51 research outputs found

    Enhancing Physical Layer Security in AF Relay Assisted Multi-Carrier Wireless Transmission

    Full text link
    In this paper, we study the physical layer security (PLS) problem in the dual hop orthogonal frequency division multiplexing (OFDM) based wireless communication system. First, we consider a single user single relay system and study a joint power optimization problem at the source and relay subject to individual power constraint at the two nodes. The aim is to maximize the end to end secrecy rate with optimal power allocation over different sub-carriers. Later, we consider a more general multi-user multi-relay scenario. Under high SNR approximation for end to end secrecy rate, an optimization problem is formulated to jointly optimize power allocation at the BS, the relay selection, sub-carrier assignment to users and the power loading at each of the relaying node. The target is to maximize the overall security of the system subject to independent power budget limits at each transmitting node and the OFDMA based exclusive sub-carrier allocation constraints. A joint optimization solution is obtained through duality theory. Dual decomposition allows to exploit convex optimization techniques to find the power loading at the source and relay nodes. Further, an optimization for power loading at relaying nodes along with relay selection and sub carrier assignment for the fixed power allocation at the BS is also studied. Lastly, a sub-optimal scheme that explores joint power allocation at all transmitting nodes for the fixed subcarrier allocation and relay assignment is investigated. Finally, simulation results are presented to validate the performance of the proposed schemes.Comment: 10 pages, 7 figures, accepted in Transactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT

    Subcarrier Pairing as Channel Gain Tailoring: Joint Resource Allocation for Relay-Assisted Secure OFDMA with Untrusted Users

    Full text link
    Joint resource allocation involving optimization of subcarrier allocation, subcarrier pairing (SCP), and power allocation in a cooperative secure orthogonal frequency division multiple access (OFDMA) communication system with untrusted users is considered. Both amplify and forward (AF), and decode and forward (DF) modes of operations are considered with individual power budget constraints for source and relay. After finding optimal subcarrier allocation for an AF relayed system, we prove the joint power allocation as a generalized convex problem, and solve it optimally. Compared to the conventional channel gain matching view, the optimal SCP is emphasized as a novel concept of channel gain tailoring. We prove that the optimal SCP pairs subcarriers such that the variance among the effective channel gains is minimized. For a DF relayed system, we show that depending on the power budgets of source and relay, SCP can either be in a subordinate role where it improves the energy efficiency, or in a main role where it improves the spectral efficiency of the system. In an AF relayed system we confirm that SCP plays a crucial role, and improves the spectral efficiency of the system. The channel gain tailoring property of SCP, various roles of SCP in improving the spectral and the energy efficiency of a cooperative communication system are validated with the help of simulation results

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secrecy fairness aware NOMA for untrusted users

    Full text link
    Spectrally-efficient secure non-orthogonal multiple access (NOMA) has recently attained a substantial research interest for fifth generation development. This work explores crucial security issue in NOMA which is stemmed from utilizing the decoding concept of successive interference cancellation. Considering untrusted users, we design a novel secure NOMA transmission protocol to maximize secrecy fairness among users. A new decoding order for two users' NOMA is proposed that provides positive secrecy rate to both users. Observing the objective of maximizing secrecy fairness between users under given power budget constraint, the problem is formulated as minimizing the maximum secrecy outage probability (SOP) between users. In particular, closed-form expressions of SOP for both users are derived to analyze secrecy performance. SOP minimization problems are solved using pseudoconvexity concept, and optimized power allocation (PA) for each user is obtained. Asymptotic expressions of SOPs, and optimal PAs minimizing these approximations are obtained to get deeper insights. Further, globally-optimized power control solution from secrecy fairness perspective is obtained at a low computational complexity and, asymptotic approximation is obtained to gain analytical insights. Numerical results validate the correctness of analysis, and present insights on optimal solutions. Finally, we present insights on global-optimal PA by which fairness is ensured and gains of about 55.12%, 69.30%, and 19.11%, respectively are achieved, compared to fixed PA and individual users' optimal PAs
    corecore