1,445 research outputs found

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions

    Distributed Estimation and Performance Limits in Resource-constrained Wireless Sensor Networks

    Get PDF
    Distributed inference arising in sensor networks has been an interesting and promising discipline in recent years. The goal of this dissertation is to investigate several issues related to distributed inference in sensor networks, emphasizing parameter estimation and target tracking with resource-constrainted networks. To reduce the transmissions between sensors and the fusion center thereby saving bandwidth and energy consumption in sensor networks, a novel methodology, where each local sensor performs a censoring procedure based on the normalized innovation square (NIS), is proposed for the sequential Bayesian estimation problem in this dissertation. In this methodology, each sensor sends only the informative measurements and the fusion center fuses both missing measurements and received ones to yield more accurate inference. The new methodology is derived for both linear and nonlinear dynamic systems, and both scalar and vector measurements. The relationship between the censoring rule based on NIS and the one based on Kullback-Leibler (KL) divergence is investigated. A probabilistic transmission model over multiple access channels (MACs) is investigated. With this model, a relationship between the sensor management and compressive sensing problems is established, based on which, the sensor management problem becomes a constrained optimization problem, where the goal is to determine the optimal values of probabilities that each sensor should transmit with such that the determinant of the Fisher information matrix (FIM) at any given time step is maximized. The performance of the proposed compressive sensing based sensor management methodology in terms of accuracy of inference is investigated. For the Bayesian parameter estimation problem, a framework is proposed where quantized observations from local sensors are not directly fused at the fusion center, instead, an additive noise is injected independently to each quantized observation. The injected noise performs as a low-pass filter in the characteristic function (CF) domain, and therefore, is capable of recoverving the original analog data if certain conditions are satisfied. The optimal estimator based on the new framework is derived, so is the performance bound in terms of Fisher information. Moreover, a sub-optimal estimator, namely, linear minimum mean square error estimator (LMMSE) is derived, due to the fact that the proposed framework theoretically justifies the additive noise modeling of the quantization process. The bit allocation problem based on the framework is also investigated. A source localization problem in a large-scale sensor network is explored. The maximum-likelihood (ML) estimator based on the quantized data from local sensors and its performance bound in terms of Cram\\u27{e}r-Rao lower bound (CRLB) are derived. Since the number of sensors is large, the law of large numbers (LLN) is utilized to obtain a closed-form version of the performance bound, which clearly shows the dependence of the bound on the sensor density, i.e.,i.e., the Fisher information is a linearly increasing function of the sensor density. Error incurred by the LLN approximation is also theoretically analyzed. Furthermore, the design of sub-optimal local sensor quantizers based on the closed-form solution is proposed. The problem of on-line performance evaluation for state estimation of a moving target is studied. In particular, a compact and efficient recursive conditional Posterior Cram\\u27{e}r-Rao lower bound (PCRLB) is proposed. This bound provides theoretical justification for a heuristic one proposed by other researchers in this area. Theoretical complexity analysis is provided to show the efficiency of the proposed bound, compared to the existing bound

    Performance of optimum detector structures for noisy intersymbol interference channels

    Get PDF
    The errors which arise in transmitting digital information by radio or wireline systems because of additive noise from successively transmitted signals interfering with one another are described. The probability of error and the performance of optimum detector structures are examined. A comparative study of the performance of certain detector structures and approximations to them, and the performance of a transversal equalizer are included

    Two Studies in Representation of Signals

    Get PDF
    The thesis consists of two parts. In the first part deals with a multi-scale approach to vector quantization. An algorithm, dubbed reconstruction trees, is proposed and analyzed. Here the goal is parsimonious reconstruction of unsupervised data; the algorithm leverages a family of given partitions, to quickly explore the data in a coarse-to-fine multi-scale fashion. The main technical contribution is an analysis of the expected distortion achieved by the proposed algorithm, when the data are assumed to be sampled from a fixed unknown probability measure. Both asymptotic and finite sample results are provided, under suitable regularity assumptions on the probability measure. Special attention is devoted to the case in which the probability measure is supported on a smooth sub-manifold of the ambient space, and is absolutely continuous with respect to the Riemannian measure of it; in this case asymptotic optimal quantization is well understood and a benchmark for understanding the results is offered. The second part of the thesis deals with a novel approach to Graph Signal Processing which is based on Matroid Theory. Graph Signal Processing is the study of complex functions of the vertex set of a graph, based on the combinatorial Graph Laplacian operator of the underlying graph. This naturally gives raise to a linear operator, that to many regards resembles a Fourier transform, mirroring the graph domain into a frequency domain. On the one hand this structure asymptotically tends to mimic analysis on locally compact groups or manifolds, but on the other hand its discrete nature triggers a whole new scenario of algebraic phenomena. Hints towards making sense of this scenario are objects that already embody a discrete nature in continuous setting, such as measures with discrete support in time and frequency, also called Dirac combs. While these measures are key towards formulating sampling theorems and constructing wavelet frames in time-frequency Analysis, in the graph-frequency setting these boil down to distinguished combinatorial objects, the so called Circuits of a matroid, corresponding to the Fourier transform operator. In a particularly symmetric case, corresponding to Cayley graphs of finite abelian groups, the Dirac combs are proven to completely describe the so called lattice of cyclic flats, exhibiting the property of being atomistic, among other properties. This is a strikingly concise description of the matroid, that opens many questions concerning how this highly regular structure relaxes into more general instances. Lastly, a related problem concerning the combinatorial interplay between Fourier operator and its Spectrum is described, provided with some ideas towards its future development
    • …
    corecore