in the publication list. These parts, which are,
up to minor modifications, identical with the corresponding scientific publication,
are c© 2012-2017 IEEE.

1.4 The Structure of the Thesis

The content of this thesis is structured in six chapters. The contributions and
the simulation results are presented throughout each chapter. An overview of the
contents as well as a description of the main focus, challenges, and contributions of
each of the rest of the chapters chapters follows.

– Chapter 2: Power Line Communication System Model

In this chapter an overview of the PLC system model is presented. The system
model presented in this chapter is used in later chapters as the ground model
of the PLC system used in numerical simulations. In this chapter, the PLC
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standardizations and regulations for both narrowband and broadband PLC are
summarized and referenced. Moreover, the common PLC channel models are
presented and discussed. Channel noise, as a significant component of the PLC
channels, has been presented and for narrowband interference, background noise,
as well as impulsive noise. Finally, the structure of the PLC transmitter and
receiver is presented and discussed in detail. The multicarrier transmission tech-
nique of orthogonal frequency division multiplexing (OFDM), which has been
accepted for PLC applications is described in this chapter as well.

– Chapter 3: MIMO PLC

In this chapter, a special multichannel PLC transmission scheme, namely the
multiple-input multiple-output (MIMO) PLC transmission scheme is introduced
and discussed. The utilization of MIMO transmission in PLC applications re-
quires specific coupling methods, which are described in this chapter. Subse-
quently, the MIMO system model and the MIMO channel description, as well as
the two most common MIMO transmission techniques, namely the spatial mul-
tiplexing and the spatial diversity, are presented. Spatial correlation in MIMO
PLC systems, as a consequence of the natural characteristics of the power de-
livery structures, and its effect on the performance of the MIMO transmission
ate described as well. Finally, the Channel capacity of MIMO PLC system in all
cases of the availability of the channel state information at the PLC transmitter
and receiver are derived in this chapter.

– Chapter 4: Resource Allocation in Multichannel PLC

In this chapter, the problem of resource allocation in multichannel PLC is dis-
cussed. More specifically, three forms of multichannel transmission is considered:
first the MIMO transmission in multiple spatial PLC channels, second the coop-
erative transmission in multiple PLC channels constructed by multihop relaying,
and finally the multiband transmission in separate frequency bands of the PLC
spectrum. Moreover, for each of the aforementioned multichannel PLC scenarios
a selection problem is introduced and discussed: channel selection problem in
order to acquire selection diversity for MIMO PLC transmission, relay selection
problem in order to acquire cooperative diversity for multihop transmission in
PLC, and finally the spectrum assignment problem in order to acquire perfor-
mance improvements in multiband PLC. Finally, all these selection problems are
formulated as a multi-armed bandit problem to be used in the next chapter as
the building blocks of the proposed reinforcement learning algorithms.

– Chapter 5: Reinforcement Learning Applications in Multichannel PLC

In this chapter, reinforcement learning algorithms are introduced in order to solve
the multi-armed bandit problems formulated in the previous chapters for the se-
lection problems described before. More specifically, the upper-confidence bound
algorithms, probability matching techniques, and greedy algorithms as the most
common reinforcement learning algorithms are described and analyzed. Moreover,
four new algorithms based on the existing algorithms are proposed which exploits
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the PLC characteristics in order to improve the existing algorithms. Simulation
results which are presented throughout this chapter demonstrates the improve-
ment achieved by the proposed algorithms.

– Chapter 6: Conclusion

Finally, this chapter concludes the thesis.
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Chapter 2

System Model

2.1 Chapter Overview

The first step to understand and model any communication system, including power
line communication systems, is through modeling and characterization of the chan-
nel. There is a considerable body of work in the literature for PLC channel and noise
modeling, for instance in [2]–[6]. In general, PLC channels are frequency-selective,
multipath propagating channels with cyclic short-term variations and abrupt long-
term variations [7]. The channel noise in PLC systems, although additive, is a
harsh noise which not only depends on the frequency and the time of operation,
but also depends on the load impedance of the power line network. The PLC noise
is normally divided into three main categories, namely colored background noise,
impulsive noise (both synchronous and asynchronous to the line frequency), and
narrowband interference [8], which will be discussed later on this chapter. The
frequency in which the PLC systems operate can be divided into different ranges,
which has been standardized by different standardization institutes as well as indus-
try alliances. Figure 2.1 demonstrates the most common usable frequency ranges
of PLC in practice. Broadband PLC utilizes the frequency band between 1.8 MHz
up to 100 MHz, mediumband PLC is a new concept which operates in frequencies
between 500 kHz and 1.8 Mhz, narrowband PLC utilizes the frequency ranges be-
tween 3 KHz and 500 kHz, and ultra-narrowband PLC utilizes the frequency ranges
between 125 Hz and 3 kHz.

broadband

100 MHz frequency1.8 MHz

narrowband

500 kHz3 kHz125 Hz

Figure 2.1: Ultra-narrowband, narrowband and broadband fre-
quencies of PLC.
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In this chapter, the OFDM-based PLC system model which will be used in later
chapters, is presented. The PLC system model consists of the frequency specifica-
tions for OFDM transmission, channel and noise models, as well as the transmitter
and receiver design. The models and system characteristics which are presented in
this chapter make the basis of the contributions and simulations presented in the
next chapters. The rest of the chapter is structured as follows. In Section 2.2, the
spectral specifications as well as a brief review of the standardization of PLC sys-
tems, are presented. A review of the existing PLC channel modeling approaches as
well as two of the most common models, namely multipath PLC channel model and
PLC channel model based on the transmission line theory, are presented in Section
2.3. The noise in PLC channels and the mathematical models through which the
noise is characterized will be discussed in Section 2.4. Subsequently, the transmit-
ter and receiver structure of a PLC system based on orthogonal frequency division
multiplexing (OFDM) transmission is presented in Section 2.5. Finally, Section 2.6
concludes the chapter.

2.2 PLC Regulations and Frequency Specifications

2.2.1 Regulation Activities

The growing number of PLC applications in the past few decades, caused the emer-
gence of a number of frequency and system specifications. The need for unified
specifications which leads to a harmonic cooperation of different PLC devices, was
the starting point of the PLC standardization by standards developing organiza-
tions (SDOs). These standards have adopted many of the previously existing spec-
ifications and incorporated them into new and improved standards [9]. The main
concern of a PLC standardization effort is to provide the coexistence of the PLC
system with other communication systems operating in the same frequency range.
Furthermore, the regulations ought to limit the strength of the signals which are
coupled into the power lines. Although, even with the limited signal power, electro-
magnetic radiation occur in the PLC systems which needs to be addressed properly.
However, since the ratio of the wavelength of the PLC signal to the length of the
power lines is considerably shorter in broadband PLC compared to that of the
narrowband PLC, the electromagnetic radiation is more important in broadband
PLC applications. Therefore, the regulation constraints are different for broadband
and narrowband PLC applications. In the following, a brief summary of the ex-
isting standardization and regulations for both narrowband and broadband PLC is
presented.
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Year Standardization Activity

2008 PRIME specifications released

2009 PRIME Alliance established

2009 G3-PLC specifications released

2010 ITU G.hnem start of project

2010 IEEE 1901.2 authorization of project

2010 IEEE 1901.2 first draft released

2011 G3-PLC Alliance established

2011 ITU-T G.9955 released (G3-PLC and PRIME as annexes)

2012 ITU-T G.9902 (G.hnem), G.9903 (G3-PLC), G.9904 (PRIME) released

2013 IEEE 1901.2 released

Table 2.1: Time-line for the development of narrowband PLC stan-
dardization [10], [11].

Year Standardization Activity

2001 HomePlug 1.0 released

2005 IEEE 1901 authorization of project

2005 HomePLug AV released

2006 ITU G.hn start of project

2008 ITU-T G.9960 consented

2010 HomePlug Green PHY released

2010 ITU-T G.9960 released

2010 IEEE 1901 released

2011 ITU-T G.9963 released

2012 HomePlug AV2 released

Table 2.2: Time-line for the development of broadband PLC stan-
dardization [12]–[14].

The standardization efforts in PLC applications have been achieved by a few in-
dustry alliances as well as standardization institutes. Among main institutes and
alliances, one can name HomePlug Powerline Alliance, Powerline Related Intelligent
Metering Evolution (PRIME), G3-PLC Alliance, International Telecommunication
Union, Telecommunication Standardization Sector (ITU-T), and Institute of Elec-
trical and Electronics Engineers Standards Association (IEEE-SA). The most com-
mon use of the PLC occurs in narrobwnd and broadband PLC regions. The medi-
umband of power line communication has recently gained interest after switching
off of the AM radio in some parts of the world. The IEEE P1901.1 Working Group
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Figure 2.2: Frequency regulation of narrowband PLC.

has been established and held their first meeting in China in 2016. However, in this
thesis we focus our work on narrowband and broadband PLC. Table 2.1 presents a
brief overview of the time-line of the standardization process for narrowband PLC
and Table 2.2 presents a brief overview of the time-line of the standardization pro-
cess for broadband PLC, respectively. The regulations and standardizations of the
PLC applications are aptly summarized in [15].

2.2.2 Narrowband Frequencies

One of the major markets for PLC equipments is Europe. European harmonized
standards have been developed by recognized European SDOs. One of such stan-
dards for narrowband PLC is the European Norm (EN). EN 50065, which was first
published by CENELEC1 in 1992 delivers specifications for narrowband PLC sys-
tems for home and industry automation and for utility use such as smart metering
[16]. This standard issues four distinct frequency bands which are referred to as
CENELEC-A (3 – 95 kHz), CENELEC-B (95 – 125 kHz), CENELEC-C (125 – 140
kHz), and CENELEC-D (140 – 148.5 kHz). Moreover, the regulations mandate
certain utilizations by these frequency bands. For instance, CENELEC-A band is
reserved for power utilities, whereas CENELEC-B–D bands can only be used by
consumer installations. There is no harmonized standard for the frequencies be-
tween 150 kHz and 500 kHz of the narrowband PLC spectrum, however the IEEE
1901.2 standard provides guidelines for using these frequencies in Europe as well
[11], which is referred to as the FCC-above-CENELC frequency band (154.6875 –
487.5 kHz). In the US, PLC frequency bands are regulated through the FCC2. The
FCC regulations allow the use of PLC applications in the frequency range of 9–490
kHz. Moreover, in Japan, the regulatory restrictions of ARIB3, permits the use of
PLC applications in the frequency range of 10–450 kHz. Figure 2.2 summarizes the
frequency regulations of narrowband PLC.

1European committee for electrotechnical standardization.
2Federal communications commission.
3Association of radio industries and businesses.
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2.2.3 Broadband Frequencies

The electromagnetic radiation is a bigger concern for broadband PLC, because of
the higher frequencies. Therefore, the main concern of broadband regulations is to
limit the electromagnetic emissions in order to prevent interferences. In Europe, the
EN 50561-1 [17], has been developed to apply to in-home PLC systems operating in
the 1.6–30 MHz frequency range. These regulations differentiate between a power
port (only for power supply), a telecommunication port (only for communication
signals), and a PLC port (for power supply as well as communication). Furthermore,
power adaptation and spectrum notching is considered in order to avoid harmful
interference to radio services. Further standards, namely EN 50561-2 for access
networks and EN 50561-3 for frequencies above 30 MHz are under development. In
the US, the 47 CFR §15 regulates the broadband PLC systems for the frequency
band of 1.8–80 MHz. As is EN 50561-1, power adaptation and notching is intended
for this frequency band.

2.3 PLC Channel Modeling

PLC channels are characterized as frequency-selective and time-variant with mul-
tipath propagation of the transmitted signal via transmission line conductors. The
multipath fading feature of the PLC channel is due to inhomogeneities in the trans-
mission line and the connected load impedances in the PLC network. These incon-
sistencies cause the signal to reflect and therefore multiple versions of the trans-
mitted signal can be received at the receiver via multiple paths. In general, the
power profile of the received signal can be obtained by convolving the power profile
of the transmitted signal with the impulse response of the channel. Convolution
in time domain is equivalent to multiplication in the frequency domain. Therefore,
the time-variant transmitted signal X(f, τ) represented in frequency domain, after
propagation through the channel becomes

Y (f, τ) = H(f, τ)X(f, τ) +N(f, τ), (2.1)

where H(f, τ) is the channel response , and N(f, τ) is the additive noise term. τ
represents the dependency to time. The purpose of the channel modeling is to
model the channel response H(f, τ) to correspond to the real scenarios. In this
section, we briefly describe the different channel modeling approaches and discuss
the most common channel models available in the literature, which are also used in
later chapters.
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Figure 2.3: PLC channel modeling approaches and two of the most
common channel models.

Physical Physical Parametric Parametric
Feature Deterministic Stochastic Deterministic Stochastic

Modeling electromag. electromag. playback of
statistical fit
to

principle theory theory and experimental experimental
topology measurement measurement

Measurement none none large large
requirements data base data base

Topology detailed detailed none none
knowledge

Table 2.3: Comparison of PLC Channel Modeling Approaches.

2.3.1 Channel Modeling Approaches

The channel modeling approaches available in the PLC literature, can be generally
divided into two main categories. The first category is the physical or bottom-up ap-
proach, which is based on the electrical properties of the transmission line and elec-
tromagnetic theory of signal propagation in transmission lines. For this approach
the knowledge of the topology of PLC system is usually needed. The other cate-
gory is the parametric or top-down approach in channel modeling, which is mainly
based on the channel characteristics and impulse responses acquired through mea-
surements. Both of these approaches can be further divided into two subcategories
of deterministic and stochastic approaches, as illustrated in Figure 2.3.

The physical deterministic approach uses the transmission line theory to establish
the channel characteristics via ABCD-parameters or S-parameters [18]. Whereas,
in physical stochastic models, the channel transfer function is derived from the
network topology with stochastic generation of realistic electrical elements, e.g. in
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[19], [20]. On the other hand, in parametric deterministic channel modeling, exper-
imental measurements are used to characterize the channel. This results in models
which are closer to the realistic scenarios, however, it needs a large data base to be
able to model the channel. Parametric stochastic models characterize the impulse
response of the channel via the collected data. PLC channel models developed in
[2] and [3] are well-known examples of this approach. Table 2.3 summarizes the dif-
ferent channel modeling approaches and their features, such as modeling principles,
measurement requirements, and the required level of topology knowledge [21].

In the following, we present two of the most well-known channel models in PLC lit-
erature, which we use later in this thesis. Firstly, the multipath PLC channel model
which is an attempt to model the PLC channel in a parametric stochastic manner,
which provides a reasonable model of the real PLC channel, and is used widely
among the researchers. The second model is the ABCD-parameters of the chan-
nel based on the transmission line theory, which provides a physical deterministic
approach of channel modeling.

2.3.2 The Multipath Model

The concept of multipath signal propagation in a PLC channel was first introduced
in [3]. It has been shown in [18] that wave propagation on transmission lines is very
similar to the uniform plane electromagnetic waves. this means that at any point
in the space, the electric and the magnetic field intensity vectors lie in a plane, and
the planes at any two different points are parallel to each other. Furthermore, the
electric and magnetic field vectors are perpendicular to each other and both are
perpendicular to the direction of wave propagation at any point in space. Such a
field structure is known as transverse electromagnetic (TEM) field structure. How-
ever, inhomogeneities in the dielectric surrounding the transmission lines, results in
a quasi-TEM mode of propagation. Nevertheless, the results are almost the same
and the differences are negligible [18].

We assume an indoor power line communication system with multiple branches
in the power lines from the PLC transmitter to the PLC receiver. Line junc-
tions (branches) and unmatched terminals, including the open outlets in an indoor
environment, are considered as line discontinuities in the system. On a line dis-
continuity, the propagated signal is partially reflected toward the transmitter and
partially transmitted over the discontinuity. Partial reflection and transmission
can be modeled by reflection coefficient ρ(f), and transmission coefficient Γ(f),
respectively. It can be shown, that these coefficients depend on the frequency, on
which the signal is propagating. Figure 2.4 illustrates the signal propagation in a
PLC system with one branch. All the reflected and transmitted signals, generate
multiple versions of the originally transmitted signal with different attenuations
and interferences. Thus, the receiver collects different versions of the transmitted
signal, each one corresponding to its own propagated path. The behavior of the
electromagnetic propagated wave along the transmission line can be characterized
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Figure 2.4: Multipath signal propagation in a PLC system with
one branch.

by the complex-valued propagation constant γ(f), which is defined as

γ(f) = α(f) + jβ(f), (2.2)

where α(f) and β(f) are the frequency dependent attenuation constant and phase
constant, respectively. The attenuation constant α(f, τ) in the multipath model is
denoted by αMP (f) and it is defined as

αMP (f) = a0 + a1f
K , (2.3)

where a0, a1, and K are the attenuation parameters of the transmission line and
depend on the physical characteristics of the line and can be evaluated with exten-
sive measurements. The phase constant β(f) in the multipath model is denoted by
βMP (f) and it is defined as

βMP (f) =
2πf

ν
, (2.4)

where ν is the phase velocity. Therefore, the propagation constant in the multipath
model can be expressed as

γMP (f) = αMP (f) + jβMP (f)

= a0 + a1f
K + j

2πf

ν
. (2.5)

As the signal propagates through the power line conductors, at each line disconti-
nuity, the reflected and the transmitted signal create new paths; therefore, multiple
copies of the transmitted signal travel in multiple paths to the receiver. Therefore,
based on (2.1) the received signal at the receiver can be modeled as [3]

Y (f, τ) = HMP (f, τ)X(f, τ) +N(f, τ)

=

Np∑

i=1

(
Ri∏

m=1

ρm(f)

Ti∏

n=1

τn(f)

)

e−γMP (f)ℓiX(f, τ) +N(f, τ), (2.6)

where Np is the number of paths that the transmitted signal is traveling before
reaching the receiver, Ri and Ti are the number of reflection and transmission coef-
ficients in the ith path respectively, and ℓi is the length of the ith path. Therefore,
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the frequency response of the multipath model can be expressed as [3]

HMP (f, τ) =

Np∑

i=1

(
Ri∏

m=1

ρm(f)

Ti∏

n=1

τn(f)

)

e−γMP (f)ℓi . (2.7)

In order to clarify the representation and divide the attenuation and delaying parts
of the HMP , (2.7) can be re-written as

HMP (f, τ) =

Np∑

i=1

gi
︸︷︷︸

weighting factor

· e−(a0+a1fK)ℓi
︸ ︷︷ ︸

attenuation factor

· e−j2πf(ℓi/ν)
︸ ︷︷ ︸

delay portion

(2.8)

where gi is the product of the reflection and transmission coefficients in and is known
as the path gain, and is expressed as

gi =

Ri∏

m=1

ρm(f)

Ti∏

n=1

τn(f). (2.9)

Since the statistical distribution of the product of a large number of uniform random
variables approaches log-normality, we can model the path gain and consequently
the impulse response of the channel as a complex log-normal distributed random
variable [7]. The statistical properties of the channel gains are however time-variant.
In particular, the average channel gains vary during transmission, which is a con-
sequence of varying loads to the power line network.

2.3.3 The Transmission Line Model

Another well-known and heavily used model for PLC channels is the bottom-up de-
terministic approach based on the transmission line (TL) theory model. In indoor
environments, the conductors which carry the power as well as the data signals are
approximated to be ideal conductors and the dielectrics which contain them are
approximated as uniform [18]. Therefore, the transverse electromagnetic (TEM)
or quasi-TEM mode assumption is valid, and thus, the electrical quantities along
the power line can be considered as scalars. The transmission line theory and the
PLC channel model based on TL theory is described in [5], [6] among other re-
sources. We briefly demonstrate the ABCD-parameter channel model based on the
TL theory. In this model the power delivery cable is considered to be a series of in-
finitesimal parts which are connected to each other. Each part consists of resistance
of the power delivery cables, conductance between different cables, capacitance be-
tween different cables, and finally self-inductance of each cable as well as mutual
inductance between different cables. The resistance, conductance, capacitance and
inductance parameters are called the primary parameters of the cable. These pri-
mary parameters can be expressed for each of the infinitesimal sections of the cable,
as a per unit length (p.u.l) parameter.
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L

Figure 2.5: Equivalent p.u.l. representation of a three conductor
PLC channel.

Figure 2.5 illustrates the equivalent representation of the p.u.l. parameters of the
PLC channel. In this figure, L, PE, and N represent the Line, Protective Earth
and Neutral cables of the power line system, respectively. V1(x) and V2(x) are
the differential voltages between the conductors which contain the data signals and
the reference conductor, whereas i1(x) and i2(x) are the currents. As mentioned
before, the Kirchhoff’s law prohibits the existence of more than two independent
data signals when three conductors are available. The neutral conductor in the
picture is considered to be the reference conductor. This has been chosen arbitrarily,
and any other conductor could play the role of the reference conductor. r, g, c,
and l represent the p.u.l. resistance, conductance, capacitance, and inductance,
respectively, for each conductor.

The resistance, conductance, capacitance, and inductance matrices of the whole
PLC channel can be composed from the p.u.l elements as

R =





r0 0 0
0 r1 0
0 0 r2



 G =





0 g1 g2
g1 0 gm
g2 gm 0





C =





0 c1 c2
c1 0 cm
c2 cm 0



 L =





0 0 0
0 l1 lm
0 lm l2



 (2.10)

where each element of the matrix is the self or mutual parameter between different
conductors. Indexes are 0 for reference conductor, 1 and 2 for the two data carrying
conductors, and m for the mutual parameter between the conductors. From the
cable parameter matrices, two important characteristics of the PLC channel can
be derived, namely the characteristic impedance of the line and the propagation
constant.

The characteristic impedance , Z0, of a uniform transmission line is the ratio of the
amplitudes of voltage and current of a single wave propagating along the line; and
can be calculated as

Z0 =

√

R+ j2πfL

G+ j2πfC
. (2.11)
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The propagation constant, γ of the (2.2), which describes the behavior of the elec-
tromagnetic wave along a transmission line, can be calculated as

γTL =
√

(R+ j2πfL)(G+ j2πfC). (2.12)

We use the above-mentioned parameters of the transmission line to derive a PLC
channel model, which is based on the ABCD-parameters of the transmission line.
We are able to model each two nodes of the PLC system with input and output
voltages Vi(f) and Vj(f), respectively, and corresponding currents Ii(f) and Ij(f),
with ABCD-parameters as follows [22], [23]. Note that both voltages and currents
are frequency dependent.

[
Vi(f)
Ii(f)

]

=

[
A(f) B(f)
C(f) D(f)

] [
Vj(f)
Ij(f)

]

. (2.13)

The corresponding transfer function between these two nodes can be derived as

HTL(f) ,
Vj(f)

Vi(f)
=

Zj(f)

A(f)Zj(f) +B(f)
, (2.14)

where Zj(f) = Vj(f)/Ij(f) is the impedance of node j.

The ABCD-parameters or transmission line parameters depend on the power line
characteristics as well as the length ℓ of the transmission line, and can be calculated
as [

A(f) B(f)
C(f) D(f)

]

=

[
cosh(γTLℓ) Z0 sinh(γTLℓ)
1
Z0

sinh(γTLℓ) cosh(γTLℓ)

]

, (2.15)

where Z0 is the characteristic impedance of the transmission line per unit length
as described in (2.11), and γ is the propagation constant as described in (2.12).
The primary cable parameters depend on the physical cable characteristics, and are
derived for a PLC channel in [24].

2.3.4 State of the Art in Channel Modeling

In addition to the two fundamental approaches to PLC channel modeling described
above, namely the multipath model and the transmission line model, there exists
numerous efforts in the literature in order to accurately model the PLC channels in
different scenarios. These models can be categorized as Low Voltage (LV, 230/400
V), Medium Voltage (MV, between 1 and 35 kV), and High Voltage (HV, 110 kV
and above) channel models. In the following we briefly describe the state of the art
in LV, MV, and HV channel modelings.

The LV channel models are used for the access domain, which indicates the low
voltage power distribution grid between the transformer stations and home connec-
tions, as well as the in-home communications. The echo-based channel model is
developed for outdoor LV channels and verified in numerous applications [3], [25],
[26]. This model is similar to the multipath model and is based on the reflections in
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power supply networks, which causes the transmitted signal to travel different paths
with different delays. For indoor LV channels different models have been proposed.
The most important feature of the indoor LV channel is the strong sensitivity in
frequency domain due to the impedance mismatch problems and their time vari-
ation. A deterministic bottom-up approach has been introduced in [27] and [28],
which presents a model based on the transmission line model in terms of cascaded
two-port networks. Another bottom-up approach is the statistical models, which
define the channel parameters from the physical network features [19], [20], [29]–
[31]. Other proposed models for the indoor channel adopt a top-down approach,
which use measurement campaigns in order to model the channel in such way, that
it corresponds to the real measurements [2], [32]–[36].

The MV channel models are used for the part of the power line, which connects
the distribution substations that terminate the HV transmission network to the LV
distribution transformers. The channel impairments encountered in MV lines are
usually intermediate between those impairments encountered in LV and HV lines.
Measurement-based characterization of the MV channels is done in two different
levels: the component level and the network level. Component-level characterization
generally takes place in a test lab [37], [38], while the network-level characterization
generally takes place in a real MV distribution network [39]–[42]. Another approach
for MV channel modeling is the theory-based characterization. In [43] the authors
obtained a solution for single wire PLC and the case of multiwire was solved in
[44] and [45]. In [46] this model was combined by the network topology in order to
accurately predict the channel response. The HV channel models are used for the
part of the power line between the generating power plants and the remote electrical
substations. Some efforts for HV channel modeling can be found in [47]–[50]. Table
2.4 summarizes the state of the art in PLC channel modeling.

2.4 PLC Noise Modeling

2.4.1 Overview of PLC Noise

The PLC channel suffers from various types of noise and interference. Since power
lines were not originally manufactured for the purpose of data transmission, ad-
mittedly, the noise which is available in the PLC channel is relatively harsh and
needs to be properly modeled in order to provide a realistic understanding of the
PLC system. The works dealing with noise characterization and modeling of PLC
channels can be found extensively in the PLC literature, for instance in [51]–[55].
Generally, there are three kinds of noise in a PLC channel, which are described as
follows.

1. White or colored background noise with a relatively low power spectral density
(PSD), which is caused by summation of numerous noise sources of low power,

2. Narrow band interference, mostly amplitude modulated sinusoidal signals
caused by other sources operating on the same frequencies,
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Usage Description Literature

LV (outdoor) echo-based model [3], [25], [26]

based on multipath model

LV (indoor) deterministic bottom-up model [27], [28]

based on the transmission line model

LV (indoor) statistical bottom-up model [19], [20], [29]–[31]

based on physical network features

LV (indoor) top-down model based on measurements [2], [32]–[36]

MV measurement-based model component level [37], [38]

MV measurement-based model network level [39]–[42]

MV theory-based model [43]–[46]

HV echo-based models based on multipath model [47]–[50]

Table 2.4: State of the art in PLC channel modeling.

3. Impulsive noise which can be either asynchronous or synchronous to the mains
frequency, which is mostly caused by switched-mode power supplies.

Figure 2.6 illustrates the three kinds of PLC noise. All three kinds of noise are
additive, which means they are added to the transmitted signal. In the following,
we briefly demonstrate the modeling approaches for each kind of PLC noise.

Background

Noise

Impulsive

Noise

Narrowband

Interference
Noise

Channel

Response
Transmitter Receiver

Figure 2.6: PLC noise.
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2.4.2 Background Noise

The term background noise is given to a range of usually relatively low energy noise
which is present in the PLC system at all times. The source of this noise can vary
based on the environmental factors such as thermal noise of the system, but mostly
it is due to the contribution of multiple noise sources of unknown origin. Some
of them can be located even outside the considered premises and are coupled via
radiation or via conduction [51].

The background noise consists of three main parts, which can be categorized as

1. Time-invariant continuous noise, which has a constant envelope for a long
period of time, and its power is constant in all frequencies;

2. Time-variant continuous noise, which has an envelope that changes synchronously
to the absolute voltage of the line, and its power is constant in all frequencies;

3. Colored noise, which has larger power in lower frequency regions.

The background noise with constant power in all frequencies is usually modeled as
an additive white Gaussian noise (AWGN) process. This model is additive, that
is, it is added to the signal, as well as it is white, that is, it has uniform power
across the frequency band of the PLC system. The probability distribution of this
noise in time domain is normal or Gaussian distribution. Let us denote the AWGN
component of the PLC noise N(f, τ) in (2.1) as NAWGN . The probability density
function of NAWGN can then be expressed as

fAWGN(x) =
1

σAWGN

√
2π

exp

(

−(x− µAWGN)
2

2σ2
AWGN

)

, (2.16)

where µAWGN is the mean value and σAWGN is the standard deviation of the AWGN
process. An exemplary sample values of PLC background noise with µx = 0 and
σ2 = 4, and the corresponding probability density function is depicted in Figure
2.7.

The colored noise has larger power in lower frequency regions and hence cannot
be modeled by an AWGN process. The larger power in lower frequency regions is
due to the larger attenuation in higher frequencies of the propagation between each
noise source and a receiver. Moreover, many noise sources have more power in lower
frequency regions. This noise is usually modeled by pink noise process. The PSD
of an exemplary white and an exemplary pink noise is illustrated in Figure 2.8.

2.4.3 Narrowband Interference

The narrowband interference in PLC channels is mostly formed by sinusoidal or
modulated signals with different origins such as broadcast stations, disturbances
caused by electrical appliances with a transmitter or a receiver, etc. The intensity
of this noise usually varies by the time of the day and the environment in which the
PLC system is operating. Let us denote the narrowband interference component of
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Figure 2.7: Noise samples and the probability density function of
PLC background noise.
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Figure 2.8: Power spectral density of exemplary white and colored
(pink) background noise.
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the PLC noise N(f, τ) in (2.1) as NNB. Then, NNB can be modeled as a modulated
sinusoidal signal with interference frequency fNB which can be expressed as

NNB = ANB cos(2πfNBt+ φNB), (2.17)

where ANB is the amplitude of the narrowband interference and φNB is the phase.
Narrowband interference can cause degradation in the performance of the PLC and
is usually considered as a serious problem for data transmission. Coding techniques
as well as proper notching of the frequency spectrum of PLC can help to mitigate
the narrowband interference.

2.4.4 Impulsive Noise

The PLC channel suffers from a class of noise known as the impulsive noise. This
kind of noise has a relative high amplitude but occurs is a very short period of time.
Generally there are three kinds of impulsive noise available in the PLC channel [56]:

1. Periodic impulsive noise synchronous with the mains: It is a cyclostationary
noise, synchronous with the mains and with a frequency of 50 Hz in Europe.

2. Periodic impulsive noise asynchronous with the mains: This noise although
periodic, does not show synchronization behavior with the frequency of the
mains.

3. Asynchronous impulsive noise: This noise has an unpredictable nature, with
no regular occurrence and is mainly due to transients caused by the connection
and disconnection of electrical devices.

The impulsive noise and its behavior can be expressed in closed-form equations. One
of the most utilized models for impulsive noise is the Middleton’s model developed
for the electromagnetic interference in communication channels [57]. Three general
classes of interference is categorized by Middleton which the first class i.e. class A
is often used to model the impulsive interference and shows characteristics which is
close to that of a real PLC channel. The Middleton class A model is described by
its amplitude probability density function which is defined as

fIN(x) = e−A
∞∑

m=0

Am

m!
√

2πσ2
IN

exp

(

− x2

2σ2
IN

)

, (2.18)

where A is the impulsive index which is the product of the average number of
impulses per unit time and the mean duration of the emitted impulses and σ2

IN is
the noise variance and is defined as

σ2
IN =

(
σ2
G + σ2

I

) m/A+ Γ

1 + Γ
, (2.19)

where σ2
G and σ2

I are the Gaussian and impulsive variance respectively and Γ =
σ2
G/σ

2
I is the Gaussian to impulsive noise power ratio.
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Middleton’s description of impulsive noise models the impulses from different in-
terference sources as Poisson distributed random variables. It is noteworthy that
(2.18) includes both the impacts of impulsive noise as well as the thermal noise in
the communication system. The parameters A and Γ define the extent of impulsive
noise in the system. For a small A (close to zero), the probability density function
becomes very close to a Gaussian distribution and impulsive noise has a very low
impact. Moreover, for A and Γ close to one the probability density function is very
impulsive and the impulsive noise has a great impact on the communication system
[58].

The Middleton class A interference channel can also be interpreted as a stationary
two-state model, with infinite number of memoryless channels with common input
and output alphabets [7]. The channel is considered to be either in state s0 or s1
with corresponding variances σ2

0 and σ2
1. The variance of the two states can be

calculated by (2.19) as

σ2
0 = σ2

G (2.20a)

σ2
1 = σ2

G +
σ2
I

A
. (2.20b)

The two-state representation of the channel is demonstrated in Figure 2.9. In a
channel with infinite states the probability πm of each state can be written as

πm = e−A · A
m

m!
, m ≥ 0. (2.21)

In a two-state channel, the probability of each state can be normalized by the factor
of e−A(1 + A) resulting in the two probabilities as

π0 =
1

1 + A
=

1−A

1−A2
= 1− A (2.22a)

π1 =
A

1 + A
=

A− A2

1− A2
= A, (2.22b)

where the approximation has been made due to the fact that A2 ≪ 1 and A2 ≪ A.
Therefore, for each symbol there is a probability of being in either of two states with
different variances, where the first state is purely Gaussian and the second state is
a combination of Gaussian noise and impulsive noise.

Moreover, the periodic impulsive noise which is synchronous to the mains is con-
sidered to be a cyclostationary process and the periodic instantaneous noise power
is derived in [59] as

σ2
N (t) =

L−1∑

l=0

Al

∣
∣
∣
∣
sin

(
2πt

TAC

+ θl

)∣
∣
∣
∣

nl

, (2.23)

where L represents the number of noise classes (for narrowband PLC, L = 3 [59]),
Al, θl, and nl are different characteristic parameters of the l-th noise class, and
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input output

Figure 2.9: A two-state Markov chain demonstration of Middleton
class A model
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Figure 2.10: Periodic impulsive noise synchronous with the mains
in time domain.

TAC is the period of the mains voltage. Figure 2.10 illustrates the simulated PLC
cyclostationary noise in time domain. The periodic nature of the noise can be
clearly seen in this figure.

2.4.5 State of the Art in Noise Modeling

There is a body of work available in the PLC literature, which aims at modeling
the PLC noise in different environment and scenarios. In this section, we briefly
describe the different approached in PLC noise modeling. There are two main
approaches in PLC noise modeling, which are referred to as the statistical-physical
and the empirical noise modeling approaches. The statistical-physical modeling
approach utilizes the physical characteristics of the PLC channel in order to derive
the statistics of the interference at the receiver. The Middleton Class A model
[57], [60], as described above, is a common statistical-physical model of the PLC
noise. In [61] the authors have derived a canonical statistical-physical model of the
instantaneous statistics of asynchronous noise based on the physical properties of
the PLC network. A statistical PLC noise model suitable for low voltage networks
has been derived in [62].

Empirical noise modeling approach, on the other hand, uses the collected noise data
from field measurements in order to propose models that match the characteristics
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exhibited by the collected data. The PLC noise parameters have been experimen-
tally investigated in [54], [63]–[65]. In [66] and [67] the authors fit the collected
noise data to the Middleton Class A statistical model.

2.5 PLC Transmitter and Receiver

2.5.1 Physical Layer Overview

The transmitter and receiver structure of the physical (PHY) layer of a PLC sys-
tem is standardized by several standardization entities such as IEEE [11] and ITU-T
[13] among others. The main objective of such standardizations is to establish a
secure and reliable communication between nodes of a PLC network. Generally,
the transmitter is composed of a scrambler followed by an error-correction encoder
module, followed by an interleaver, followed by a modulation mapper and finally an
OFDM modulator module. The generated signal then, after applying appropriate
transmit filter, is transmitted through the PLC channel. The block diagram of a
PLC transmitter is illustrated in Figure 2.11. In this figure, the encoder module
consists of three error-correction encoders, namely Reed-Solomon encoder, convolu-
tional encoder and repetition encoder. The received signal from the PLC channel, is
processed by the PLC receiver. The receiver of the PLC system is the correspond-
ing component for each module of the transmitter in reverse order. Therefore, the
receiver consists of an OFDM demodulator, followed by a demodulation module,
followed by a deinterleaver, followed by a decoder module, and finally a descrambler.
In the following, the design of the important parts of the PLC transmitter, as well
as some simulation results are presented. In the rest of the thesis, the structure of
the transmitter and receiver which is presented in this section, is used as the basis
of our simulation results.

source scrambler encoder interleaver modulator OFDM

Reed-Solomon convolutional repetition

Figure 2.11: Block diagram of the PHY layer transmitter of a PLC
system.

2.5.2 Modulation and Coding

With the help of modulation and coding design for PLC systems, a simple and
robust communication system is achieved. Since the channel conditions are usually
not known at the receiver, sophisticated demodulator features cannot be used ef-
fectively at the PLC receiver. The modulation and coding of the PLC system is

27



-2 -1 0 1 2

In-Phase

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Q
ua

dr
at

ur
e

Scatter plot

(a) BPSK

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

In-Phase

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Q
ua

dr
at

ur
e

Scatter plot

(b) QPSK

-1.5 -1 -0.5 0 0.5 1 1.5

In-Phase

-1.5

-1

-0.5

0

0.5

1

1.5

Q
ua

dr
at

ur
e

Scatter plot

(c) 8-PSK

Figure 2.12: Constellation diagram of the received PLC signal with
modulation schemes of BPSK, QPSK, and 8-PSK.

usually designed to comply with the local regulations, such as CENELEC, FCC,
etc. Spread-frequency shift keying (S-FSK) as introduced by Shaub [68], is one of
the robust modulations which has been used for PLC applications. Moreover, mod-
ulation schemes such as binary phase shift keying (BPSK) and differential BPSK
can be used as well. Higher orders of phase shift keying (PSK), such as quadrature
PSK (QPSK), 8-PSK, and their differential modes are also possible. The choice
of the modulation scheme is based on the characterization of the channel and the
quality of service (QoS)requirements. The differential mode, makes the design and
implementation of the detector easier, since in the differential mode, the phase syn-
chronization is not necessary and each symbol has a phase which only depends on
the phase of the previous symbol. The coherent mode of modulation is also sup-
ported by the standards but the differential mode is used more commonly due to
its simpler implementation in the system.

The constellation diagram of the received PLC signal with modulation schemes of
BPSK, QPSK, and 8-PSK ate illustrated in Figure 2.12. It can be seen in this
Figure that the distance between different received signals with 8-PSK modulation
is smaller than that of BPSK/QPSK modulations, which results in a higher prob-
ability of error. However, since three bits are modulated as an 8-PSK symbol, two
bits are modulated as a QAM symbol, and one bit is modulated as a BPSK symbol,
the throughput which is achieved by the 8-PSK modulation is higher. Therefore, a
trade-off between the data throughput and the BER performance of the communi-
cation system is to be considered, where achieving higher data throughputs results
in a higher BER and consequently a lower performance. As a result, the transmitter
can decide the modulation scheme based on the requirements of the transmission
and the channel conditions.

Error correcting codes play an important role in communication systems with se-
vere channel error conditions. The combination of modulation and coding provides
a robust transmission scheme for data transmission in PLC channels. The PLC
encoder module consists of a block of concatenated codes made of Reed-Solomon
encoder and convolutional encoder, followed by an optional repetition encoder. The
repetition encoder can secure a more reliable communication at the cost of lower
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data throughput, since the repetition coding divides the data rate by a factor equal
to the spreading factor of the encoder. Therefore, the repetition encoder is only
used as an optional feature in severe situations and low signal to noise ratios.

2.5.3 OFDM

Multicarrier transmission is a commonly used communication technology, which
achieves high rates by transmitting a set of parallel signals at low symbol rates
[69]. Multicarrier transmission is able to achieve channel capacity through opti-
mally allocating the available transmission power among subcarriers by means of
the water-filling algorithm [70]. Multicarrier transmission can be implemented in
different ways, such as vector coding [71], or orthogonal frequency division mul-
tiplexing (OFDM) [72]. These techniques are based on the same premise, which
is dividing a wide channel into multiple parallel narrowband channels by means of
orthogonal channel partitions. In the PLC systems, OFDMmodulation and demod-
ulation is applied in order to encode orthogonal signals of digital data in multiple
subcarriers to be transmitted with different frequencies through the PLC channel.
The combination of advanced channel coding techniques with OFDM modulation
facilitates a very robust communication over the power line channel. The data
signals before being modulated by the OFDM modulator are orthogonal to each
other. This orthogonality prevents interference between subcarriers and facilitates
the transmission of subcarriers at the same time.

Let us assume that the available PLC bandwidth is divided by N subcarriers with
the same distance in the frequency from each other. We can denote the time-domain
transmit signal in complex baseband as [73]

s(t) =
1√
N

∑

k

N−1∑

n=0

an[k]gn(t− kTu), (2.24)

where k is the time index, an[k] is the k-th data symbol of the n-th subcarrier,
Tu = NT is the OFDM symbol duration, and gn(t) is the pulse shaping function of
the n-th subcarrier, which in OFDM modulation is defined as

gn(t) = rect

(
t

Tu
− 0.5

)

exp(j2πfnt), (2.25)

where fn = n/Tu is the center frequency of the n-th subcarrier. The exponential
term in (2.25) corresponds to a shift of fn is frequency domain. Therefore, the
subcarrier spacing in frequency domain is 1/Tu.

Every two subcarriers are said to be orthogonal. The orthogonality of subcarriers i
and j is defined as [73]

1

Tu

∫ Tu

0

gi(t)g
∗
j (t)dt =

{
1 i = j,
0 i 6= j.

(2.26)
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Because of this orthogonality, the received data can be separated with a matched
filter. Les us denote the received signal from the PLC channel as r(t). Then, the
output of the matched filter can be expressed as

yn(t) =
1

Tu

∫ ∞

−∞

r(τ)g∗n(t− τ)dτ. (2.27)

After sampling at t = (k + 1)Tu, (2.28) becomes

yn[k] =
1

Tu

∫ (k+1)Tu

kTu

r(τ) exp(−j2π(n/Tu)τ)dτ. (2.28)

Because of the orthogonality between the subcarriers, no inter-symbol interference
(ISI) is observed and the transmission can be regarded as N parallel transmissions.

The power spectral density of an OFDM transmit signal is the sum of the power
spectral densities of each subcarrier. Therefore, the overall power spectral density
can be expressed as [73]

P (f) =
N−1∑

n=0

|G(f − fn)|2 , (2.29)

where G(f) is the Fourier transform of the rect function in (2.25). (2.29) can be
further calculated as

P (f) =

N−1∑

n=0

sin2(π(f − fn)Tu)

(π(f − fn)Tu)2
. (2.30)

Figure 2.13 illustrates the simulated power spectral density of a transmitted PLC
signal in FCC-above-CENELEC frequency band with QPSK modulation, as an ex-
ample. For the simulations, the frequency regulations of the IEEE 1901.2 standard
for narrowband PLC has been applied and the FCC-above-CENELEC frequency
band is chosen for data transmission. According to this standard, the FCC-above-
CENELC operating band consists of 72 used subcarriers with a total amount of 256
subcarriers. The frequency specifications as well as the OFDM parameters of the
used spectrum in this example is listed in Table 2.5.

The so-called side-lobes in Figure 2.13 are unwanted and are referred to as out
of band radiation. This radiation can be reduced by proper windowing at the
transmitter. The window function is applied to each OFDM symbol separately.
This function can be chosen freely based on the out-of-band emission requirements.
Figure 2.14 illustrates the application of a raised-cosine window (also known as
the Hann window) to one OFDM symbol. Let us assume Nt = NCP + M . The
raised-cosine window is then defined as

w[n] =







0.5
(

1− cos
(

πn
Nw

))

0 ≤ n ≤ Nw

1 Nw + 1 ≤ n ≤ Nt −Nw − 1

0.5
(

1− cos
(

π(n−Nt)
Nw

))

Nt −N − w ≤ n ≤ Nt − 1

(2.31)
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Figure 2.13: Spectrum of a transmitted PLC signal based on the
specifications of Table 2.5.

Parameter Value

First subcarrier 154.6875 kHz
Last subcarrier 487.5 kHz

Number of subcarriers 72
Inter-carrier spacing 4.6875 kHz

FFT-length 256
Number of cyclic prefix 30
Sampling frequency 1.2 Mhz

Nw 8

Table 2.5: An example of the OFDM parameters of a narrowband
PLC system based on the IEEE 1901.2 standard.

Furthermore, it has been shown that the OFDM transmit signal of (2.24) can be
produced with inverse discrete Fourier transform (IDFT), and (2.28) at the receiver
can be realized by a discrete Fourier transform (DFT). IDFT and DFT can be
implemented by inverse fast Fourier transform (IFFT) and fast Fourier transform
(FFT), respectively, which have a considerably faster performance.

2.6 Chapter Conclusion

In this chapter, an overview of the PLC system and channel model has been pre-
sented. The PLC regulations and frequency specifications has been discussed for
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Figure 2.14: Applying a raised-cosine window to the OFDM sym-
bol.

both narrowband and broadband PLC. In later chapters, both of the narrowband
and broadband PLC and their corresponding frequency specifications are used for
different multichannel transmission scenarios. Two of the most common channel
models for PLC, namely the multipath PLC channel model and the channel model
based on the transmission line theory, has been discussed in this chapter, which
makes the basis of the channel models used in later chapters of the thesis. More-
over, the PLC channel noise and its models were introduced in this chapter. A
complete PLC transmitter and receiver model has been presented and different
parts of it has been discussed, which will be the basis of the system model for the
simulations presented in later chapters of this thesis.
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Chapter 3

MIMO PLC

3.1 Chapter Overview

Electric power lines normally consist of multiple conductors. In an in-home envi-
ronment with one-phase power delivery structure, there are three conductors avail-
able, namely Line (L), Neutral (N), and Protective Earth (PE). Moreover, in a
multi-phase power delivery structure, the number of phases in the system is more
than one. The conventional PLC system, uses the phase and neutral conductors
in order to construct a differential voltage between them to utilize for the pur-
pose of data transmission. However, the existence of multiple conductors in power
line infrastructures, gives rise to the idea of multiple spatial transmission channels.
Therefore, multiple differential data signals between multiple conductors can be
constructed, which can transmit several data signals at the same time. However,
due to the Kirchhoff’s law, with N+1 conductors, only N independent data signals
can be constructed and transmitted at the same time. The availability of multiple
transmission channels, enables the use of multiple-input multiple-output (MIMO)
transmission in broadband PLC.

MIMO transmission has been heavily investigated in wireless communications lit-
erature and has shown significant performance improvement and increased data
throughputs [74], [75]. These results encouraged researchers to investigate the ben-
efits of MIMO transmission in the field of PLC as well. The first large scale public
measurement results on MIMO power line channel and noise characteristics was
published in 2008 [76]. MIMO PLC has been introduced in [77], and has been
further investigated in numerous publications such as [76], [78]–[82] to name a few.
The efforts in MIMO channel modeling and system analysis in the PLC literature,
have been aptly summarized in [21]. It has been shown in these literatures, that
MIMO PLC is capable of increasing the throughput of the transmission or improv-
ing the reliability and performance of the transmission. These, can be achieved by
two separate methods:

33



1. Spatial multiplexing, which is a transmission technique to transmit indepen-
dent and separately encoded data signals, through each of the MIMO PLC
channels. Therefore, the space dimension is reused, and hence the throughput
is increased.

2. Spatial diversity, which is a transmission technique to transmit multiple, re-
dundant copies of the data signal, through each of the MIMO PLC channels.
Therefore, the reliability of the transmission is increased which results in a
better performance.

However, MIMO PLC is not without its challenges. Particularly, the capacitive
and inductive coupling between the power line conductors would result in a spatial
correlation between the MIMO channels, which in turn, would degrade the perfor-
mance of the transmission. Another challenging aspect of the MIMO PLC is the
derivation of the channel capacity in the presence of the impulsive noise which will
be addressed later in this chapter.

In this chapter, MIMO PLC system and its challenges are analyzed and discussed.
The rest of the chapter is organized as follows. Section 3.2 describes the coupling
methods which enables the power line system to utilize MIMO transmission are
described. The system model of a MIMO PLC transmission is described and an-
alyzed in Section 3.3. Spatial correlation in MIMO PLC systems and its effect on
the performance of the data transmission are described in 3.4. In Section 3.5 the
capacity of a MIMO PLC system modem different levels of information availability
at the PLC transmitter and receiver is derived. Finally, Section 3.6 concludes the
chapter.
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Figure 3.1: Delta-style coupling method.

3.2 MIMO PLC Coupling Methods

Before describing a MIMO PLC transmission, it is important to describe the MIMO
PLC coupling methods. The idea of MIMO transmission is to transmit high fre-
quency data signals over power-carrying transmission lines, which were originally
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designed for electricity transmission at low frequencies. For this reason, couplers are
used to connect the communication equipments to the power grid. Generally, there
are two types of couplers: inductive and capacitive. Inductive couplers guarantee a
balance between the lines, whereas capacitive couplers often introduce asymmetries
due to component manufacturing tolerances [21]. PLC couplers designed for high
voltage (HV, 110 kV to 380 kV) and medium voltage (MV, 10 kV to 30 kV) can be
found in [83]. PLC couplers designed for low voltage (LV, 110 V to 400 V) single-
input single-output (SISO) transmission can be found in [84]. In the following, we
describe the MIMO couplers for LV PLC applications.
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Figure 3.2: T-style coupling method.

In order to avoid the radiated emission in PLC transmission, the coupler design is
preferred to be as symmetric as possible. This way, 180 degrees out of phase electric
fields are generated that neutralize each other, resulting in reduced emission. This
desired symmetrical way of propagation is also known as differential mode (DM).
In case of asymmetries, some part of the injected signal turns into a current mode
(CM) signal. Normally, the devices connected to the power line network are also
able to produce asymmetries in the system [85].

Figure 3.1 illustrates the internal design of a delta-style coupler [86]. This design
is also known as transversal probe. In delta-style design, the phase, neutral and
protective Earth conductors at the location of signal injection are connected to each
other by means of electrical baluns, which forms a triangle. The data signals are
injected separately by means of additional baluns coupled with the othe baluns,
which are denoted by D1, D2, and D3 in Figure 3.1. However, the sum of the three
injected voltages is zero and therefore, only two of them can be independent.

Figure 3.2 illustrates the internal design of a T-style coupler [87]. In this design,
phase, neutral, and protective Earth conductors are each connected to one end of a
balun, whereas the other end of the baluns are connected to each other ot one point.
Two data signals are injected in a T-style coupler: one coupled with the baluns of
the phase and neutral conductors, and the second one coupled to the balun of the
protective Earth conductor. These injected signals are denoted by T1 and T2 in
Figure 3.2.

Finally, the star-style coupler is illustrated in Figure 3.3 [86]. In this coupler design,
the injected signals are coupled to inter-connected baluns in the form of a star.
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Figure 3.3: Star-style coupling method.

These data signals are denoted by S1, S2, and S3 in Figure 3.3. Furthermore, those
baluns are each connected to the phase, neutral, and protective Earth conductors,
which together make a common mode signal, denoted by S4 in Figure 3.3. The
star-style coupling is normally used at the receiver of a PLC transmission system.
Further details on the coupling methods and their advantages and disadvantages
are presented in [88].

3.3 MIMO Transmission

3.3.1 MIMO System Model

MIMO transmission exploits the spatial diversity in order to improve the perfor-
mance of the communication system, or rather improves the data rate with respect
to conventional SISO transmission. In wireless communication, MIMO is enabled
by the use of multiple antennas at both transmitter and receiver. MIMO can be
also applied to PLC. Figure 3.4 illustrates a three wire installation of a PLC sys-
tem as well as the transmitted or received data signals which are represented as
differential voltages. A data signal can be constructed as the differential voltage
values between two of the three available conductors with one of the conductors as
a voltage reference. Therefore, with three conductors, three differential voltages of
∆v1, ∆v2, and ∆v3 can be produced, which are the differential voltages between
phase and neutral, neutral and protective Earth, and phase and protective Earth,
respectively. However, due to the Kirchhoff’s law, only two of these three signals
can be independent from each other and carry information data and the third one
depends on the other two and cannot carry independent information.

MIMO PLC was first proposed to be used for multiple phase installations [89]. In
this case, multiple channels were established between two uncoupled line wires and
therefore the transmitter and the receiver must have access to all the three phase
wires. Later, the use of MIMO PLC has been extended to one-phase installations,
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Figure 3.4: Three differential voltages of PLC constructing three
different signals.

where the multiple channels were established between line, neutral, and protective
earth wires. The latter is the basis of the MIMO system model in this thesis. In
a one-phase power line installation, at the PLC transmitter, three transmit signals
can be generated between the three available power line wires. However, at the
PLC receiver, four receive signals can be received, with the fourth signal being the
common mode (CM) signal between all the power line wires.

As an example of a MIMO PLC transmission, let us assume two transmit signals at
the PLC transmitter and two received signals at the PLC receiver, which constructs
a 2 × 2 MIMO transmission system. Figure 3.5 illustrates a MIMO PLC system
model with two transmit signals as well as two received signals, constructing four
MIMO transmission channels, where ∆vi,Tx

and ∆vi,Rx
are the differential voltages

at the transmitter and at the receiver, respectively. The four MIMO channels h11,
h12, h21, and h22 match each transmitter port to the corresponding receiver port.

Figure 3.5: A MIMO PLC channel with two transmitters and two
receivers.

In a general sense, let us assume a MIMO PLC system with nT differential trans-
mit signals and nR differential received signals. Due to electromagnetic coupling
between adjacent wires in a power line infrastructure, the transmitted signal from
any of the signal feeds can be received and detected to different extents in all of
the reception signal ports. Therefore, the i-th received signal from the i-th port at
the receiver, when i ∈ {0, 1, · · · , nR − 1}, is the summation of all the transmitted
signals with different weights and can be represented as

yi(t) =

nT∑

j=1

hij(t)xj(t) + ni(t), (3.1)

where hij(t) is the channel gain from the i-th received signal and the jth transmitted
signal, xj(t) is the j-th transmitted signal from the j-th port at the transmitter,
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when j ∈ {0, 1, · · · , nT − 1}, and ni(t) is the channel noise corresponding to the ith
received signal.

In order to be able to demonstrate all the received signals, transmitted signals,
channel gains, and noise terms as one equation, the matrix format representation
of the MIMO system can be used which is shown bellow (time index is omitted due
to readability)

Y = HX+N (3.2)

where Y ∈ C
nR×1 is the vertical vector of received signals, H ∈ C

nR×nT is the
channel gain matrix, X ∈ CnT×1 is the vertical vector of transmitted signals andN ∈
CnR×1 is the vertical vector of received noise. The channel matrixH is deterministic
and assumed to be constant at all times. The system model of such a MIMO system
can be expressed as






y1(t)
...

ynR
(t)




 =






h11(t) · · · h1nT
(t)

...
. . .

...
hnR1(t) · · · hnRnT

(t)











x1(t)
...

xnT
(t)




+






n1(t)
...

nnR
(t)




 . (3.3)

Based on this system model, the transmission of data signals in PLC systems, can
be categorized into four categories:

1. Single-input single-output (SISO) system, in which nT = 1 and nR = 1,

2. Single-input multiple-output (SIMO) system, in which nT = 1 and nR > 1,

3. Multiple-input single-output (MISO) system, in which nT > 1 and nR = 1,
and

4. Multiple-input multiple-output (MIMO) system, in which nT > 1 and nR > 1.

3.3.2 MIMO PLC Channel Modeling

The MIMO PLC channel has been characterized from the results of measurement
campaigns e.g. in [78], [90]–[93]. In these papers, a statistical analysis of the ex-
periment data was performed and the MIMO channel were characterized according
to this analysis. The modeling of the MIMO channel can be performed by top-
down or bottom-up approaches. A frequency-domain top-down statistical MIMO
PLC channel model was proposed in [90], which is based on the multipath propaga-
tion model described in the previous chapter. A time-domain top-down statistical
MIMO PLC channel model was proposed in [91]. The bottom-up approach based
on the transmission line theory is also used in order to characterize the MIMO PLC
channel, e.g. in [94]. In this case the multi-conductor transmission line theory is
used to characterize the pul parameters of the network and hence model the MIMO
channel.
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3.3.3 Spatial Multiplexing

In spatial multiplexing, each spatial MIMO channel carries independent data sig-
nals. Therefore, the data rate of the system is increased and more data can be
transmitted in a certain amount of time. Note that, all these sub-channels function
in the same allocated bandwidth and are just separated spatially from each other.
This means that using spatial multiplexing does nor cost additional bandwidth and
power for the communication system. The multiplexing gain is referred to as the
degrees of freedom with reference to signal space constellation [95]. The degree of
freedom can be calculated as

DOF = min(nT , nR), (3.4)

where nT and nR are the number of transmit and receive PLC ports, respectively.

In order to recover the transmitted data signals at the PLC receiver, it is necessary
to perform a considerable amount of signal processing. First the MIMO system de-
coder must estimate the individual channel transfer functions in order to determine
the channel transfer matrix. Once all of this has been estimated, then the matrix
H has been produced and the transmitted data streams can be reconstructed by
multiplying the received vector with the inverse of the transfer matrix.

3.3.4 Spatial Diversity

In spatial diversity techniques, same information is sent across independent PLC
channels to combat fading. When multiple copies of the same data are sent across
independently fading channels, the amount of fade suffered by each copy of the
data will be different. This guarantees that at least one of the copies will suffer
less fading compared to rest of the copies. Thus, the chance of properly receiving
the transmitted data increases. In effect, this improves the reliability of the entire
system. This also reduces the co-channel interference significantly.

Receive diversity is achieved by obtaining a transmitted signal at multiple receiver
ports. This technique uses the maximum ratio combining (MRC) [73], which weighs
the received signals yn, n ∈ {1, · · · , N}, by the square root of the SNRs γn n ∈
{1, · · · , N}, such that

y =

N∑

n=1

γnyn. (3.5)

Therefore, the main contribution to the received signal comes from the channel with
the highest SNR.

Transmit diversity is achieved by transmitting multiple versions of the same signal
at the PLC transmitter. This scheme can be utilized by, for instance, space-time
block coding (STBC) [96]–[98].

For a MIMO PLC system with nT transmitters and nR receivers, the maximum
number of diversity paths is nT ×nR. Note that, the spatial diversity technique does
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not increase the transmission throughput, since the data is repeated in transmis-
sion. However, this technique is able to increase the reliability of the transmission
compared to SISO transmission, with the same amount of data throughput. Fig-
ure 3.6 illustrates a MIMO transmission example and demonstrates the difference
between spatial multiplexing and spatial diversity.
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Figure 3.6: Spatial multiplexing and transmit spatial diversity for
a MIMO system with three channels and a source of three bits.

3.4 Spatial Correlation in MIMO PLC

In this section we address one key aspect of MIMO PLC channels, namely the spatial
correlation, where the term spatial refers to the multiple input and output ports.
Spatial correlation is the phenomenon when the changes in voltage in one conductor
can be detected in another conductor which lies in the vicinity of the first conductor.
This can be the result of capacitive and inductive coupling between conductors
which are in each others proximity. The inductive and capacitive coupling cause a
change in voltage of one conductor affect the change of voltage in another conductor.
Since the MIMO channels in PLC are based on the changes in voltage, capacitive
and inductive coupling can cause the MIMO channels to influence each other which
is known as the spatial correlation.

Spatial correlation can directly influence the capacity of the MIMO channel. The
more the correlation is between the MIMO channels, the more the degradation of
the capacity. Therefore, it is important to include this aspect of the PLC MIMO
channels in the channel modeling approach. There has been some mentions of the
spatial correlation for MIMO PLC in the literature [80], [99].

In order to mathematically analyze the spatial correlation and its effects on the
MIMO PLC channel, we have to first evaluate the singular values of the channel
matrix in frequency domain and then derive the covariance matrix of the channel.
On any given subcarrier, we can decompose the channel matrix H to its singular
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Figure 3.7: Singular value decomposition of the MIMO channel.

values with singular value decomposition (SVD) defined as [99]

H = UΣVH, (3.6)

where the operator (.)H represents the Hermitian transpose or complex conjugate
transpose. Matrices U and V are two unity matrices which are defined as UUH =
UHU = I and VVH = VHV = I where I is the identity matrix. Matrix Σ is
a diagonal matrix which its diagonal elements are the singular values of H and
are shown as λ(i), and its off-diagonal elements are zero. Figure 3.7 illustrates the
singular value decomposition of the channel matrix which transforms the MIMO
channel into several independent SISO channels.

The spatial correlation makes the available MIMO channels to be dependent to
some extent on each other. This dependency can be demonstrated in the channel
covariance matrix Rh which is defined as [99]

Rh = E
[
vect(H)vect(H)H

]
, (3.7)

where the operator E(.) is the mathematical expectation and the operator vect(.)
aligns all the columns of a given matrix with size nR×nT to form a vertical column of
size nRnT × 1. We use the most common correlation model, namely the Kronecker
model to decompose the channel matrix into three different matrices as follows.
The only assumption for the Kronecker channel decomposition is that the MIMO
channels are only correlated at the two link extremities and not in between. Under
these circumstances, the MIMO channel can be decomposed as [99]

H = K ·R1/2
r H̃R

1/2
t , (3.8)

where K is a constant introducing an overall channel gain, H̃ is the channel ma-
trix of a correlation-free channel with elements h̃ij ∼ CN (0, 1) which have complex
Gaussian distribution with zero mean and unit variance and are completely inde-
pendent from each other. The matrices R

1/2
r and R

1/2
t are called the receiver and

transmitter correlation matrices, respectively, and can be arbitrarily scaled. In case
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we chose the normalization [99]

tr(R
1/2
t ) = nT (3.9)

tr(R1/2
r ) = nR,

the channel covariance matrix of (3.7) can be re-written as

Rh = K2 ·Rt ⊗Rr, (3.10)

where the operator ⊗ is the Kronecker product. Therefore, in order to model the
covariance matrix of the channel and consequently the spatial correlation of the
MIMO channel, we only need to model the transmitter and receiver correlation ma-
trices Rt and Rr. The elements of Rt and Rr can be directly modeled based on the
measurements performed in a real situation or they can be modeled mathematically
to generate results which are similar to those observed in the real measurements.

3.5 MIMO PLC Channel Capacity Analysis

3.5.1 PLC Channel Capacity

One of the fundamental characteristics of a communication channel is the capacity
of the channel. The performance of any communication system is impaired by inter-
ference, or noise. One of the measures of calculating the extent of this impairment
is the capacity of the channel. Calculating the capacity of the channel is a well
studied subject in the literature and capacity formulations are available for both
SISO and MIMO systems in wireless communications [73]. Unfortunately, the same
can not be said about power line communications. The presence of impulsive noise
in the PLC channel and the complicated models of the impulsive channel makes this
task a challenging endeavor. The capacity of SISO PLC systems with Middleton
class A impulsive noise has been studied in [100] and an equation for the channel
capacity has been derived. Capacity of MIMO channels in wireless communication
has been derived as well and published in the literature such as [101].

In this section, we derive the capacity of a MIMO PLC channel with Middleton class
A impulsive noise. We consider two cases of channel state information availability
at transmitter, i.e. the case when the channel state information is available at the
transmitter as well as the case when the channel state information is not available at
the transmitter. For both cases we assume that the channel information is available
at the receiver. We will investigate the effect of possessing the knowledge about
channel state information at transmitter on the channel capacity. The impulsive
MIMO PLC channel is modeled by Middleton class A model as a two state channel
as described before in this chapter. It is shown that in such channels, the overall
capacity is the summation of the weighted capacity of the channel in each of the
states, and a general term for the capacity of MIMO PLC is derived [81].
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In this section we demonstrate the channel capacity of a SISO PLC system as
described in [100]. Let us assume a finite state system with the capacity of channel
in state m defined as Cm and the probability of the channel being in that state as
πm. We can obtain the average channel capacity C as [102]

C =

M∑

m=0

πmCm, (3.11)

where M is the number of states. The PLC channel, as shown previously, can be
regarded as a two-state model as illustrated in the previous chapter. The capacity
of the AWGN channel in state m is defined as [100]

Cm = B · log2
(

1 +
S

N

)

[bits/sec] (3.12)

where B is the bandwidth, S is the total signal power over the bandwidth and
N = 2σ2

m is the total noise power over the bandwidth in state m.

The channel capacity of a SISO PLC system with impulsive noise and channel state
information available at transmitter has been derived in [100]. It has been shown
using the equation (3.11) that the capacity of SISO channel can be written as

CSISO =
M∑

m=0

πm ·B · log2
(

1 +
P

σ2
m

)

= B · e−A ·
M∑

m=0

Am

m!
· log2

(

1 +
P

σ2
m

)

, (3.13)

where B is the bandwidth, P is the transmitted signal power and σ2
m is the noise

power in state m. The derivation of the capacity is supported by the fact that
Middleton class A model can be viewed as a Markov chain, which gives a simple
theoretical expression of the channel capacity of a SISO PLC channel.

3.5.2 Decoupling MIMO Channels and Waterfilling Algo-
rithm

In order to calculate the capacity of a MIMO PLC channel, first we decompose the
channel into a set of parallel, independent sub-channels using the singular value
decomposition (SVD) method. The SVD of the channel matrix H can be written
as [73]

H = UΣVH, (3.14)

where U ∈ CnR×nR and V ∈ CnT×nT are unitary matrices and Σ ∈ CnR×nT is
a rectangular matrix whose diagonal elements are non-negative real numbers and
whose off-diagonal elements are zero.
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The diagonal elements of Σ are the singular values of the channel matrix H and can
be shown as {σ1, σ2, · · · , σnmin

} or equivalently {σi}nmin

i=1 where nmin = min(nT , nR).
Since

HHH = UΣΣHUH = UΛUH , (3.15)

where Λ ∈ CnR×nR is a diagonal matrix which its diagonal elements are the eigen-
values {λi}nR

i=1 of the matrix HHH or equivalently the squared singular values σ2
i of

the matrix H.

When channel state information (CSI) is available at the transmitter side, channel
decomposition to a set of parallel sub-channels can be performed as shown in Figure
3.7. For decomposing the channel into a set of parallel sub-channels, we will first
define

X̃
def
= VHX, (3.16a)

Ỹ
def
= UHY, (3.16b)

Ñ
def
= UHN, (3.16c)

then we can rewrite the channel (3.2) as:

Ỹ = ΣX̃+ Ñ, (3.17)

where Ñ has the same distribution as N. Therefore, we have the equivalent repre-
sentation of MIMO channel as a parallel set of virtual SISO sub-channels as shown
in Figure 3.7.

The power allocation at the PLC transmitter, which results in the optimal capacity
is provided by the water filling algorithm [103]. The water filling algorithm cal-
culates the inverse channel SNRs prior to the power allocation and determines a
water level µ, such that the area under µ is equal to the power budget P0. The
difference between the inverse channel SNR and the water level µ is the allocated
transmit power. Channels whose inverse SNR is not reached by the water level µ
are deselected from transmission and are not allocated any transmit power. The
largest transmit power is allocated to channels with higher SNRs.

3.5.3 MIMO Capacity with Different Information Avail-

ability

3.5.3.1 CSI Known at Transmitter

In this section we derive the channel capacity of a MIMO PLC system when the
channel state information (CSI) is available at the transmitter.
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In order to calculate the MIMO channel capacity, first we have to calculate the
auto-correlation matrix of Y as

Ryy = E
{
YYH

}
(3.18)

= E
{
(HX+N)

(
HHXH +NH

)}

= HRxxH
H + σ2

mInR

where Rxx = E{XXH} is the auto-correlation matrix of the transmitted signal
vector and E{NNH} = σ2

m is the power spectral density of the additive impulsive
noise and I is the identity matrix.

It can be proven [73] that the mutual information between the input and output
signals can be expressed as

I(X;Y) = log2 det

(

InR
+

1

σ2
m

HRxxH
H

)

. (3.19)

From (3.18) and (3.19), the capacity of the MIMO channel can be written as

C = max
{Rxx}

log2 det

(

InR
+

1

σ2
m

HRxxH
H

)

. (3.20)

The channel capacity of the equivalent parallel sub-channels can be then calculated
[73] using equation (3.20). The capacity of the ith virtual SISO sub-channel in state
m can be written as

Cm,i = B · log2
(

1 +
Piλi

σ2
m

)

, (3.21)

where Pi is the the power allocated to the ith channel and must satisfy the total
power constraint

∑nT

i=1 Pi = nT . The MIMO channel capacity in state m is then
the sum of the capacities of the virtual SISO channels as

Cm =

nmin∑

i=1

Cm,i = B ·
nmin∑

i=1

log2

(

1 +
Piλi

σ2
m

)

. (3.22)

The capacity of the MIMO channel can be derived using the equations (3.11) and
(3.22) as

CMIMO = B · e−A ·
M∑

m=0

nmin∑

i=1

Am

m!
· log2

(

1 +
Piλi

σ2
m

)

. (3.23)

The capacity in (3.23) can be maximized by solving a power allocation problem
and using the water-filling algorithm [73]. The channel capacity of a MIMO PLC
channel when CSI is available at the transmitter side as a function of SNR is given in
Figure 3.9. It can be seen that with increasing the A parameter (impulsive index),
the channel capacity will reduce. In the simulation of this case, we have used the
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Figure 3.8: MIMO PLC channel capacity when CSI is not available
at the transmitter with different A parameters and Γ = 0.01

water-pouring power allocation algorithm. Therefore, more power is allocated to
the modes with higher SNR.

3.5.3.2 CSI Unknown at Transmitter

When CSI is known at both the transmitter and the receiver, each sub-channel
has its own corresponding transmitted power which depends on the SNR of that
channel. However, in the case where CSI is not known at the transmitter side, the
transmitted power has to be distributed equally in all of the sub-channels. Therefore
the auto-correlation function of the transmitted signals is given as

Rxx = InT
. (3.24)

This might not be the optimal distribution of the input correlation matrix, since
the channel gains are not Rayleigh distributed and the additive noise is not purely
Gaussian. However, without the CSI it is reasonable to distribute the power equally
in all the sub-channels. Consequently, the channel capacity of (3.20) can be rewrit-
ten as

C = log2 det

(

InR
+

1

σ2
m

HHH

)

. (3.25)

Using the decomposition of HHH = UΛUH and the identity det(Im + AB) =
det(In + BA), where A ∈ Cm×n and B ∈ Cn×m, the channel capacity can be
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Figure 3.9: MIMO PLC channel capacity when CSI is available at
transmitter with different A parameters and Γ = 0.01

expressed as

C = log2 det

(

InR
+

1

σ2
m

Λ

)

. (3.26)

Therefore, the channel capacity in the state m can be written

Cm = B ·
nmin∑

i=1

log2

(

1 +
λi

σ2
m

)

, (3.27)

and consequently the capacity of the MIMO channel can be represented as

CMIMO = B · e−A ·
M∑

m=0

nmin∑

i=1

Am

m!
· log2

(

1 +
λi

σ2
m

)

. (3.28)

It can be seen that in this case, the MIMO channel has been converted into nmin

virtual SISO channels with the channel gain λi for the ith SISO channel. The
channel capacity in (3.28) is the special case of the capacity in (3.23) where CSI
is not available at the transmitter and the power is equally allocated to all the
channels hence Pi = 1 for i = 1, 2, · · · , nmin.

The channel capacity of the MIMO PLC channel when CSI is not available at the
transmitter as a function of SNR is given is in Figure 3.8 and Figure 3.10. Figure
3.8 shows the variation in channel capacity as varying the parameter A in the
Middleton model, and Figure 3.10 shows the variation in channel capacity as varying
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Figure 3.10: MIMO PLC channel capacity when CSI is not avail-
able at the transmitter with different numbers of transmitters and

receivers.
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Figure 3.11: MIMO PLC channel capacity comparison between
having CSI and not having CSI.
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the number of transmit and receive feeds of PLC. It can be seen that increasing A
results in a decreased channel capacity for the channel is more impulsive. On the
other hand increasing the number of channels will increase the MIMO capacity as
expected.

Figure 3.11 demonstrates the comparison between the case with known CSI and the
unknown CSI. It can be seen that the availability of CSI at transmitter provides us
with the needed knowledge for applying water-filling algorithm and hence maximum
capacity is increased, specially in low SNR regions.

3.6 Chapter Conclusion

In this chapter, MIMO PLC as a major technique for multichannel transmission
in PLC applications has been discussed. Spatial multiplexing and spatial diversity
as two MIMO techniques have been described, where the former increases the data
throughput of the communication system and the latter improves the performance
and reliability of the transmission. Moreover, spatial correlation as the most im-
portant impairment in MIMO PLC systems has been described and it impact on
the performance of the transmission has been analyzed. Finally, the MIMO PLC
channel capacity in the presence of the impulsive noise has been derived for both
the cases when the channel state information is available and is not available at the
PLC transmitter, and the novel mathematical expressions for these capacities have
been presented.
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Chapter 4

Resource Allocation in
Multichannel PLC

4.1 Chapter Overview

In any communication system, wireless or wired, there are circumstances in which
the transmitter or the receiver has to make a decision in order to intelligently allo-
cate the available resources between the available options. This decision can directly
affect the overall performance of the system such as the bit error rate performance.
For instance in a MIMO system where more than one transmission channel are
available, the transmitter has the choice to transmit in all the available channels,
as well as for some reasons which will be discussed in this chapter, the choice to
transmit in only a few of the available channels. The choice of the selected channels,
if done correctly, can further improve the performance of the MIMO system and is
generally known as the channel selection problem. In such case, the transmitter for
instance can use the channel state information and base its selection policy on how
well the available channels are performing. By selecting the channels which suffer
the least from deep fading, noise and interference, the transmitter can only transmit
to the channels with better responses and therefore reduce the probability of losing
information and increase the probability of maintaining a reliable communication.

As another example of the so-called selection problems in communication systems,
we can name the relay selection problem in cooperative communication. In a com-
munication network where several communication nodes and links are available, the
transmission of data between two nodes which are far from each other in the network
is a challenging task and may result in loss of data and unreliable communication.
The noise and attenuation in the system makes it very difficult to establish a reliable
communication between nodes of great distances. To overcome this problem, the
cooperative communication is introduced where some intermediate nodes, known
as relay nodes, help the transmitter in order to transmit the information to the
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Multichannel scheme Introduced diversity Selection problem

MIMO transmission spatial diversity channel selection

Multihop transmission cooperative diversity relay selection

Multiband transmission selection diversity band selection

Table 4.1: Multichannel PLC and the resource allocation problems.

receiver. As a special case, we consider in this chapter a two-hop cooperative com-
munication where one relay node helps the process of data transmission between
transmitter and receiver by retransmitting the received data from data source to
the data destination. However, when a number of different relays are available,
the problem of selecting the right relay arises. Different relays result in different
intermediate channels between transmitter and receiver and can greatly affect the
overall performance. A proper relay selection policy can help the transmitter in
order to select the best relay from a range of available relays in order to achieve a
reliable communication.

Finally, another selection problem which frequently occurs in communication sys-
tems is the problem of selecting the right frequency band of transmission. In an
OFDM-based communication system, selecting and prioritizing the most favorable
subcarriers can be an important task which helps to avoid the faded parts of the
spectrum or avoid the narrowband interference which may be available only in cer-
tain parts of the spectrum. This process is known as spectrum assignment or equiv-
alently spectrum allocation. Spectrum allocation can be performed statically, that
is with fixed pre-allocated data subcarriers, as well as dynamically which changes
the data subcarriers throughout the transmission. The benefit of dynamic spectrum
allocation is when the communication channel has a time-variant nature and the
best subcarriers change position in the course of time. The selection policy in which
the appropriate data subcarriers are selected is very important since the condition
of the subcarriers directly affects the overall performance of the system.

All the problems mentioned above can be considered as a selection problem and the
search for a good selection policy based on some pre-defined criteria can be applied
to all selection problems. In the following we discuss and formulate in detail all the
three above-mentioned problems and try to mathematically formulate the selection
problem in each case. Table 4.1 summarizes the multichannel schemes and the
corresponding selection problems discussed in this chapter.

The rest of the chapter is organizes as follows. Section 4.2 describes the channel
selection problem and the corresponding spatial diversity in MIMO PLC systems.
Section 4.3 described the multihop transmission and the process of relay selection,
as well as the corresponding cooperative diversity in cooperative PLC systems.
Section 4.4 describes the multiband transmission and the corresponding dynamic
spectrum assignment problem. Moreover, in section 4.6, all the aforementioned
selection problems will be modeled as a multi-armed bandit problem, in order to

52



be used by the reinforcement learning algorithms proposed in the next chapter.
Finally, section 4.7 concludes the chapter.

4.2 Channel Selection Problem

4.2.1 Selection Diversity

As described in Chapter 2, Power line communication systems exploit the existence
of the power delivery infrastructures to transmit data signals through power line
conductors. The existence of multi-conductor power outlets makes it possible to de-
velop the idea of multichannel communication in power lines. In general, however,
power line channels exhibit time-variant statistical characteristics, which makes it
challenging to develop performance optimizing transmission schemes. As a partic-
ular instance, consider a scenario where only one channel has to be selected among
several available channels for data transmission in a multichannel PL C system. It
is known that time-variability of PLC channels as well as the impulsive noise of
the channel could yield sudden deep fades and thus dramatic data loss; hence, it is
of utmost importance to choose a suitable channel that, with high probability and
in an average sense, results in the highest data rate and is least affected by power
line noise and narrowband interference. An appropriate channel selection, however,
requires channel state information, which is very costly to acquire at the transmit-
ter with respect to feedback and signaling overhead. The problem of information
acquisition becomes even more challenging for statistically time-variant channels
like PLC channels, where pilot signals have to be transmitted throughout the entire
transmission. As a result, it becomes imperative to search for new solutions which
are able to cope with the channel selection problem in a general multichannel PLC
model, where channels are time-variant and information is scarce.

The channel selection problem has been studied in detail in the literature, for in-
stance in [104]–[106]. The benefits of channel selection and the selection diversity in
MIMO systems are aptly summarized and discussed in [107]–[109]. In the power line
communication literature, the problem of channel selection in a MIMO PLC system
has been addressed in [110] and solved by multi-armed bandit problem modeling
and machine learning algorithmic solutions. In the following, we firstly demonstrate
the selection diversity gained by the process of channel selection in a multichannel
PLC system where a single channel is to be selected for data transmission. Then, we
formulate the channel selection problem in MIMO PLC and indicate the challenges
which we have to face.

Let us assume a MIMO power line communication system with N transmit ports
at transmitter and M receive ports at receiver. The MIMO PLC system can use all
the M × N available channels and establish a full MIMO transmission. However,
because of the frequency selective and time-variant nature of the PLC channel
and also the spatial correlation between the MIMO channels, as described in the
previous chapter, the MIMO channels may perform at a sub-optimal level and
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Figure 4.1: MIMO PLC system with channel selection at trans-
mitter.

decrease the performance and reliability of the channel. To overcome this problem
transmit selection diversity is introduced, where one or more transmit ports from
all the available ports are selected for data transmission. Similarly, receive selection
diversity refers to the selection of one or more receive ports from which the data is
received. This selection is based on the performance of the corresponding channel,
that is the channels which result in a better communication are to be selected for
data transmission. In this thesis, we consider the case of transmit selection diversity
where 1 ≤ L ≤ N transmit ports are selected for data transmission as depicted in
Figure 4.1.

The selection process at the transmitter depends on the availability of the channel
state information at the transmitter. When no channel state information is available
at the transmitter, transmit diversity can be obtained through Alamouti space-
time diversity scheme, or the extended orthogonal space-time block code (OSTBC)
[111]. In this case, due to the absence of channel state information at transmitter,
the transmitted power is distributed equally among transmit ports to maximize
the channel capacity. For a single receive port when an OSTBC is employed, the
received SNR is given by [111]

Sr =
s

N

N∑

i=1

|hi|2, (4.1)

where hi denotes the MIMO channel between the i-th transmit port and the receiver,
and s is the corresponding SNR of that particular channel. Therefore, the received
signal to noise ratio approaches the average signal to noise ratio for transit diversity
when N increases.

When the channel state information, through a feedback from the receiver, is avail-
able at the transmitter, the best L channels can be selected for data transmission.
Let us assume the special case when a single transmit port is selected and there-
fore L = 1. This can significantly reduce the hardware cost and complexity. The
use of the best channel of the available transmit channels also reduces the chance
of spatial correlation and the corresponding channel degradation. When a single
transmit port is selected, the average SNR is given by [112]

Sr,CSI = s̄

N∑

i=1

1

i
, (4.2)

where which s̄ is the average SNR.
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The most important aspect of the transmit selection diversity is the ability to select
the best channel from the available channels in the MIMO PLC system. When
channel state information is available at transmitter, the aforementioned selection
can be performed without any problem using this information. However, acquiring
the channel state information and feeding this information back to the transmitter
is not an easy task and requires a lot of overhead and increases complexity of
the system and implementations. Therefore, it would be very convenient if the
channel selection procedure were to be performed without any prior knowledge of
the channel. In this case, the selection policy can be based on random selection of
the transmitting channel or based on a fixed pre-defined selected channel. Neither
of these methods can result in an optimum selection policy which gives the best
performance. In the next chapter a set of machine learning algorithms are being
introduced, which help the transmitter to perform the channel selection without
any prior knowledge of the channel state information and have a near optimum
performance at the same time.

4.2.2 Channel Selection at MIMO PLC Transmitter

Let us formally introduce the channel selection problem at the MIMO PLC trans-
mitter. We consider a scenario in which a set K of K PLC channels are available in
a MIMO PLC system.1 At the transmitter, at each time slot tj , a channel k ∈ K is
to be selected for data transmission in that time slot based on some known selection
policy. We do not transmit at the same time in all available channels as done in
MIMO PLC transmission, whereas we are interested in a scenario in which only
one channel is to be selected among numerous available channels for transmission.
The most important criterion for our decision is the transmission performance in
the selected channel. The transmission performance is measured in terms of data
rate (here, also referred to as utility), which can be expressed as a function of the
channel matrix H [7]

ut(k) ∼ H. (4.3)

Clearly, as channel gains exhibit time-variant statistical characteristics, and in par-
ticular, time-variant mean, the utility function given by (4.3) can also be considered
as non-stationary. However, it is a strictly increasing function of channel gains, and,
therefore, higher channel gains yield higher utility. Now, assume that the trans-
mission is performed in T trials, and the selected channel at time t is denoted by
at. Intuitively, the transmitter desires to maximize its accumulated utility over the
transmission time. Formally,

maximize
at∈K

T∑

t=1

ut(at). (4.4)

The maximization in (4.4) is however not feasible, since without prior channel
knowledge, the objective function is not available. Therefore, at each time t, the

1Note that to satisfy the Kirchhoff’s law and for simplicity we assumeK = 4 in the simulations.
However the results are valid for any value of K.
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transmitter might opt to select the best channel in an average sense. That is, at
time t, it tries to select channel k∗

t with

µk∗,t = µ∗
t = max

k∈K
µk,t, (4.5)

so that the average utility is also maximized in an average sense. With the chan-
nel knowledge at transmitter and using an exhaustive search through the available
channels, this can be achieved and the best channel can be selected for every trans-
mission. However, accessing the channel knowledge requires the transmission of
pilot signal throughout the whole transmission and that introduces a tremendous
amount of undesirable overhead in the system which makes the implementation
more difficult and increases the costs. Given no prior information about the chan-
nel, however, this is not a trivial task to accomplish. As described in the next
chapter, machine learning algorithm can help to achieve such a task without the
undesirable overhead.

4.3 Relay Selection Problem

4.3.1 Cooperative PLC

In this section we introduce another selection problem that can emerge in PLC sys-
tems, namely the relay selection problem. In power line communication networks,
multiple network nodes are interconnected via the transmission lines and the data
signals flow between different nodes of the network. If the distance between source
and destination in a communication scenario is long, the limitation of the transmis-
sion range of the PLC node prevents the establishment of a reliable communication.
This limitation is due to the harsh environment of the PLC channel, for instance
frequency-selective fading, colored and impulsive noise, narrowband interference,
and low receiver sensitivity. To overcome this problem, cooperative communication
is used to transmit the data signals from source to destination with help of one or
more intermediate nodes. In this case, the source node can communicate directly
with nodes within its transmission range, and these nodes, in turn, can forward the
message to the destination node. The intermediate nodes are called relays and the
process of transmitting signals with the help of relays is referred to as multi-hop
communication or relaying.

The application of relaying in cooperative wireless communication has been studied
to a great extent. The use of relaying in cooperative power line communication
has been mentioned and studied for certain communication scenarios as well. For
example in [113] and [114], PLC relaying based on single frequency networking has
been introduced and its performance has been shown and discussed. Distributed
space-time coding for multi-hop transmission and decode-and-forward relaying has
been studied in [115] and [116], respectively. The concept of cooperative multi-hop
communication for PLC has been first introduced and discussed in [117], [22] and
[23]. Existence of many intermediate nodes between source and destination, results
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in the existence of many optional paths or routes to follow. This situation gives rise
to the problem of proper relay selection, where the challenge is to pick the optimal
path that satisfies the needed performance requirements. In [23] the relay selection
problem has been discussed and the link rates has been introduced as a figure of
merit for different relay selection criteria.

We consider the two-hop cooperative communication scenario, in which the trans-
mitted signal from source travels to an intermediate relay before reaching the desti-
nation. We consider N available intermediate relay nodes, from which one of them
as the relaying node is to be selected, as depicted in Figure 4.2. However, the
proper relay selection policy requires the availability of channel side information at
the transmitter, which in turn requires an increased complexity of signal processing
and introduces a lot of overhead in the system. In order to avoid this problem, we
introduce a class of machine learning algorithms in the next chapter to solve the
relay selection problem without the channel state information at transmitter.

The idea of cooperative communication has been well investigated in wireless com-
munication, e.g. in [118], [119]. The principle of this idea is to realize spatial
diversity without the use of multiple antennas. In this case, cooperative users gen-
erate a virtual antenna array to achieve the desired cooperative diversity. This
concept has been extended to relay networks with multi-hop transmission between
source and destination, e.g. in [120]. It has been shown in [23] that the PLC relay
channel consists of two keyhole channels, and thus a diversity gain as observed for
wireless relaying can not be achieved for PLC. However, despite the lack of the
cooperative diversity advantage, cooperative multi-hop transmission can provide
significant power gains. In this paper, we assume a two-hop transmission, that is, a
source node transmits the message to a destination node through a relay node be-
tween them as depicted in Figure 4.3. A generalization to a multi-hop transmission
is straightforward.
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4.3.2 Relay Selection at PLC Transmitter

We briefly describe and formulate the relay selection problem in the PLC transmit-
ter and describe the different methods of selecting the relay for a two-hop trans-
mission. In a two-hop cooperative PLC, as depicted in Figure 4.3, three nodes are
available, namely source node S, selected relay node Ri, which is selected from a
sequence of all the available relays i ∈ {1, 2, · · · , N}, and destination node D. We
assign a number n to each node so that {S,Ri, D} ∼ {1, 2, 3}. The cooperative
transmission is assumed to follow a time division protocol, which means at each
time instant, only one node (either the source or the relay) can transmit data with
a fixed transmit power. As a figure of merit, we consider the end-to-end achievable
rate, also known as the end-to-end capacity. The end-to-end capacity in a two-hop
transmission for a link between node n and node n+1 is expressed as Cn,n+1, which
is a strictly increasing function of the transmitted signal-to-noise ratio (SNR) [7].
Therefore, less noise power results in a better link in terms of a higher end-to-end
capacity of the link.

We use the conventional strategy of fixed-rate two-hop transmission [121]. In a
fixed-rate cooperative transmission scheme, the relay node between the source and
destination nodes, re-transmits the received message which it receives from source
node, using the same transmission scheme and thus link rate, and then transmits
the data stream towards the destination node. This fixed-rate strategy is applied
over both hops with data rate over each hop denoted as R1 = R2 = R, for some
fixed value of R. In order to ensure reliable communication,

R ≤ Cn,n+1 (4.6)

must be satisfied over all hops. The selection of the fixed rate value ofR is important
it can directly influence the amount of the end-to-end capacity of the transmission.
By selecting the proper value of R, the end-to-end capacity can be increased which
directly results in an overall better performance of the system. It is proved in [121],
that the maximum end-to-end capacity can be achieved by choosing the value of R
as the minimum value of the end-to-end capacity of each hop. Formally, the fixed
rate of transmission can be expressed as

R = min
n=1,2

Cn,n+1. (4.7)

Therefore, the maximum rate that can be achieved over the entire transmission route
is determined by the minimum of the rates achievable on the individual links. In the
fixed-rate strategy of cooperative communication, the relay node retransmits the
received message using the same transmission scheme and thus link rate. Hence, the
maximum rate that can be achieved over this route is determined by the minimum
of the rates achievable on the individual links. Therefore, the end-to-end capacity
for a fixed-rate two-hop transmission can be expressed as

Ctotal =
1

2
min
n=1,2

Cn,n+1. (4.8)
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For fixed-rate cooperative transmission scheme, the receiver is assumed to have full
channel state information, whereas the transmitter is assumed not to have the chan-
nel state information. This assumption is due to the fact that acquiring the channel
state information at transmitter for PLC systems causes undesirable overhead in the
system. Furthermore, the time-variant nature of the PLC channels, as described in
the previous section, demands acquiring of the channel state information through-
out the transmission, which results in an inefficient transmission scheme. Without
access to the channel state information at the transmitter, however, selecting a relay
for two-hop transmission among N available relays, is not an easy task. We wish to
have a relay selection strategy which results in a high end-to-end capacity Ctotal, or
equivalently results in the selection of a relay which provides the best link quality
for both transmission hops. Formally, we aim to solve the following maximization
problem;

maximize
Ri∈{R1,R2,··· ,RN}

Ctotal. (4.9)

Let us assume the scenario in which the channel conditions are unknown at the
transmitter. We consider three relay selection strategies to maximize the total end-
to-end capacity without any information about the conditions of the channel at
transmitter.

1. Fixed selection: in this strategy, a fixed relay node is assigned for cooperative
transmission between the source and destination, regardless of the instanta-
neous channel conditions. This strategy neglects the variations is the PLC
channel and therefore is not an optimal method of relay selection.

2. Random selection: in this strategy, at each transmission time interval a ran-
dom relay is selected from the sequence of N arrays. This method neglects the
variations of the channel over time as well, however, the randomness of the
relay selection may decrease the probability of selecting a bad relay compared
to the fixed selection method.

3. Learning algorithms: we propose learning algorithms based on the multi-
armed bandit (MAB) model in machine learning. In our approach we consider
the variations of the channel over time which occurs in a cyclostationary
manner as described before, and try to adapt the relay selection with these
variations without the knowledge of channel state information at the trans-
mitter.approaches.

4.4 Spectrum Assignment Problem

4.4.1 Multi-Band Transmission

As described in Chapter 2, the PLC channel is time-variant and frequency-selective
which may also suffer from narrowband interference. Narrowband interference is
mainly caused by other PLC devices or other applications operating in the same
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frequency range as the device of interest. Narrowband interference can severely de-
grade the transmission performance and increase the bit error rate which eventually
leads to an unreliable communication. In order to establish a reliable communica-
tion and fulfill a certain quality of service (QoS) requirements, the narrowband
interference and the parts of the spectrum in which the PLC channel is in deep fade
should be avoided and the parts of the spectrum in which the PLC channel suffers
the least from fading and interference should be selected for data transmission. Such
a frequency band selection can be performed by evaluating the channel conditions
on the available subcarriers and prioritizing the available spectrum accordingly. Af-
ter evaluating the spectrum, the best frequency band is to be selected for the data
transmission. This process is referred to as spectrum assignment problem.

The use of PLC spectrum is regulated through standardizations, for instance in
[122], [123] for narrowband PLC. In these standards the spectrum in which the
data is supposed to be transmitted is determined and the OFDM parameters of the
data transmission has been established. Due to the time-variant nature of the PLC
channel and the random occurrence of the narrowband interference, some parts of
this spectrum might be in deep fade or suffer from narrowband interference. There-
fore, it has been suggested in the standards. that instead of the entire spectrum,
only one portion of the spectrum be used for data transmission. The transmitter
may decide the frequency band in which the data is going to be transmitted, al-
though the used sub-carriers have to be consecutive. This process is referred to
as band selection or spectrum assignment, and the selection policy is based on the
behavior of the channel. Therefore, the knowledge of channel state information is
necessary to perform the spectrum assignment and without the channel state infor-
mation this assignment may not lead to an optimal band selection. The problem
of spectrum assignment without the channel state information at transmitter is
addressed in the next chapter.

The problem of spectrum assignment has been studied extensively in wireless com-
munication, for instance in [124]–[126]. Dynamic spectrum assignment has been
introduced to PLC applications in [127] where the authors study a low-bandwidth
PLC system where the spectrum allocation is performed based on the available
channel state information at transmitter. In [110], the authors model the channel
selection problem as a MAB and perform channel selection with unknown chan-
nels at transmitter. In this thesis we consider the problem of dynamic spectrum
assignment with unknown channel at transmitter.

The spectrum assignment process can be performed as a fixed frequency assign-
ment technique or dynamically throughout the data transmission. In the fixed
spectrum assignment, the portions of the spectrum which result in the best bit er-
ror rates are selected before the transmission begins and stay the same throughout
the transmission. This frequency assignment technique is applicable for stationary
scenarios where for instance the location and intensity of the narrowband interfer-
ence remains constant during the transmission. The time-variant nature of the PLC
channels makes this method non-efficient due to the changes of the PLC channel
throughout the transmission. For instance, the best frequency band at the start of
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Parameter Value

Start frequency 154.6875 kHz

End frequency 487.5 kHz

Total number of subcarriers 256

Total number of used subcarriers 72, 36, 18

Number of cyclic prefix samples 30

Subcarrier spacing 4.6875 kHz

Sampling Frequency 1.2 MHz

Table 4.2: Parameters of FCC-above-CENELEC frequency band.

Band Start Frequency [kHz] End Frequency [kHz] Subcarriers

1 154.6875 487.5 72

2 154.6875 318.75 36

3 323.4375 487.5 36

4 154.6875 234.375 18

5 239.0625 318.75 18

6 323.4375 403.125 18

7 407.8125 487.5 18

Table 4.3: Spectrum division in FCC-above-CENELEC.

the transmission might not remain the best band and suffer from narrowband in-
terference after some time has passed. Therefore, the monitoring and selecting the
available spectrum have to be performed throughout the transmission in pre-defined
intervals. In the next section, we briefly define the problem of dynamic spectrum
allocation at PLC transmitters.

According to the narrowband PLC standards, the frequencies between 154.6875
kHz and 487.5 KHz have been dedicated to the FCC-above-CENELEC band. This
frequency band is dedicated to an OFDM-based transmission which is divided into
a total of 72 data subcarriers. The frequency and OFDM parameters of the FCC-
above-CENELEC frequency band in narrowband PLC is summarized in Table 4.2.
The spectrum division properties and the corresponding seven available sub-bands
for spectrum assignment and their specifications are presented in Table 4.3.

Moreover, this frequency range can be further divided into two frequency bands of
36 subcarriers with the same inter-subcarrier spacing, and the data can be trans-
mitted in either of the two 36-subcarrier-long sub-bands. Each frequency band
with 36 subcarriers can, in turn, be further divided into two frequency sub-bands
of 18 subcarriers with the same inter-subcarrier spacing as before, making four 18-
subcarrier-long frequency sub-bands, and the data can be transmitted in either of
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Figure 4.4: FCC-above-CENELEC spectrum partitions with seven
different frequency bands available.

the four 18-subcarrier-long sub-bands. The different sub-bands and their relative
frequency ranges have been illustrated in Figure 4.4. As shown in this Figure,
there are seven different frequency bands available which can be selected for data
transmission, each with its specific number of data subcarriers. The reason behind
choosing a different band and even moving to a frequency band with less data sub-
carriers can be the fact that some parts of the whole FCC-above-CENELEC band
can be affected with deep fade and severe narrowband interference. Therefore, se-
lecting another available band even though may reduce the achievable throughput,
however can significantly increase the reliability and performance of the transmis-
sion.

The OFDM parameters for each of the sub-bands do not change during a band tran-
sition. In other words, each of the six sub-bands with 36 or 18 data subcarriers as
well as the main frequency band with 72 data subcarriers have the same frequency
parameters such as inter-subcarrier spacing, number of FFT samples, sampling fre-
quency, etc. This helps to have the same transmitter and receiver filters and the
need for designing and implementing new filters is eliminated. On the other hand,
if the frequency sub-bands have been shifted or have changed the frequency param-
eters, each sub-band would need a new transmitter and receiver filter redesigned
and reimplemented specifically for each frequency band transition. In order to be
able to have the same frequency parameters and consequently use the same filters at
transmitter and receiver when we bisect the spectrum, any consecutive sub-matrix
of the OFDM modulation matrix with 18 or 36 subcarriers must have an inverse or
equivalently have a full rank. It can be shown that any k×k consecutive sub-matrix
of an IDFT matrix has indeed full rank. Note that the sub-matrix has to consist of
consecutive subcarriers in order to fulfill the full rank requirement.

4.4.2 Dynamic Spectrum Assignment at PLC Transmitter

The spectrum assignment process can be performed as a fixed frequency assignment
technique or dynamically throughout the data transmission. In the fixed spectrum
assignment, the parts of the spectrum which result in the best bit error rates are
selected before the transmission begins and stay the same throughout the trans-
mission. This frequency assignment technique is applicable for stationary scenarios
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where for instance the location and intensity of the narrowband interference re-
mains constant during the transmission. The time-variant nature of the PLC chan-
nels makes this method non-efficient due to the changes of the PLC channel during
the transmission. Therefore, monitoring and selecting the available spectrum band
have to be performed throughout the transmission in pre-defined intervals. Such
sub-carrier evaluation introduces tremendous amount of overhead and complexity
into the system and requires to be performed constantly throughout the transmis-
sion due to the time-variant nature of the PLC channel. To avoid this problem, we
propose reinforcement learning algorithms which can in a reasonable time find the
best part of the spectrum without any a priori knowledge of the channel conditions
at transmitter.

Formally, let us assume Bi, 1 ≤ i ≤ 7, to be the selected band as depicted in Figure
4.4. As a figure of merit we use the average transmitting power P̄i(Q) required to
maintain a certain QoS of Q. We select the transmitting band at the beginning
of each data frame transmission, here and thereafter known as episodes, based on
some selection policy π. The selection policy should solve the following problem

minimize
Bi

P̄i(Q). (4.10)

Solving this problem yields i and consequently the corresponding frequency band
Bi which is to be selected for data transmission. Solving this problem and finding
the best band, requires the knowledge of the channel which is not a suitable solution
in PLC as described in the previous section.

4.5 General Resource Allocation Problem

In the previous subsections, we briefly discussed different problems emerging in the
multichannel PLC. All these problems have decision making as their core concept.
In these problems, the PLC transmitter is faced with multiple options and it is try-
ing to allocate its resources, in this case power, into the right options. In a real PLC
system, all three resource allocation problems can occur at the same time. In other
words, the PLC transmitter can choose the proper transmitting port at the trans-
mitter, choose the proper intermediate relay node for a cooperative communication,
and finally, choose the portion of the spectrum in which the data is transmitted.
Each resource allocation strategy can in turn improve the performance of the sys-
tem by a proper decision making policy. This causes the transmitter to transmit
the data packets throughout the transmission time, via different transmitting ports,
through different relay nodes and in different parts of the spectrum. Therefore, by
proper decision making algorithms, a significant improvement in the overall sys-
tem performance can be expected. However, given specific circumstances, the PLC
transmitter may encounter any subset of these problems. In the following, we focus
on each problem individually. Before further investigating the proposed solutions
to these problems, we use a powerful mathematical model in order to model these
problems to use them as building blocks of machine learning algorithms.
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4.6 Multi-armed Bandit Problem Modeling

4.6.1 Multi-armed Bandit Model

In the previous chapter, we discussed several selection problems which may occur in
the power line communication. At each of these problems, the PLC transmitter faces
the problem of selecting a parameter or a set of parameters between several available
options. The outcome of each selection would directly influence the fundamental
properties of the communication system and the reliability of the transmission.
Therefore, a proper selection policy can greatly influence the overall performance
of the communication system and is of utmost importance. This selection policy
should be based on certain criteria which helps the selecting agent, i.e. the PLC
transmitter, to perform a knowledge based selection in order to obtain an optimal
performance. The selection criteria vary in each case of selection problems. For
instance, for the selection problems discussed in Chapter 3, the following criteria
may be considered:

• The channel selection process at the transmitter of a MIMO PLC system is based
on the conditions of the different channels which are formed by the MIMO system
between the transmitter and the receiver.

• The relay selection process at the transmitter of a cooperative PLC system in a
PLC network is based on the conditions of the channels which are formed at each
hop of the transmission between source, relay, and the data destination.

• The spectrum selection process at the transmitter of a narrowband PLC system
is based on the conditions of each subcarrier at the time of transmission.

It can be observed that in order to perform a proper selection policy, the decision has
to be eventually based on the conditions of the PLC channel. Therefore, obtaining
the channel conditions at the transmitter is necessary in order to be able to make
a knowing decision based on the information obtained from the channel state. To
acquire the channel state information at the transmitter, the transmitter has to
transmit pilot signals at pre-defined locations in time and frequency.

The receiver then receives the pilot signals and performs channel estimation based
on the received pilot signals to obtain the channel state information. The channel
state information is then fed back to the transmitter to be used in the process of
selection. However, as described in Chapter 2, the PLC channel is time variant
and frequency selective. This means that in order to obtain the channel state infor-
mation, pilot signals have to be transmitted regularly throughout the transmission
as well as all the subcarriers. Moreover, even when only a single selection has to
be made, due to the time-variant nature of the PLC channel, all the other options
need to be regularly monitored in order to follow the changes in the environment.
Therefore, the channel estimation should be performed not only in time and fre-
quency domains, but also in different locations, links and channels. This makes a
tremendous amount of undesired overhead in the system as well as reducing the
data throughput.
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Due to the difficulties in acquiring the channel state information as described above,
it is a fair assumption to consider the channel conditions as unknown at the trans-
mitter. However, the channel state information is needed at the transmitter in order
to perform an informed decision in any type of described selection problems. To
solve this problem we propose the use of a class of problem modeling approaches
known as the multi-armed bandit (MAB) problem modeling. MAB is a class of
decision making problems introduced in machine learning, where a selecting agent
consecutively selects an arm (or action) from a set of predefined actions, and re-
ceives a reward drawn from some a priori unknown distribution. Only the reward
of played arm is observable at each trial. As a result of lack of information, at each
trial, the player may choose an inferior arm in terms of average reward, yielding a
regret that is quantified by the difference between the reward that would have been
achieved if the agent would have selected the best arm with the highest reward and
the actual achieved reward. The solution to the MAB problem aims to find the
decision policy which results in the highest reward, or equivalently, results in the
lowest regret. In other words, the goal is to perform a decision without any a priori
knowledge of the channel, which results in the best performance.

MAB problems have been extensively used in wireless communication to model the
problem of balancing exploitation and exploration (see for instance [128]–[131]).
The exploitation refers to the use of the existing knowledge of the environment in
order to receive the highest reward and exploration refers to the searching for a new
decision and reacting to the changes in the environment. The key feature of the
MAB problem modeling is the establishment of a trade-off between exploitation
and exploration. The applications of MAB in wireless communication is aptly
summarized in [132]. The MAB problem modeling was first introduced to the PLC
systems for the channel selection problems in [110]. It has been shown that the
MAB problem modeling in combination with machine learning algorithms provides
a near optimal solution to the single channel selection problem in MIMO PLC
systems without the channel state information at the transmitter.

In this chapter, the MAB problem modeling approach in both stationary and non-
stationary systems is briefly introduced. Furthermore, the formal formulation of the
channel selection problem in MIMO PLC, the relay selection problem in cooperative
PLC networks, and the spectrum assignment in narrowband PLC systems, based
on the MAB problem modeling are introduced.

Let us consider the problem of making a decision in an environment of incomplete
information. The selecting agent (in out case the PLC transmitter), is constantly
faced with the problem of maximizing its profit based on its current knowledge
of the environment and trying to learn more about the environment in order to
improve the quality of its decisions. This problem is widely modeled by the MAB
problem [133], [134]. The selecting agent is repeatedly faced with a decision between
N different choices, here and thereafter referred to as actions or arms. Depending
on the selected arm, a reward is observed. The reward in only observable after the
selection has been made and the reward of the other choices cannot be revealed
to the selecting agent. The goal of the selecting agent is to maximize the average
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reward over the time of operation. The MAB problem can be divided into three
separate problems as described in the following.

1. Stationary bandits: in these problems the environment in which the decision
making process is taking place does not change over time. Therefore, as time
of the operation increases the knowledge of the environment at the selecting
agent increases and better decisions are made.

2. Non-stationary bandits: in these problems the environment changes during
time. Therefore, the selecting agent has to react to the changes in the envi-
ronment in an appropriate amount of time. Consequently, the recent rewards
are more relevant to the selecting agent than the older ones.

3. Adversarial bandits: these problems were introduced in [135]. In this problem
the rewards collected by the agent do not follow some probability distribution
but are generated by an adversary in order to make things more complicated
for the agent. Since this scenario is out of the scope of this thesis and does
not apply to the PLC systems, we do not discuss it further.

Let us consider a general selection problem in a PLC system. Let us assume a set
K of available options from which the selecting agent is able to select, also known
as actions or arms. Each frame of data is transmitted after selecting an arm k ∈ K,
k = {1, 2, · · · , N}, where N is the number of available arms. The selected arm
results in a particular total profit, also known as a reward. We define an episode as
a slot in which a frame of data is transmitted according to a selected arm by the
selecting agent. At each episode, an action at is selected, yielding the instantaneous
reward Xt(at). The rewards {Xt(k)}t≥1 for each arm k ∈ {1, 2, · · · , N} is calculated
according to the received signal and this information is fed back to the transmitter
via a robust mode of transmission, which is normally chosen as the acknowledgment
(ACK) packet which is already being fed back to the transmitter.

The selecting agent chooses an arm at each episode according to a certain selecting
policy π. Let us denote the expectation of the reward Xt(k) by µk,t. Let k

∗
t denote

the optimal arm at time t, with expected reward µk∗,t, where by definition

µk∗,t = µ∗
t = max

k∈K
µk,t. (4.11)

We define the instantaneous regret at time t as the difference between mean rewards
of the selected arm and the optimal arm. The expected regret of a decision making
policy π after T trials, therefore, can be expressed as

Rπ,T = Eπ

[
T∑

t=1

(µ∗
t − µat,t)

]

, (4.12)

where E represents the mathematical expectation. The goal of a good policy is to
select the optimal arm at each trial, which results in a minimum expected regret
over all trials. Therefore, the goal of the MAB problem is to minimize the expected

66



regret with a certain decision making policy π, or equivalently

minimize
π

Rπ,T . (4.13)

The best decision policy of a MAB problem is one that yields the best results for
the equation (4.13).

4.6.2 Stationary and Non-stationary Bandits

MAB problem modeling of the communication system problems are generally di-
vided into stationary and non-stationary bandits. In stationary bandit problems,
the environment in which the selecting agent performs its decisions is considered
to be stationary and not changing over time. At each episode, the selecting agent
chooses an arm based a certain selection policy which is, in turn, based on the
current knowledge of the environment. This knowledge at the beginning of the op-
eration is limited and may not correspond the actual conditions of the environment.
However, over time the selecting agent obtains more and more information about
the environment in the form of observed rewards. As the information about the
environment at the side of selecting agent increases, the quality of the decisions will
increase as well. Since the environment is stationary, the decision making needs to
explore the environment less as the time of operation increases and the confidence
on the decisions becomes stronger as well. This means that in a stationary environ-
ment the exploration of the environment becomes less frequent in order to exploit
the existing information. Figure 4.5 illustrates the trade-off between exploitation
and exploration in a stationary bandit problem. As depicted in this figure, as
the time of the operation increases less explorations are necessary and the average
reward can be increased by increasing the number of exploiting episodes.
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Figure 4.5: Exploitation-exploration trade-off in a stationary ban-
dit.

On the other hand, in a non-stationary bandit, the environment is changing over
time. This can be seen as a more realistic scenario for PLC problems, due to the
time-variant nature of the PLC channel. In this case, the selecting agent faces the
problem of adapting itself to the changes of the environment and reacting to these
changes in an appropriate time. For this reason, the trade-off between exploitation
and exploration is more than ever important. More exploitation results in a better
performance and higher average rewards but results in a delayed reaction to the
changes in the environment. On the other hand, more exploration results in a
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faster reaction to the changes of the environment, however, it may also result in the
selection of a sub-optimal arm which, in turn, results in a decrease in performance
and lower average reward. Finding the optimal trade-off between a high average
reward and a fast reaction to the changes of the environment is the main focus
of a proper solution to the non-stationary bandit problem. Figure 4.6 depicts the
exploitation-exploration trade-off in a non-stationary bandit in two scenarios. In
(a), the explorations are more frequent which results in a faster reaction to the
changes of the environment, whereas in (b) the exploitations are more frequent
which results in a slower reaction to the changes in the environment but a higher
average reward.
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Figure 4.6: Exploitation-exploration trade-off in a non-stationary
bandit with (a) more exploration and (b) more exploitation.

4.6.3 Channel Selection Problem as MAB

We consider a scenario in which a set Kc of Kc PLC channels are available in a
MIMO PLC system.2 At each episode, a single channel kC ∈ Kc is selected for data
transmission. This can be considered as a single transmit diversity in a MIMO
system as described in Chapter 3. In other words, we do not transmit at the same
time in all channels as done in a conventional MIMO transmission, whereas we are
interested in a scenario that only one channel is to be selected among numerous
available channels for transmission in order to exploit the single transmit diversity
of the system. The most important criterion for our decision is the transmission
performance in the selected channel. The transmission performance is measured
in terms of data rate (here, also referred to as utility). Clearly, as channel gains
exhibit time-variant statistical characteristics, and in particular, time-variant mean,
the utility function given above is also a non-stationary function. However, it is a
strictly increasing function of channel gains, and, therefore, higher channel gains
yield higher utility. Now, assume that the transmission is performed in T trials,
and the selected channel at time t is denoted by a

(c)
t . Intuitively, the transmitter

2Note that since the PLC signals are formed on a set of conductors, they must satisfy the
Kirchhoff’s circuit laws. For simplicity and the ability to conduct simulations, we assume Kc = 4.
However the results are valid for any value of Kc.
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desires to maximize its accumulated utility over the transmission time. Formally,

maximize
a
(c)
t ∈Kc

T∑

t=1

u
(c)
t

(

a
(c)
t

)

. (4.14)

The maximization in (4.14) is however not feasible, since without prior channel
knowledge, the objective function is not available. Therefore, at each time t, the
transmitter might opt to select the best channel in an average sense. That is, at
time t, it tries to select channel k∗

t with

u
(c)
t (k∗) = max

k∈Kc

u
(c)
t (k), (4.15)

so that the average utility function is also maximized in an average sense. With
the channel knowledge available at the PLC transmitter and using an exhaustive
search through the available channels, this can be achieved and the best channel
can be selected for every transmission based on the available knowledge. However,
accessing the channel knowledge requires the transmission of pilot signal throughout
the whole transmission and that introduces a tremendous amount of undesirable
overhead in the system. Given no prior information, however, this is not a trivial
task to accomplish. The expected regret of some decision making policy π after T
rounds (episodes), denoted by R

(c)
π,T , yields

R
(c)
π,T = Eπ

[
T∑

t=1

(

u
(c)
t (k∗)− u

(c)
t

(

a
(c)
t

))
]

, (4.16)

Let P be the set of all possible decision making policies. The agent aims at min-
imizing its average regret over the horizon by choosing the optimal policy, which
guides the agent for selecting an arm at each trial, so that the average regret is
minimized. This goal can be formally stated as

minimize
π∈P

R
(c)
π,T . (4.17)

Now recalling from the problem formulation, in multi-channel PLC, our goal is to
select the best channel k∗

t with the utility function of u
(c)
t (k∗), so that the average

utility is maximized. As channel characteristics are unknown a priori, and after
transmitting in any channel, only the performance of that specific channel can be
observed, the problem resembles a MAB, where arms are mapped to PLC channels.
Furthermore, as described previously, PLC channels are time-variant, in the sense
that although channel gains can be attributed to a log-normal distribution, the
statistical characteristics do not remain constant over time. Therefore, it can be
assumed that the problem is a non-stationary bandit problem.
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4.6.4 Relay Selection Problem as MAB

We consider the two-hop cooperative communication scenario, in which the trans-
mitted signal from source travels to an intermediate relay before reaching the des-
tination. We consider Nr available intermediate relay nodes, from which one of
them as the relaying node is to be selected for our two-hop fixed-rate transmission
scheme. In the following, we model the PLC single relay selection problem as a
MAB problem. Let us assume a set Kr of available relay nodes, known as actions
or arms. Each frame of data is transmitted in one episode by selecting a relay node

kr ∈ Kr, kr = {1, 2, · · · , Nr}, (4.18)

resulting in a particular total end-to-end capacity as described in the previous chap-
ter, here and thereafter known as reward. At each episode t (corresponding to one

frame of data), an action a
(r)
t is selected, yielding the instantaneous reward Xt(a

(r)
t ).

The rewards {Xt(kr)}t≥1 for each arm kr ∈ {1, 2, · · · , Nr} is calculated according to
the received signal and this information is fed back to the transmitter via a robust
mode of transmission and the transmitter chooses an arm at each trial according to
a policy π. The only difference between the available relay nodes is the correspond-
ing link rate, which in turn is dependent on the channel response as well as the
noise power spectral density of the PLC channel. Therefore, we use the link rates
as a figure of merit for the modeling of the problem. Given the frequency response
Hn,n+1(f) for a link from node n to node n+ 1, the link rates are computed as [23]

Cn,n+1 =

∫ f2

f1

log2

(

1 +
ST |Hn,n+1(f)|2

SNΓ

)

df, (4.19)

where ST is the transmitter-side power spectral density, SN is the receiver-side
noise power spectral density, and Γ is the margin taking into account the gap
between information theoretic capacity and achievable rate using practical coding
and modulation schemes.

Let us denote the expectation of the reward Xt(kr) by µ
(r)
k (t). Let k∗

t denote the

optimal arm at time t, with expected reward u
(r)
t (k∗), where by definition

u
(r)
t (k∗) = max

kr∈Kr

µ
(r)
k (t). (4.20)

We define the instantaneous regret at time t as the difference between mean rewards
of the selected arm and the optimal arm. The expected regret of a decision making
policy π after T episodes, therefore, can be expressed as

R
(r)
π,T = Eπ

[
T∑

t=1

(

u
(r)
t (k∗)− u

(r)
t

(

a
(r)
t

))
]

, (4.21)

where E represents the mathematical expectation. The goal of a good policy is to
select the optimal arm at each trial, which results in a minimum expected regret
over all trials. Therefore, the goal of the MAB problem is to minimize the expected
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regret with a certain decision making policy π, or equivalently

minimize
π

R
(r)
π,T . (4.22)

Now recalling from the problem formulation, in a PLC network, our goal is to se-
lect the best relay k∗

t so that the average reward is maximized or equivalently the
regret is minimized. As link rates are unknown a priori, and after transmitting in
any route, only the link rate of that specific route can be observed, the problem
resembles a MAB, where arms are mapped to the selected relay. Furthermore, as
described previously, PLC channels are time-variant, and consequently the statisti-
cal characteristics do not remain constant over time. Therefore, it can be assumed
that the problem is a non-stationary bandit problem.

4.6.5 Spectrum Assignment Problem as MAB

In the spectrum assignment problem, as described in the previous chapter, the
exploitation exploration problem is defined as exploring the available spectrum to
find a profitable transmission band while taking the empirically best frequency band
as often as possible. In the following, we model the PLC spectrum assignment
problem as a MAB problem.

A set of seven available frequency bands Bi, i ∈ {1, 2, · · · , 7}, as described in
the previous chapter, are modeled as actions of the MAB problem. The selecting
agent is the PLC transmitter and each frame of data is transmitted by selecting
an action a

(b)
k = Bi where k corresponds to that particular data frame. Data

transmission through the selected arm results in a particular average transmitting
power P̄ (Q, a

(b)
k ), required to reach a particular QoS of Q with an upper-bound of

Pm which is defined as the maximum transmitting power of the PLC transmitter
as

P̄
(

Q, a
(b)
k

)

≤ Pm. (4.23)

Based on the limit of transmission power at the PLC transmitter, the achieved
reward at each trial Xk(a

(b)
k ) is defined as the difference between the maximum

transmission power and the observed average transmitted power and can be written
as

Xk

(

a
(b)
k

)

= Pm − P̄
(

Q, a
(b)
k

)

. (4.24)

Let us denote the expectation of the reward Xk(a
(b)
k ) by µk(a

(b)
k ). Let a

(b)
k∗ denote

the optimal action (or equivalently the best frequency band) corresponding to the

k-th data frame, with expected reward µk(a
(b)
k∗ ), where by definition

µk

(

a
(b)
k∗

)

= max
a
(b)
k

µk

(

a
(b)
k

)

. (4.25)

We define the regret at trial k as the difference between mean rewards of the selected
action and the optimal action. The expected value of the regret of a decision making
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policy π after Kb trials, therefore, can be expressed as

R
(b)
π,Kb

= Eπ

[
Kb∑

k=1

(

µk

(

a
(b)
k∗

)

− µk

(

a
(b)
k

))
]

, (4.26)

where E represents the mathematical expectation. The goal of a good policy is to
select the optimal arm at each trial, which results in a minimum expected regret
over all trials. Therefore, the goal of the MAB problem is to maximize the average
reward over all trials or equivalently, to minimize the expected regret with a certain
decision making policy π. Formally, we aim to solve the following problem

minimize
π

R
(b)
π,Kb

. (4.27)

It can be seen that equation (4.27) is the MAB model of the spectrum assignment
problem formulated as equation (4.10). Recalling from the problem formulation,
in a narrowband PLC system, our goal is to select the best spectrum portion of
the available spectrum so that the average reward is maximized or equivalently the
regret is minimized. As rewards are unknown a priori, and after transmitting in any
spectrum, only the reward of that specific spectrum can be observed, the problem
resembles a MAB, where arms are mapped to the frequency bands of the total
spectrum. Furthermore, as described previously, PLC channels are time-variant,
and consequently the statistical characteristics do not remain constant over time.
Therefore, it can be assumed that the problem is a non-stationary bandit problem.

4.7 Chapter Conclusion

In this chapter, the multichannel PLC has been analyzed in explored in more detail.
Three multichannel transmission scenarios, namely MIMO transmission, coopera-
tive multihop transmission, and multiband transmission have been described and
discussed in detail as the options of the PLC transmitter for a better communication
via exploiting the multiple communication channels available inherently in PLC in-
frastructures. Furthermore, the corresponding diversity of the aforementioned mul-
tichannel schemes and the generated selection problems have been described. It has
been shown that each selection problem can be solved by a proper decision making
strategy, which in turn can significantly increase the performance and reliability of
the communication system. However, it has been shown that in the state of the art
solutions, the decision making policy is based on the channel state information at
the PLC transmitter. Nonetheless, the channel state information is not accessible
at the PLC transmitter due to time- and frequency selectivity as well as feedback
delays of the channel estimation. In order to be able to propose a machine learning
strategy for obtaining a decision making policy independent of the channel state in-
formation, these selection problems have been modeled by a powerful mathematical
tool called the multi-armed bandit model. The MAB modeled problems will be used
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in the next chapter in order to propose a class of solutions based on reinforcement
learning.
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Chapter 5

Reinforcement Learning
Applications in Multichannel PLC

5.1 Chapter Overview

In chapter 3 we have presented three different selection problems which normally
occur in a PLC system and discussed each selection problem in detail. We have
formulated each selection problem as a MAB problem in Chapter 4 with accurately
defined reward functions and regret functions for each case. The MAB problem
for all the selection problems is a non-stationary bandit problem which concludes
in a well-defined minimization (or maximization) problem with certain constraints.
In this chapter we aim to solve these minimization problems with the assumption
of an unknown channel at the transmitter. This assumption is a key aspect of
the problem formulation, since as described in the previous chapters, obtaining the
channel state information at the PLC transmitter is a challenging task and cannot
be easily performed for all the times and all the frequencies. Therefore, we propose
the use of reinforcement algorithms in order to solve the MAB problems without
any a priori knowledge of the channel state information.

Reinforcement learning is an area of machine learning which involves in solving the
problem of decision making of a selecting agent in an unknown environment in order
to maximize some notion of cumulative reward. Therefore, reinforcement learning
is a proper solution to the MAB problems and can provide the optimum or near
optimum decisions in an unknown environment. Reinforcement learning has been
extensively used in the selection problems of the communication theory (see for
instance [136]–[139]). In this thesis we describe three of the most common families
of reinforcement learning algorithms in order to solve the MAB problems of PLC.
Each algorithm has been chosen based on the specific needs and system design of the
corresponding MAB problem. Furthermore, we propose four new algorithms based
on the reinforcement learning algorithms which are further adapted to the PLC
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systems in order to achieve the optimal result. In the following we present each al-
gorithm in detail and discuss the performance analyses. The reinforcement learning
algorithms that are being discussed in this chapter are categorized as follows.

1. Upper confidence bound (UCB) algorithms

(a) The UCB-1 algorithm

(b) The discounted UCB algorithm

(c) The sliding window UCB algorithm

(d) The proposed cyclic discount UCB algorithm (novel)

(e) The proposed cyclic window UCB algorithm (novel)

2. Probability matching technique

(a) The seminal algorithm

(b) The proposed algorithm (novel)

3. Greedy algorithms

(a) The seminal algorithm

(b) The ε-greedy algorithm

(c) The proposed greedy algorithm (novel)

The rest of the chapter is structured as follows. Section 5.2 describes the upper
confidence bound algorithms as well as the two proposed algorithms based on the
upper confidence bound algorithms. Section 5.3 describes the probability matching
technique and the proposed algorithm based on the probability matching technique.
Section 5.4 describes the greedy algorithms and the proposed algorithm based on
the greedy algorithms. Simulation results are presented for all the algorithms, which
shows the performance improvement for the proposed algorithms. Finally, section
5.5 concludes the chapter.

5.2 Upper Confidence Bound Algorithms

5.2.1 UCB-1 Algorithm

The class of upper confidence bound (UCB) algorithms were first introduced to
machine learning applications in [140] and further analyzed in [141]. These algo-
rithms were investigated in the literature ever since in order to solve the problem
of exploitation-exploration trade-off in an intuitive and efficient manner (see for
instance [142], [143]). Though the stationary formulation of the MAB problem
allows the UCB algorithms to address exploration versus exploitation trade-off,
it may fail to be adequate to model an evolving environment where the reward
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distributions undergo changes in time, same as a PLC channel. To model such sit-
uations, we need to consider non-stationary MAB problems, where distributions of
rewards may change in time. Therefore, non-stationary algorithms were developed
to address the problem of a changing environment [144]–[146]. Both stationary
and non-stationary algorithms have been used in communication theory in order to
solve the exploitation exploration trade-off problem in different scenarios (see for
instance [147]–[149]). In this section the conventional UCB algorithm for stationary
environments, namely the UCB-1 algorithms, as well as two of the most powerful
non-stationary UCB algorithms, namely discounted UCB and sliding window UCB
will be discussed in this section. Furthermore, simulation results are presented in
order to evaluate the performance of the algorithms.

The first algorithm that we consider is the seminal UCB algorithm, which is known
as the UCB-1 algorithm. This algorithm is mainly used in stationary scenarios
where the physical characteristics of the environment does not change over time.
Although the PLC channel cannot be considered as a stationary environment, but
since UCB-1 is the underlying algorithm for the other non-stationary algorithms,
we first investigate this algorithm.

Let us assume an environment with Narm arms. The algorithm runs for Nep times
which is the number of episodes of data transmission. At each episode i, an arm
ai is selected by the algorithm and the corresponding reward X

(UCB−1)
i (ai) will be

observed. In order to prioritize the arms, the concept of an upper bound is defined
as follows.
Definition 1. The upper bound of a confidence interval of an arm, here and there-
after known as the upper bound function, is denoted as a well-defined function
which presents the limits of the average reward which can be expected from that
arm. This function includes the obtained knowledge of the environment as well as
the accuracy of this knowledge.

Therefore, the upper bound function of each arm in the UCB-1 algorithm can be
expressed as the summation of two other functions:

1. The average reward function, X̄
(UCB−1)
i (ai), which denotes the empirical mean

of the observed rewards,

2. The padding function, c
(UCB−1)
i (ai), which denotes the accuracy of the upper

bound.

and hence, the upper confidence function of the arm ai which is denoted by U
(UCB−1)
i (ai)

can be written as [141]

U
(UCB−1)
i (ai) = X̄

(UCB−1)
i (ai) + c

(UCB−1)
i (ai). (5.1)

The average reward function is constructed from the past observed rewards and
represents the existing knowledge of the environment. Therefore, this function
becomes a more accurately representation of the exact average reward of the arm
as the number of the past episodes which use that arm increases. The average
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reward of arm ai is defined as [141]

X̄
(UCB−1)
i (ai) =

1

Ni(ai)

i∑

s=1

X(UCB−1)
s (ai)1{as=ai}, (5.2)

where 1{as=ai} returns one when the condition as = ai is fulfilled and returns zero
otherwise, and [141]

Ni(ai) =

i∑

s=1

1{as=ai} (5.3)

denotes the number of times arm ai has been played in the i first episodes. Equa-
tion (5.2) denotes the superposition of the observed rewards when the arm is played
which is averaged over all the instances in which that arm was played. This returns
the arm’s reward in an average sense with increasing accuracies over time of oper-
ation.

The padding function is designed in a way to be able to control the inaccuracies
of the average reward. In other words, the padding function is large when the arm
has been played only a few amount of times and therefore the inaccuracy in the
average reward is higher. After playing the arm more times, the average reward
will approach its actual value and at the same time the padding function shrinks
which indicates the accuracy of the average reward estimation. Hence, the bigger
the padding function is, the less experienced is that arm and the more inaccuracies
are involved in the estimation of the average reward. A standard choice for the
padding function is [141]

c
(UCB−1)
i (ai) = B

√

ζ log(i)

Ni(ai)
, (5.4)

where Ni(ai) is defined as Equation (5.3), B is an upper bound on the rewards
and is selected as the maximum value of the observed reward through many trials
of the algorithm, and ζ > 0 is some appropriate constant and is selected based
on empirical applications of the algorithm. By assigning appropriate values of ζ ,
this function can tune the performance of the UCB-1 algorithm to better results in
stationary environments.

The UCB-1 algorithm starts by the initialization phase, where all of the available
arms are played successively in order to obtain the initial information of all the
arms. After playing each arm, the returned reward of that arm is observed by
the algorithm and the upper bound of that arm is updated according to Equation
(5.1). After the initialization phase, all the arms have been played once and the
upper bound of all the arms are updated. Although, due to the fact that each arm
has been played only once, the padding functions are large and the average reward
informations are still inaccurate.

After obtaining the initial information, the next arm is selected by algorithm. The
selection policy is the selection of the arm with highest upper confidence bound
among all the available arms which represents a higher reward in an average sense.
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This selection policy can be formally expressed as

ai = argmax
1≤n≤Narm

U
(UCB−1)
i (an). (5.5)

The signal transmission is then performed through the selected arm and at the
end of the episode the returned reward of that arm is observed and once again
the upper bound of the selected arm is updated according to Equation (5.1). This
process repeats until the end of the transmission. Algorithm 1 summarizes the
UCB-1 algorithm.

Algorithm 1 UCB-1

1: for i=1 to Narm do

2: play arm ai = i.

3: observe the reward X
(UCB−1)
i (ai).

4: calculate the average reward of ai by Equation (5.2).
5: calculate the padding function of ai by Equation (5.4).
6: update the upper bound of ai by Equation (5.1).
7: end for

8: for i=Narm + 1 to Nep do

9: play arm ai selected by Equation (5.5).

10: observe the reward X
(UCB−1)
i (ai).

11: calculate the average reward of ai by Equation (5.2).
12: calculate the padding function of ai by Equation (5.4).
13: update the upper bound of ai by Equation (5.1).
14: end for

It has been proven [141], that the UCB-1 algorithm performs optimally in stationary
environments. The following theorem formally this proposition.
Theorem 1. The UCB-1 algorithm is optimal in the sense that its expected regret
matches the lower bound regret of all policies for stationary bandit problems [141].

5.2.2 Discounted UCB Algorithm

Theorem 1 denotes the optimality of the UCB-1 algorithm for stationary bandits.
However, for non-stationary bandits the UCB-1 algorithm cannot be considered
as an optimal policy. This is due to the fact that for non-stationary bandits, the
environment is subject to the changes in the fundamental parameters of the environ-
ment, however the UCB-1 algorithm does not consider these changes and therefore
is not able to react to them in a timely manner.

For non-stationary bandits the reward values are assumed to be from an unknown
distribution which is also non-stationary, therefore the optimal selection policy must
have the ability of adaptation to the changes of the statistical characteristics of the
values of rewards. For this reason, discounted upper confidence bound (D-UCB)
algorithm has been introduced in [145], where a discount factor γ ∈ (0, 1) has
been introduced to the UCB algorithm to mark the affects of the time in which
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the selected arm has been played. This means the older selected actions do not
have equal weights in calculating the empirical mean of the rewards, whereas the
more recent selected actions weigh more in the calculation of the confidence bound
function. The discount factor γ plays a major role in the outcome of the algorithm,
therefore it is the most important parameter in this algorithm. Figure 5.1 illustrates
the weight factor for UCB-1 algorithm and the D-UCB algorithm.
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Figure 5.1: Weight factors in confidence bound calculations for
UCB-1 and D-UCB algorithms.

In the D-UCB algorithm, at each episode i, an arm ai is selected and the corre-
sponding reward X

(D−UCB)
i (ai) will be observed. The average reward function is

constructed from the past observed rewards with appropriate weights and repre-
sents the existing knowledge of the environment. Therefore, the average reward of
arm ai can be defined as

X̄
(D−UCB)
i (ai, γ) =

1

Ni(ai, γ)

i∑

s=1

γi−sX(D−UCB)
s (ai)1{as=ai}, (5.6)

where

Ni(ai, γ) =
i∑

s=1

γi−s
1{as=ai}, (5.7)

and

1{as=ai} =

{
1 as = ai
0 as 6= ai

(5.8)

The term γi−s ensures that the recent results of the observed rewards become higher
weights compared to the old ones. This weight reduces the influence of the outdated
information and hence results in a quicker reaction of the algorithm to the changes
of the environment.

The padding function on the other hand needs to be appropriately weighted so
that the more recent rewards receiving a larger padding function. With a uniform
weighting of the padding function, all the rewards contribute with the same weight
and the information of the age of the reward is lost. In order to use this information,
a proper padding function should be designed to increase the contribution of the
most recent results, and at the same time, reduce the contribution of the older
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rewards. A common choice of the padding function for this situation is

c
(D−UCB)
i (ai, γ) = B

√

ζ log(ni(γ))

Ni(ai, γ)
, (5.9)

where

ni(γ) =
N∑

i=1

Ni(γ, ai). (5.10)

Therefore, from Equation (5.6) and (5.9), the upper confidence function of the arm

ai which is denoted by U
(D−UCB)
i (ai) can be written as

U
(D−UCB)
i (ai, γ) = X̄

(D−UCB)
i (ai, γ) + c

(D−UCB)
i (ai, γ). (5.11)

The D-UCB algorithm starts by the initialization phase same as the UCB-1 algo-
rithm. In the initialization phase, all of the available arms are played successively
in order to obtain the initial information of all the arms. After playing each arm,
the returned reward of that arm is observed by the algorithm and the upper bound
of that arm is updated according to Equation (5.11) which has been weighted ac-
cordingly. After the initialization phase, all the arms have been played once and the
upper bound of all the arms are updated. After obtaining the initial information,
the next arm is selected by the algorithm. The selection policy is the selection of
the arm with highest upper confidence bound among all the available arms which
represents a higher reward in an average sense. This selection policy can be formally
expressed as

ai = argmax
1≤n≤Narm

U
(D−UCB)
i (an, γ). (5.12)

The signal transmission is then performed through the selected arm and at the end
of the episode the returned reward of that arm is observed and once again the upper
bound of the selected arm is updated according to Equation (5.11). This process
repeats until the end of the transmission. The D-UCB algorithm is similar to the
UCB-1 algorithm but with the aforementioned functions.
Theorem 2. Discounted upper-confidence bound algorithm is almost optimal in
the sense that its expected regret matches the lower bound regret of all policies for
non-stationary bandit problems [144], [145].

5.2.3 Sliding Window UCB Algorithm

Another algorithm which deals with the abrupt changes of the environment in a non-
stationary bandit is the sliding window UCB (SW-UCB) algorithm. This algorithm
was proposed in [144] and presents another solution for assigning different weights
on the observed rewards based on the time of occurrence. The main difference
between D-UCB and SW-UCB algorithms is that in D-UCB algorithm the weight
factor is distributed as an exponential function over all the rewards so that old
rewards are assigned with a low weight factors and recent rewards are assigned
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with a high factor, as illustrated in Figure 5.1. However, in SW-UCB algorithm
the weight factor function is denoted as a sliding window function where the old
rewards do not contribute to the calculation of the average reward and only the
recent rewards contribute to the calculation of the average reward. Moreover, the
recent rewards have the same weight in the calculation of the average reward. This
has been illustrated in Figure 5.2. It can be seen that in this algorithm the size of
the window has an important role in the outcome of the algorithm.
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Figure 5.2: Weight factors in confidence bound calculations for
UCB-1 and SW-UCB algorithms.

Let us assume the observed reward at the end of an episode where the action ai has
been selected, as X

(SW−UCB)
i (ai). The window size is set to be τ , which is selected

by empirical calculations to tune the algorithm in order to retrieve best results. The
average reward function in this case is constructed by averaging the past τ rewards
of ai and ignoring the older rewards. Therefore, the average reward of arm ai can
be defined as

X̄
(SW−UCB)
i (ai, τ) =

1

Ni(ai, τ)

i∑

s=i−τ+1

X(SW−UCB)
s (ai)1{as=ai}, (5.13)

where

Ni(ai, τ) =

i∑

s=i−τ+1

1{as=ai}. (5.14)

Note that the summation over the rewards is only considering the past τ elements,
however with the same weight. This is as opposed to the weighting system in
which all the past rewards have some weights increasing over time. This method of
weighting helps to disregard the outdated information which may not be still valid
due to changes of the environment.

The padding function of the algorithm follows the same logic and only the past
τ elements are considered in the calculation of the padding function and the rest
are disregarded. These past τ elements, however, have the same weights in the
calculation of the padding function. This passing function also needs to be designed
and a range of different functions can be applied to the SW-UCB algorithm. A
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common choice of the padding function for the SW-UCB algorithm is

c
(SW−UCB)
i (ai, τ) = B

√

ζ log(min(i, τ))

Ni(ai, τ)
, (5.15)

where min(i, τ) denotes the minimum of i and τ .

Therefore, from Equation (5.13) and (5.15), the upper confidence function of the

arm ai which is denoted by U
(SW−UCB)
i (ai) can be written as

U
(SW−UCB)
i (ai, τ) = X̄

(SW−UCB)
i (ai, τ) + c

(SW−UCB)
i (ai, τ). (5.16)

The SW-UCB algorithm starts by the initialization phase same as the UCB-1 and
D-UCB algorithms. In the initialization phase, all of the available arms are played
successively in order to obtain the initial information of all the arms. After playing
each arm, the returned reward of that arm is observed by the algorithm and the
upper bound of that arm is updated according to Equation (5.16) which only uses
the past τ samples in the calculations. After the initialization phase, all the arms
have been played once and the upper bound of all the arms are updated. After
obtaining the initial information, the next arm is selected by the algorithm. The
selection policy is the selection of the arm with highest upper confidence bound
among all the available arms which represents a higher reward in an average sense.
This selection policy can be formally expressed as

ai = argmax
1≤n≤Narm

U
(SW−UCB)
i (an, τ). (5.17)

The signal transmission is then performed through the selected arm and at the end
of the episode the returned reward of that arm is observed and once again the upper
bound of the selected arm is updated according to Equation (5.16) with only the
last τ samples contribute to the calculations. This process repeats until the end of
the transmission. The SW-UCB algorithm is similar to the UCB-1 algorithm but
with the aforementioned functions.
Theorem 3. Sliding window upper-confidence bound algorithm is almost optimal
in the sense that its expected regret matches the lower bound regret of all policies
for non-stationary bandit problems [144].

5.2.4 The Proposed UCB Algorithms: Introduction

As described in Chapter 2, the PLC noise and the channel transfer function can
be modeled as a cyclostationary random process. In a cyclostationary process, the
statistical characteristics of the process repeat periodically, which in the PLC case,
this period is matched to the mains period. Therefore, in the calculation of the
empirical mean and the padding function of the UCB-1 algorithm, considering all
the previous actions with the same weight, is not an optimal policy and can be
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further optimized by exploiting the cyclostationary nature of the channel. Further-
more, the mere consideration of the recent past actions as major contributors to
the calculation of the confidence index, as in D-UCB and SW-UCB algorithms,
may result in a sub-optimal policy as well, since the far past actions in the same
cycle and hence with the same statistical characteristics are neglected due to their
low discount weight or even completely disregarded if they lie outside of the weight
window. To overcome this problem, we propose two novel algorithms, namely

1. The cyclic discounted upper-confidence bound (CD-UCB) algorithm, and

2. The cyclic window upper-confidence bound (CW-UCB) algorithm.

Furthermore, through simulation results, we show that for a cyclostationary system
like PLC, these algorithms result in a better selection policy, and therefore an overall
better performance. In the following we describe in detail the proposed algorithms.

5.2.5 The Proposed CD-UCB Algorithm

Let us assume the period of the alternating current (AC) waveform of the power lines
as TAC with the noise power and hence the rewards of each arm as a cyclostationary
process with TAC duration of each cycle. Up to the time index t = T , the total
number of complete cycles, denoted by P , can be calculated as

P =

⌊
T

TAC

⌋

. (5.18)

Furthermore, the empirical mean value of each arm at time i, as well as the padding
function, are to be calculated in a way that all the last cycles are included in the
calculations. The weighing factor should be chosen in a way that it involves the
cyclostationary behavior of the reward. For this purpose, let us consider a single
period of time with duration TAC . In this period, the first samples will have lower
weights and the last samples will have higher weights. In other words, we use a
similar discount factor as in the D-UCB algorithm for each period. Let us assume
the observed reward of the arm ai as X

(CD−UCB)
i (ai). For the last P complete

periods, we calculate the empirical means of of arm ai as

Ξ2 = Ξ2(ai, TAc, γ)

=
P∑

p=1

i−(p−1)TAC∑

s=t−pTAC

γi−(p−1)TAC−sX(CD−UCB)
s (ai)1{as=ai}, (5.19)

where the first summations goes through all the periods and in the second summa-
tion the term γt−(p−1)TAC−s applies a discounted factor for each period separately.
The start of the period starts with a low weight factor and the weight factor in-
creases as time reaches the end of the period.

Equation (5.19) only accounts for the complete periods, however, as depicted in
Figure 5.3, the first period may be an incomplete period. For the incomplete period
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at the beginning of the time index (see Figure 5.3), we calculate the corresponding
portion of the empirical mean as

Ξ1 = Ξ1(ai, TAc, γ)

=

t−PTAC∑

s=1

γt−PTAC−sX(CD−UCB)
s (k)1{as=k}. (5.20)

This applies a discount factor to the incomplete period. Without doing so, the in-
formation available in this incomplete period is lost, and by using this the algorithm
becomes a little stronger. Therefore, for the whole time 1 ≤ t ≤ T , the average
reward of the action ai can be calculated as

X̄
(CD−UCB)
i (ai, TAC , γ) =

1

Ni(ai, TAC , γ)
(Ξ1 + κ Ξ2), (5.21)

where κ = sign(P ) returns one when the number of periods is more than one, and
returns zero when the total time is less than a period. The term Nt(ai, TAC , γ) is
described as

Ni(ai, TAC , γ) =

i−PTAC∑

s=1

γi−PTAC−s
1{as=ai}

+κ

P∑

p=1

i−(p−1)TAC∑

s=i−pTAC

γi−(p−1)TAC−s
1{as=ai}. (5.22)
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Figure 5.3: The cyclostationary behavior of the channels with
mains period TAC .

The padding function for the CD-UCB algorithm is calculated similar to the average
reward calculations. This means that all the previous rewards contribute to the
padding function, but with different weights and these weights are depending on
the periods of the cyclostationary behavior of the noise. Therefore, each period
receives separate weighing factors from the start of the episodes to the current time
of operation. The padding of the proposed CD-UCB algorithm can be written as

c
(CD−UCB)
i (ai, TAC , γ) = B

√

ζ log(ni(TAC , γ))

Ni(ai, TAC , γ)
, (5.23)
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where

ni(TAC , γ) =

N∑

i=1

Ni(ai, TAC , γ). (5.24)

Therefore, from Equation (5.21) and (5.23), the upper confidence function of the

arm ai which is denoted by U
(CD−UCB)
i (ai) can be written as

U
(CD−UCB)
i (ai, TAC , γ) = X̄

(CD−UCB)
i (ai, TAC , γ) + c

(CD−UCB)
i (ai, TAC , γ). (5.25)

The proposed CD-UCB algorithm starts by the initialization phase same as the
UCB-1, D-UCB, and SW-UCB algorithms. In the initialization phase, all of the
available arms are played successively in order to obtain the initial information of all
the arms. After playing each arm, the returned reward of that arm is observed by
the algorithm and the upper bound of that arm is updated according to Equation
(5.25) which uses the separate discounts for each period in the calculations. After
the initialization phase, all the arms have been played once and the upper bound
of all the arms are updated. After obtaining the initial information, the next arm
is selected by the algorithm. The selection policy is the selection of the arm with
highest upper confidence bound among all the available arms which represents a
higher reward in an average sense. This selection policy can be formally expressed
as

ai = argmax
1≤n≤Narm

U
(CD−UCB)
i (an, TAC , γ). (5.26)

The signal transmission is then performed through the selected arm and at the end
of the episode the returned reward of that arm is observed and once again the upper
bound of the selected arm is updated according to Equation (5.25) with discounted
factors for all the periods accordingly. This process repeats until the end of the
transmission. The proposed CD-UCB algorithm is similar to the UCB-1 algorithm
but with the aforementioned functions.

5.2.6 The Proposed CW-UCB Algorithm

Similar to the approach in CD-UCB algorithm, we propose another algorithm based
on UCB algorithm which its weight factor is periodic, hence adapted to the cyclo-
stationary behavior of the channel. In CD-UCB algorithm, the statistical charac-
teristics of the reward function at time t = T and t = T − TAC are the same, and
therefore the weight factor at these times is at its maximum. However, at time
t = T −TAC+1, the reward function enters the next cycle and results in a low value
of weight factor. Although, the statistical characteristics of the reward function at
time t = T − TAC and t = T − TAC + 1 are not that different. This problem can be
addressed with the proposed cyclic window UCB algorithm.

In CW-UCB algorithm, the empirical mean and the padding function are not dis-
counted as in the CD-UCB algorithm, but are windowed periodically. The win-
dowing period is chosen to be matched with the periodic behavior of the reward
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and hence matched with TAC . Therefore, the most important parameter in this
algorithm is the size of the window. The window size, W , is selected in a way to
maximize the effect of windowing according to the period of operation. Figure 5.4
illustrates the weight factors in the calculations of average reward and the padding
function in CD-UCB and CW-UCB algorithms.
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Figure 5.4: Weight factors in confidence bound calculations for the
proposed CW-UCB and the proposed CD-UCB algorithms.

Let us assume the observed reward of arm ai as Xi(ai). The average reward is
windowed periodically. Formally, the average reward can be expressed as

X̄
(CW−UCB)
i (ai,W, TAC) =

1

Ni(ai,W, TAC)

P∑

p=0

i∑

s=1

w(s− i+ pTAC)Xs(ai)1{as=ai},

(5.27)
where w(s) is the window function and is defined as

w(s) =

{
1 |s| < W

2

0 otherwise
(5.28)

The term w(s − t + pTAC) in (5.27) denotes that the windowing is performed at
the current time in addition to the multiple times of the mains period before the
current time (see Figure 5.4 for an illustration of this idea). This ensures that the
periodicity of the PLC channel environment is considered in the calculation of the
average reward. This enables the algorithm to adapt itself to the features of the
PLC channel and perform better in these environments. The term Ni(ai,W, TAC)
can be described as

Ni(ai,W, TAC) =
P∑

p=0

i∑

s=1

w(s− i+ pTAC)1{as=ai}. (5.29)

The padding function for the CW-UCB algorithm is calculated similar to the average
reward calculations. Therefore, each period receives separate weighing factors from
the start of the episodes to the current time of operation. This is also similar to
the calculations of the CD-UCB algorithm. The padding of the proposed CW-UCB
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algorithm can be written as

c
(CW−UCB)
i (ai, TAC ,W ) = B

√

ζ log(ni(TAC ,W ))

Ni(ai, TAC ,W )
, (5.30)

where

ni(TAC ,W ) =
N∑

i=1

Ni(ai, TAC ,W ). (5.31)

Therefore, from Equation (5.27) and (5.30), the upper confidence function of the

arm ai which is denoted by U
(CW−UCB)
i (ai) can be written as

U
(CW−UCB)
i (ai, TAC ,W ) = X̄

(CW−UCB)
i (ai, TAC ,W ) + c

(CW−UCB)
i (ai, TAC ,W ).

(5.32)

The proposed CW-UCB algorithm starts by the initialization phase same as the
UCB-1, D-UCB, SW-UCB, and CD-UCB algorithms. In the initialization phase, all
of the available arms are played successively in order to obtain the initial information
of all the arms. After playing each arm, the returned reward of that arm is observed
by the algorithm and the upper bound of that arm is updated according to Equation
(5.32) which uses the separate windows for each period in the calculations. After
the initialization phase, all the arms have been played once and the upper bound
of all the arms are updated. After obtaining the initial information, the next arm
is selected by the algorithm. The selection policy is the selection of the arm with
highest upper confidence bound among all the available arms which represents a
higher reward in an average sense. This selection policy can be formally expressed
as

ai = argmax
1≤n≤Narm

U
(CW−UCB)
i (an, TAC ,W ). (5.33)

The signal transmission is then performed through the selected arm and at the end
of the episode the returned reward of that arm is observed and once again the upper
bound of the selected arm is updated according to Equation (5.32) with window
factors for all the periods accordingly. This process repeats until the end of the
transmission. The proposed CW-UCB algorithm is similar to the UCB-1 algorithm
but with the aforementioned functions.

The proposed algorithms consist of an initialization phase which its duration is
proportional to the number of relays. Then at each frame length the end-to-end
capacity has to be obtained and instantaneous rewards are calculated at the trans-
mitter. The calculation of reward for the selected arm consists of a linear calculation
of the empirical mean in addition to the calculation of the padding function which
consists of a square root and a logarithm function. These calculations are only done
in one arm at each frame time. The algorithms are bounded in the sense that after a
limited amount of time, the arm with the best rewards can be detected and selected
for most of the consecutive selections. However, the amount of time needed for this
convergence, denoted by τalg(N), is directly proportional to the number of relays
N (see Figure 5.14). Let us denote the time in which the relay channels remain
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in a particular state as τch. In order to have a working algorithm, change of the
channel in time must happen slower than the convergence time of the algorithm
and τalg(N) < τch must hold. The exhaustive search method in the simulations, as-
sumes the perfect CSI at transmitter and expectedly the returned reward is higher
than learning algorithms. However, acquiring CSI is much more complicated than
feeding back the observed reward. The reason for that is that the PLC channel is
time-variant and frequency-selective. Therefore, pilot signals should be transmit-
ted in all the subcarriers at pre-defined time intervals throughout the transmission.
Moreover, the amount of overhead which this brings increases linearly by the num-
ber of available relays, since in order to react to the changes in the environment all
the possible routs should be evaluated. On the other hand, feeding back the reward
data can take place on the free bits of the ACK (acknowledgment) packet which is
already being fed back to the transmitter and is not dependent on the number of
available relays.

5.2.7 Performance Evaluation of UCB Algorithms

In this section we present numerical results to evaluate the performance of the above-
mentioned UCB algorithms. For this reason we consider two selection problems
in PLC, namely the PLC channel selection problem and the PLC relay selection
problem as described in Chapter 4. In Chapter 4 these two selection problem have
been modeled as a MAB problem with well-defined reward and regret functions.
We use the reward and regret function of each case to apply the UCB algorithms.
The simulation results show significant improvement when the machine learning
algorithm is applied. In the following we present these simulation results as well as
a discussion on the performance analysis.

5.2.7.1 UCB algorithms in PLC Channel Selection

We consider a PLC system with four channels as described in Chapter 2, however
generalization to more than four channels is straight forward. Channel gains are
considered to have log-normal distribution as discussed in Chapter 2. Channels
are considered to be non-stationary, and we assume that the mean value of the
log-normal distribution of each channel varies over time in a piece-wise stationary
manner, as it is depicted in Figure 5.5. As illustrated in this figure, two of the
channels are not changing over time whereas the other two change abruptly at time
instances which are a priori unknown to the transmitter.
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Figure 5.5: Exemplary time-variation in mean value for different
PLC channels.

From the figure 5.5, it can be concluded that the optimal choice of channel on an
average base yields:

ai =







1 if t < t1

2 if t1 ≤ t < t2

3 if t2 ≤ t < t3

4 if t3 ≤ t < t4

2 if t ≥ t4

, (5.34)

with t1 = 5 × 102, t2 = 103, t3 = 5 × 103and t4 = 5 × 104. We evaluate the
performance of the proposed model by using two selection strategies, namely the
D-UCB algorithm and the SW-UCB algorithm as described previously. In doing
so, we select T = 105, ζ = 0.55, τ = 7 ∗ 102, B = 1, γ = 0.9 based on empirical
results of the algorithms. These parameters has been chosen in regard to the criteria
described in [144], in which the parameters are chosen so that the optimal result is
achieved for piece-wise stationary channels.

For the sake of comparison, we use two other strategies as benchmarks for perfor-
mance comparison:
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Figure 5.6: Regret growth of two algorithms of D-UCB and SW-
UCB for the designed channel selection bandit model.

1. Optimal channel selection given full information, which finds the best channel
with the largest mean value of channel gains by exhaustive search; and

2. Random channel selection, where at each time a channel is selected uniformly
at random.

The regret growth of the two algorithms is shown in Figure 5.6. As it is clear from
this figure, at change points, where the average gain of some channel, thereby the
optimal choice of channel, changes, the regret increases very fast. The reason is that
both algorithms require some time to detect the change and adapt their selection.
However, after the best channel is selected, the regret growth slows down, thus the
accumulated regret remains almost fixed. It should be also noted that if the changes
occur in short time intervals, like the first and second change-points depicted in
Figure 5.5, a phase, where the accumulated regret remains almost fixed cannot be
observed, simply since the optimal channels changes again even before (or right
after) the algorithm adapts its choice. Thus, it can be concluded that the proposed
model and approach is more suitable for slowly-varying environments. Moreover,
it can be observed that the performance of SW-UCB is slightly better than that of
D-UCB.

Figure 5.7 depicts the average reward achieved by the proposed channel selection
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Figure 5.7: Performance of proposed bandit model and solution
in comparison with that of exhaustive search given full information

and uniformly random channel selection.

model in comparison with those of exhaustive search given full information and
uniformly random selection. From this figure, it can be concluded that the model
exhibits acceptable performance which only slightly differs from a fully informed
channel selection. Furthermore it can be observed that the two MAB channel
selection algorithms result in an approximately equal performance. Also note that
the average utility increases in the time periods where the average gain of the
selected (optimal) channel is large, for example in the time t3 ≤ t < t4, where the
optimal channel (Channel 4) has an average gain equal to µt = 0.9. Shortly after,
in time t ≥ t4, when Channel 2 with average µt = 0.5 becomes optimal, average
decreases, and the final average yields ≈ 0.7.

5.2.7.2 UCB Algorithms in PLC Relay Selection

We consider a two-hop cooperative communication with a PLC channel as described
in Chapter 4. The number of available relays is considered to be 6 nodes, from which
a single node is selected for transmission at each transmission instant. However the
results for more and less number of relays are presented as well in order to observe
the effects of the number of relays on the algorithms. The only difference between
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the available relay nodes is the corresponding link rate, which in turn is dependent
on the channel response as well as the noise power spectral density of the PLC
channel as described in the previous chapter.

The impulsive noise of the power line channel is considered to be periodic and syn-
chronous to the frequency of the mains as described in Chapter 2, with a variance
determined as cyclostationary function. Figure 5.8 demonstrates the periodic im-
pulsive noise in the power lines which is synchronous to the frequency of the mains
fm = 50Hz.

Different relay selection policies are applied to the PLC system to acquire a quan-
titative comparison between the existing policies in the literature and the selection
policies described in the proposed algorithms. Formally, the following approached
have been examined:

1. In the first method, an exhaustive search is performed to find the best avail-
able relay node for transmission with the assumption of perfect CSI. This
returns the highest reward at each time instance, or equivalently the maxi-
mum achievable reward for other algorithms which is a function of the channel
conditions.

2. In the second method, a fixed relay node is selected at the beginning of the
transmission in a random manner and the selected node is used for the entire
transmission time, regardless of the changes in the channel.

3. In the third method the relay node is selected randomly for each instant of
transmission. Therefore the all the available nodes have the chance of being
selected, but the changes in channel does not play a role in the selection
procedure.

4. The fourth and the fifth methods of relay selection are the basic UCB and
Discounted UCB algorithms described previously.
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Figure 5.9: Average reward comparison between different relay
selection policies.

5. Finally, the sixth and seventh selection policies are the proposed CD-UCB
and CW-UCB algorithms.

Figure 5.9 and 5.10 show the average reward and the accumulated regret of the
above mentioned relay selection policies, respectively. It can be seen that the best
performance belongs to the exhaustive search method, as expected. The worst
performance is from the random selection of the relay node and the fixed relay node,
due to the fact that the changes in channel is disregarded in these methods. Basic
UCB and discounted-UCB algorithms provide a significant performance gain in
terms of average reward and demonstrate lower regrets throughout the transmission.
It can be seen that the proposed algorithms can further improve the performance
and obtain more reward and lower regret compared to the existing algorithms.
Although, at the beginning of the operation, the padding functions are still large for
all the arms and therefore a uniform weight as in UCB outperforms the discounted
weights of the proposed algorithms.

Figure 5.11 illustrates the percentage of correct selection in different transmission
policies. This percentage is calculated after the entire duration of the transmission,
by comparing the selected relay nodes of each method to the selected relay nodes
of the exhaustive search method as a measure of reference. It can be seen that the
basic MAB algorithms result in a higher percentage of correct selection and the
proposed MAB algorithms can achieve yet higher percentages. This visualization
helps us to determine the accuracy and the level of success for each individual
algorithm. It can be seen that both the proposed algorithms significantly improve
the state of the art algorithms.

The first proposed algorithm, namely the cyclo-discounted UCB algorithm, uses
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Figure 5.12: Impact of weight factor in the proposed cyclo-
discounted UCB algorithm.

a weight factor as a parameter of cyclic weights for the calculation of the UCB
index, whereas the second proposed algorithm, namely the cyclic-window UCB
algorithm, uses a window size parameter for the calculation of the UCB index.
Figure 5.12 and 5.13 demonstrates the impact of different weight factors and window
sizes, respectively. Compared with Figure 5.9 we can realize that the change in
window size or weight factor can relatively affect the performance of the algorithms.
These parameters can be determined beforehand by empirical results which are
gathered by running the algorithm in real environments. The proper value of each
parameter, i.e. the window size and the weight factors can then be implemented in
the algorithms to tune them into better and more accurate results.

Figure 5.14 demonstrates the effect of the number of relays on the cyclic-window
algorithm. It can be seen that in the same frame of time, with higher the number
of relays it takes longer for the algorithm to adapt itself to the environment and
the accumulated regret grows by the number of available relays. This is due to the
fact that with a higher number of relays between the source and the destination of
the cooperative communication system, the algorithm has more options to evaluate
at the transmitter. Each option, i.e. relay node, must then have the possibility of
being selected, which makes the probing time longer and the probability of selecting
a sub-optimal relay is also higher. Therefore, with more relay nodes the probability
of regret is increased and the algorithm converges with a slightly lower rate.

We have provided results of a two-hop relay selection scheme in PLC networks.
However, the use of learning algorithms can be further generalized to multi-hop
relay selection problems as well. In the case of M-hop transmission, with Ni,
i ∈ {1, · · · ,M − 1} available relays at each hop, the number of available options
raise to

∏M−1
i=1 Ni which makes the time needed for finding the best path longer.
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Figure 5.13: Impact of window size in the proposed cyclic-window
UCB algorithm.

Finding the best strategy for multi-hop relay selection can be regarded as a future
work for this problem. Moreover, a generalized version of the proposed algorithm
can be developed to further increase the reliability of the transmission. In this case,
a multi-relay selection approach based on the learning algorithm is applied and
at the receiver an appropriate combining technique is performed to further exploit
the combining diversity among the best chosen relays. This strategy can further
improve the reliability and decrease the probability of transmission in a less optimal
route.

5.3 Probability Matching Technique

5.3.1 Action Value Estimation

Another approach to deal with the selection problem in an environment of in-
complete information with non-stationary conditions is the probability matching
technique [150], [151]. The selecting agent, i.e. the PLC transmitter, is faced with
the choice of maximizing the reward function based on its current knowledge of the
channel, which eventually leads to a better performance, and trying to obtain more
information about the PLC channel through exploration.

In this section, we consider the dynamic spectrum assignment problem, described
in the previous chapter. The PLC transmitter is faced with the problem of dynamic
spectrum assignment in an environment of incomplete information. The selection
policy π is supposed to minimize its regret function based of its current knowledge
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Figure 5.14: The proposed cyclic-window algorithm for different
number of available relays.

of the environment and try to learn more about its environment in order to improve
its decisions. This has been traditionally called the exploitation-exploration prob-
lem. Moreover, due to the time-variant nature of the PLC channel, the transmitter
has to detect the changes of the environment throughout the transmission which is
referred to as a non-stationary MAB problem. In this case, the best frequency band
in some time of transmission does not necessarily remain the best band through-
out the transmission and therefore the spectrum assignment must be performed
dynamically.

In the non-stationary MAB problem, all the expected reward values X̄e(ae) are
considered to be initially unknown and furthermore, at some unknown time during
the transmission they tend to attain a new value. Therefore, the transmitter aims
to estimate the actual expected reward values. This estimate is called an action
value estimate and is denoted by X̂q(ae), where q is the number of times that action
ae has been selected by the transmitter. After the q-th instance of selection of the
action ae, the action value estimate of the selected arm is updated according to the
following action value estimate update rule [146]

X̂q(Bn) = (1− β)qX̂0 +

q
∑

i=1

β(1− β)q−iXe(ae = Bn), (5.35)

where X̂0 is the initial estimation performed randomly, Xe(ae = Bn) is the observed
expected reward when the action at episode e is set to be Bn, and β is a constant
parameter which is obtained from empirical results of the algorithm and is tuned
to result in the near optimal estimations. The weight given to the observed value
of expected reward decreases exponentially as the age of the observation increases,
making the more recent results play a bigger role in evaluating the value of action
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value estimate, through which the algorithm is enabled to follow the changes which
occur in the channel conditions.

In the following sections, we describe a reinforcement learning approach in order to
define the selection policy π, namely the probability matching technique (PMT).
Furthermore, we have modified the PMT algorithm to match the conditions of the
PLC system model in order to further improve the performance of the algorithms.

5.3.2 The PMT Algorithm

The seminal PMT algorithms tries to assign selection probabilities to the available
actions. These probabilities change over time as the selecting agent gathers more
information about the environment. The most intuitive way of assigning probabili-
ties is to make the selection probability P (Bn) of action Bn (the selected frequency
band) proportional to its current action value estimate. Therefore, we assign selec-
tion probabilities to each of the seven available actions. and the selection probability
of action Bn or equivalently the probability of the selection of the frequency band
Bn can be expressed as [150]

P (Bn) =
X̂q(Bn)

∑

n X̂q(Bn)
. (5.36)

The conventional PMT algorithm starts with equiprobable actions. The PLC trans-
mitter performs the selection based on the probabilities and an action will be se-
lected. The reward of the selected action is observed and the corresponding action
value estimate is updated according to (5.35). Afterwards, based on the updated
action value estimate of the selected action, all the action probabilities will be up-
dated according to the probability matching rule of (5.36). Next action will be
selected with the new probabilities and the process will start again. This has been
summarized in Algorithm 2.

Algorithm 2 Conventional PMT

1: assign equal probabilities and action value estimates to all actions.
2: for i=1 to number of episodes do
3: select a band Bi based on action probabilities.
4: observe the reward Xe(ae = Bi) of the selected action.
5: update the action value estimate of the selected action based on (5.35) to obtain

X̂new
q (Bi).

6: update all the action probabilities based on updated action value estimates and
equation (5.36).

7: end for
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5.3.3 The Proposed PMT Algorithm

In PMT algorithm, we assign selection probabilities to each of the seven available
actions and this probability is proportional to its current action value estimate.
However, there is a possibility that at some point in time the probability of a
certain action reaches a near-zero value and makes this action unavailable for the
rest of the algorithm. This is not desired in a PLC system, since the channel is time-
variant and an action after a long time of idleness may become of interest at some
point during the transmission. To overcome this problem we introduce a minimum
probability Pmin which replaces the actual probability of the action in case it falls
bellow Pmin. Formally, the replacement probability rule can be expressed as

Q(Bn) = max(Pmin, P (Bn)). (5.37)

However, since the sum of all the probabilities must equal unity, we express the new
probability matching rule as

Pnew(Bn) =
Q(Bn)

∑

n Q(Bn)
. (5.38)

As described in the system model, some of the frequency bands include other smaller
bands and vice versa, some of the frequency bands can be combined to make a larger
band. This results in dependencies between the frequency bands and allows us to
exploit these dependencies in order to improve the algorithm. For this reason, we
propose two modifications to the conventional algorithm as follows;

5.3.3.1 Similarity Threshold

First we define grouped bands as follows.
Definition 2. Two frequency bands are grouped bands (GBs) if the combination
of their spectrum constitutes another frequency band defined by the system, which
is referred to as the upper band.

For instance, as described in the previous chapter, the GBs of B4 and B5 have the
upper band of B2. We define a similarity metric between two GBs of Bi and Bj as

|X̂q(Bi)− X̂q(Bj)| and we define the similar grouped bands as follows.
Definition 3. Two GBs of Bi and Bj are said to be similar grouped bands (SGBs)
if their similarity metric falls bellow a certain threshold δ, or equivalently

|X̂q(Bi)− X̂q(Bj)| < δ. (5.39)

With a proper selection of the similarity threshold δ, the performances of two SGBs
can be estimated to be quite close to each other and consequently the selection
probabilities assigned to these two actions are also close enough for the selecting
agent (PLC transmitter) to treat these frequency bands as equals. Therefore, at
every E episodes, if the selected band is a SGB, we force the selecting agent to
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select the upper band instead which its performance is again similar to its SGBs.
Doing so, enables the transmitter to achieve higher throughputs with the same
performance. Although, we cannot do this for every episode and have to perform
this modification only at every E episode, because if at every episode an upper
band is selected, the two SGBs will never get a chance to be updated.

5.3.3.2 Multiple Action Value Estimate Update

We propose to not only update the action value estimate of the selected frequency
band, but to update the action value estimate of the upper and/or lower bands of
the selected action as well. Formally, let us assume that Bi and Bj are two GBs

with action value estimates of X̂q(Bi) and X̂q(Bj), respectively. We define Bup as
the upper frequency band with action value estimate defined as the mean value of
the action value estimates of its two GBs, which can be expressed as

X̂q(Bup) =
1

2

(

X̂q(Bi) + X̂q(Bj)
)

. (5.40)

Note that equation (5.40) is based on the empirical results of the simulated system.
Let us denote the selected band by Bsel. There are two cases to consider:

• If Bsel = Bi which is a GB (all other bands except for B1), the action value
estimate of Bi is updated to X̂new

q (Bi) based on (5.35) as well as the action value

estimate of Bup which will be updated to X̂new
q (Bup) and can be calculated as

X̂new
q (Bup) =

1

2

(

X̂new
q (Bi) + X̂q(Bj)

)

. (5.41)

• If Bsel = Bup which is an upper action (bands B1, B2, and B3), the action value

estimate of Bup is updated to X̂new
q (Bup) based on (5.35) as well as the action

value estimates of its two GBs, Bi and Bj . Since the changes in the amount of
action value estimates for both Bi and Bj should be the same and there is no
priority assigned to either one of them, we can claim

X̂new
q (Bi)− X̂q(Bi) = X̂new

q (Bj)− X̂q(Bj). (5.42)

Furthermore, from (5.40) we have

X̂new
q (Bup) =

1

2

(

X̂new
q (Bi) + X̂new

q (Bj)
)

. (5.43)

From (5.42) we substitute X̂new
q (Bi) = X̂new

q (Bj) + X̂q(Bi) − X̂q(Bj) in (5.43)
which results in

X̂new
q (Bj) = X̂new

q (Bup) +
1

2
(X̂q(Bj)− X̂q(Bi)). (5.44)
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Similarly,

X̂new
q (Bi) = X̂new

q (Bup) +
1

2
(X̂q(Bi)− X̂q(Bj)). (5.45)

Note that bands B2 and B3 fall into both the above-mentioned cases. Therefore,
depending on the selected band, multiple action value estimates are updated instead
of only one, which may result in a faster convergence of the algorithm. Algorithm
3 summarizes the proposed modified PMT algorithm.

Algorithm 3 The Proposed PMT

1: assign equal probabilities and action value estimates to all actions.
2: for i=1 to number of episodes do
3: select a band Bi based on action probabilities.
4: for every E episodes do
5: if Bi is a GB (with Bj in the same group) and |X̂q(Bi)− X̂q(Bj)| < δ then

6: select the upper band Bup.
7: end if

8: end for

9: observe the reward Xe(ae = Bi) of the selected action.
10: update the action value estimate of the selected action based on (5.35) to obtain

X̂new
q (Bi).

11: if the selected action is a GB then

12: update the action value estimate of the corresponding upper action based on
(5.41).

13: end if

14: if the selected action is an upper action then

15: update the action value estimates of the corresponding GBs based on (5.44) and
(5.45).

16: end if

17: update all the action probabilities based on updated action value estimates.
18: end for

5.3.4 Performance Evaluation of PMT Algorithms

We define an episode of data transmission as the duration of a data frame in the
OFDM system. For every episode the PLC transmitter has to select a transmission
band. This selection is based on the selection policies described in Algorithms 3
and 5. As a frame of reference, we consider a random selection policy as well, where
the transmission band is selected randomly with equal probabilities of the available
bands. We assume that the entire duration of the transmission is 400 episodes
and the channel conditions change abruptly after the 200th episode. Therefore,
the first and the second halves of the transmission are performed with completely
different channel conditions. Furthermore, we assume that for the first half of the
transmission, the fourth band is the best transmission band and for the second half
of the transmission the sixth band is the best transmission band. However, the
PLC transmitter is not aware of this information.

102



episodes
0 50 100 150 200 250 300 350 400

av
er

ag
e 

re
w

ar
d

0

0.1

0.2

0.3

0.4

0.5

β = 0.84
β = 0.88
β = 0.86
β = 0.82
β = 0.9
random selection

Figure 5.15: Average reward of the conventional PMT algorithm.

Figures 5.15 and 5.16 show the average reward obtained throughout the 400 episodes
for conventional PMT and the modified PMT algorithms, respectively. Different
values of the parameter β has been considered to evaluate the reinforcement learn-
ing process of the algorithms. Compared to the random channel selection at the
transmitter, learning algorithms are clearly advantageous in terms of the average
reward. It can be seen from these two figures that the algorithm requires some
time at the beginning of the deployment in order to converge and assign the right
probabilities to the different actions. This convergence time, as apparent form fig-
ures 5.15 and 5.16, are dependent on the value of the parameter β. This value is
determined by empirical methods, which gather the results of finite experiments
and evaluates the value of β to best fit the requirements of the system and acquire
a beter performance of the algorithm.

By comparing Figure 5.15 and Figure 5.16 we can observe that the modifications
which have been applied to the PMT algorithm have resulted in an overall better
performance of the system. This means in the modified algorithm, the conver-
gence of the algorithm is much faster for all the values of β which are depicted. In
other words, in the modified algorithm the maximum performance is reached faster
than the conventional PMT algorithm which gives the proposed algorithm the ad-
vantage of finding the best solution in a shorter times, thus increasing the overall
performance of the communication system in the time of the operation. This is the
direct result of the multiple action value estimate update, which was proposed in
the modified version of the algorithm. Furthermore, although the abrupt change in
the channel conditions did not affect the performance of the PMT dramatically as
compared to the UCB algorithm family, but the performance of the modified PMT
is nevertheless smoother at the time of the change. This means that the proposed

103



episodes
0 50 100 150 200 250 300 350 400

av
er

ag
e 

re
w

ar
d

0

0.1

0.2

0.3

0.4

0.5

β = 0.84
β = 0.88
β = 0.86
β = 0.82
β = 0.9
random selection

Figure 5.16: Average reward of the proposed modified PMT algo-
rithm.

algorithm can adapt itself faster to the changes of the environment, should the
environment change its characteristics during a transmission.

5.4 Greedy Algorithms

5.4.1 The ε-Greedy Algorithm

Greedy algorithms are a class of decision making algorithms which select the locally
optimal choice at each stage with the hope of finding a global optimum reward.
In the decision making problems of the multichannel PLC which are described
previously, the greedy algorithms can provide a robust approach in establishing the
selection policy at the PLC transmitters. However, since the greedy algorithms only
consider the best option at the time of decision making, they are unable to follow
the changes in the environment; i.e. the channel. Hence, a slight but powerful
change is introduced in the greedy algorithm to enable it to follow the changes of
the environment as the environment change through time. This algorithm is known
as the ε-greedy algorithm

We describe and analyze the ε-greedy algorithm in order to solve the non-stationary
MAB problem. The ε-greedy algorithm is an extension of the conventional greedy
algorithm which has been developed for non-stationary problems. According to the
greedy action selection rule the selecting agent selects the action with the highest
action value estimate at each episode, which results in an overall convergence to
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the best action in a stationary environment. However, the ε-greedy action selection
scheme provides a method in which the selecting agent searches the sub-optimal
actions in random time intervals in order to follow the changes in the channel. In
other words, the ε-greedy agent:

• with a probability of 1− ε, selects the action with highest action value estimate,

• with a probability of ε, selects an action at random.

The value of ε is normally selected in the space {0.01, 0.1}. Higher values of ε will
force the selecting agent to make exploratory choices more often and as a result
will prevent the selecting agent from concentrating its choices to the optimal action
while giving it the ability to react rapidly to changes that take place in its environ-
ment. On the other hand, smaller values of ε provides the opportunity to exploit
the existing knowledge of the environment in order to improve the transmission
performance while it may cause slower reactions to the changes of the environment.
Therefore, a proper value of ε is essential for a trade-off between exploitation and
exploration. Algorithm 4 summarizes the ε-greedy algorithm.

Algorithm 4 The ε-greedy

1: assign equal action value estimates to all actions.
2: for i=1 to number of episodes do
3: with a probability of 1− ε return EXPLOIT = true otherwise return EXPLOIT =

false.
4: if EXPLOIT then

5: select a band Bi which has the highest action value estimate.
6: else

7: select a random band Bi.
8: end if

9: observe the reward Xe(ae = Bi) of the selected action.
10: update the action value estimate of the selected action based on (5.35) to obtain

X̂new
q (Bi).

11: end for

5.4.2 The Proposed Greedy Algorithm

The ε-greedy algorithms shows promising results in a non-stationary system. How-
ever, we aim to further improve the ε-greedy algorithm by exploiting some of the
unique characteristics of the multichannel PLC in order to develop a faster and
better algorithm. In order to improve the ε-greedy algorithm, we have applied the
same modifications described in modified PMT algorithm to the ε-greedy algorithm
as well. These modifications utilize the same reasoning described in the modified
PMT algorithm section with the objective of an improved performance. Algorithm
5 summarizes the proposed modified ε-greedy algorithm.
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Algorithm 5 The proposed ε-greedy

1: assign equal action value estimates to all actions.
2: for i=1 to number of episodes do
3: with a probability of 1− ε return EXPLOIT = true otherwise return EXPLOIT =

false.
4: if EXPLOIT then

5: select a band Bi which has the highest action value estimate.
6: else

7: select a random band Bi.
8: end if

9: for every E episodes do
10: if Bi is a GB (with Bj in the same group) and |X̂q(Bi)− X̂q(Bj)| < δ then

11: select the upper band Bup.
12: end if

13: end for

14: observe the reward Xe(ae = Bi) of the selected action.
15: update the action value estimate of the selected action based on (5.35) to obtain

X̂new
q (Bi).

16: if the selected action is a GB then

17: update the action value estimate of the corresponding upper action based on
(5.41).

18: end if

19: if the selected action is an upper action then

20: update the action value estimates of the corresponding GBs based on (5.44) and
(5.45).

21: end if

22: end for
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Figure 5.17: Average reward of the conventional ε-greedy algo-
rithm.

5.4.3 Performance Evaluation of Greedy Algorithms

Figures 5.17 and 5.18 illustrate the average reward obtained for the conventional ε-
greedy and the modified ε-greedy algorithms. By comparing Figure 5.17 with Figure
5.15, we can observe that the ε-greedy algorithm results in higher rewards since it
exploits the highest action value estimate more often than the PMT algorithm.
However, the ε-greedy algorithm is more sensitive to the abrupt changes in the
channel condition.

As seen in Figure 5.17, the algorithm fails to maintain the average reward after the
conditions of the channel change abruptly and needs more time to converge again
compared to the PMT algorithm. The trade-off between higher rewards and faster
response to the changes of the environment can be observed in these simulations.
In other words, if a higher performance is needed, the convergence time is lower,
and if a faster convergence is desired, a lower performance is observed. However,
the modified ε-greedy algorithm solves this problem as can be seen in Figure 5.18.
The modified ε-greedy algorithm can react faster to the changes of the environment
and results in a better performance in non-stationary channels where the channel
conditions are changing constantly. Therefore, with this proposed algorithm a fast
convergence with a reasonably high performance is achievable. This is due to the
fact that the proposed algorithm is using the unique features of the PLC channels
and hence is able to reduce the regret generated by the seminal algorithm.

The effect of the similarity threshold is depicted in Figure 5.19. In this figure
the number of OFDM symbols for every 100 episodes and for all the proposed
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Figure 5.18: Average reward of the proposed modified ε-greedy
algorithm.

algorithms is depicted. As mentioned before, the different parts of the spectrum
correspond to different number of data subcarrier for every OFDM symbol (72,
36, or 18). Therefore, for the same amount of data, the bigger bands will result
in lower number of OFDM symbols and consequently smaller time of transmission
which can be interpreted as higher throughput in the same amount of time. With
the similarity threshold modification of the algorithm, we have selected an upper
band whenever the action value estimates were close. Therefore a lower number of
OFDM symbols should be achieved with the same performance. As seen in Figure
5.19, in both cases of PMT and ε-greedy algorithm, the modified version resulted
in lower number of OFDM symbols and consequently a higher throughput.

5.5 Chapter Conclusion

In this chapter, we proposed utilizing reinforcement learning algorithms and decision
making strategies in order to solve the MAB problem for the selection problems in
multichannel PLC without channel knowledge at the PLC transmitter. This enables
us to solve the multichannel PLC problems, described in the previous chapter, in a
manner that no channel state information is needed at the transmitter. Compared
to other state of the art solutions, our proposed solution has the benefit of improving
the performance and reliability of the communication and at the same time avoiding
the difficulties and problems introduced by obtaining the channel state information
at the transmitter. Furthermore, we proposed four novel algorithms based on the
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algorithm.

conventional reinforcement learning algorithms which accommodate the character-
istics of the PLC channel. These algorithms are designed and developed to exploit
the unique features of the multichannel PLC system model to further improve the
performance of the communication. Simulation results have been presented which
shows the improvements achieved by the proposed algorithms.
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Chapter 6

Conclusion

In this thesis, we studied the multichannel power line communication and its chal-
lenges. The multichannel transmission has been categorized into three major trans-
mission techniques as follows. The first transmission technique, namely the MIMO
transmission, provides spatial diversity which can improve the performance of the
transmission or the data throughput. The spatial diversity at the PLC transmitter
provides the capability to select the transmission channel based on the available
channel state information. This can further improve the performance of the trans-
mission by transmitting to the channels with higher SNRs and is referred to as the
transmit selection diversity. The problem of transmit selection can be defined as the
problem of selecting the best transmit ports in order to optimize the selection di-
versity at the transmitter. However, obtaining the channel state information cause
some problems to the communication system. The main problem, is the feedback
delay in the PLC channel environment which is characterized as highly time-variant
and frequency-selective, which leads to an out of date channel state information.
Furthermore, the PLC channel is highly dependent on the connected loads of the
power line networks, which any connection and disconnection dramatically changes
the channel state information. Therefore, in order to nonetheless exploiting the
performance improvement introduced by the transmit channel selection diversity, a
method of performing intelligent decision at the transmitter without relying on the
channel state information is needed.

Moreover, as another multichannel PLC technique, the cooperative multihop trans-
mission in PLC applications has been discussed which provides cooperative diversity
in the communication system. In this case, the data signal is transmitted in several
channels between the source and destination by means of intermediate relay nodes
in the network. These relay nodes must be selected in such way that results in the
best transmission performance. Hence, the relay selection problem plays a major
role in optimizing the cooperative diversity. The relay selection process is nor-
mally based on the channel state information of every hop which makes the entire
communication system. For the same reasons stated above, a technique which can
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provide a proper relay selection capabilities without relying on the channel state
information is needed to be developed for PLC applications.

Another multichannel communication scenario is the multiband transmission in
PLC applications. In this case, the available spectrum is divided into several trans-
mission bands and the transmitter has the ability to choose from these transmission
bands in order to maximize the performance of the transmission. This band selec-
tion or as referred to in this theses, spectrum assignment, must be based on the
performance of the system in that particular band. The attenuation of the data
signal can be different from band to band and the PLC noise can also be different
in different bands. Moreover, tone masking and time-variant regulations of the use
of spectrum may force the PLC transmitter to select the transmitting band con-
stantly throughout the transmission. Selecting the proper transmit band requires
the knowledge of the entire spectrum at all time. Obtaining this knowledge at the
PLC transmitter requires a tremendous effort which decreases the throughput and
efficiency of the communication system. Therefore, intelligent and effective spec-
trum assignment without relying on the knowledge of the whole spectrum is needed
for PLC applications.

All the above-mentioned multichannel problems are commonly used in the state
of the art PLC applications. However, to the best knowledge of the author, there
solutions available in the PLC literature heavily rely on the availability of the chan-
nel state information at the PLC transmitter. This makes those solutions not
implementable in real PLC applications or prevents them to fully achieve a high
performance and reliable communication. The demand for solutions which do not
rely on the channel state information is of utmost importance in the PLC sys-
tems. In this thesis, we contributed to the state of the art and pushed the limits
of the PLC technology further, to enable it to perform high quality and reliable
multichannel techniques. Our contribution to the state of the art, enables the PLC
application to implement algorithms, which significantly improves the state of the
art performance. These proposed algorithms are based on the machine learning
principles.

Our approach to solve the aforementioned problems, is inspired by machine learning
applications. We proposed a series of reinforcement learning solutions to be used
in the selection problems of the multichannel PLC, which enables the PLC trans-
mitter to perform intelligent decision in an environment of incomplete information,
hence freeing the PLC transmitter from the need of acquiring the channel state
information at all times and frequencies. These reinforcement learning algorithms
enable the PLC transmitter to perform intelligent decision making policies, which
are uniquely adapted to the PLC characteristics of the communication channel.
In order to design these reinforcement learning algorithms, firstly we modeled each
problem by a powerful mathematical tool known as the multi-armed bandit problem
modeling approach. Then we evaluated selection policy algorithms and proposed
new algorithms in order to solve the selection problems in each case with unknown
channel at the transmitter. The proposed novel algorithms were designed by ex-
ploiting some specific features of the PLC channel, in order to further improve the
performance of the seminal algorithms. The simulation results were provided which
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indicates the improvement in performance of the transmission in all the proposed
algorithms.
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