66 research outputs found

    Reconfigurable Intelligent Surfaces for 6G -- Applications, Challenges and Solutions

    Full text link
    It is expected that scholars will continuously strengthen the depth and breadth of theoretical research on RIS, and provide a higher theoretical upper bound for the engineering application of RIS. While making breakthroughs in academic research, it has also made rapid progress in engineering application research and industrialization promotion. This paper will provide an overview of RIS engineering applications, and make a systematic and in-depth analysis of the challenges and candidate solutions of RIS engineering applications. Future trends and challenges are also provided.Comment: 2

    CRC-based Reliable WiFi Backscatter Communiation for Supply Chain Management

    Full text link
    Supply chain management is aimed to keep going long-term performance of the supply chain and minimize the costs. Backscatter technology provides a more efficient way of being able to identify items and real-time monitoring. Among the backscatter systems, the ambient backscatter communication (AmBC) system provides a prospect of ultra-low energy consumption and does not require controlled excitation devices. In this paper, we introduce CRCScatter, a CRC reverse algorithm-based AmBC system using a single access point (AP). A CRC reverse decoder is applied to reverse the ambient data from CRC32 sequence in the backscatter packet and realize single-AP decoding. Based on the nature of DBPSK modulation in WiFi signal, the CRCScatter system obtains the tag data by XOR and Differential decoder. Our simulation results verify the effectiveness of our proposed system in the low SNR regime. The average decoding time of CRCScatter system is independent of the length of tag data. Furthermore, our system can append redundant bits in the tag data to improve the decoding accuracy while not increasing the decoding time

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Efficient Ambient LoRa Backscatter with On-Off Keying Modulation

    Full text link
    Backscatter communication holds potential for ubiquitous and low-cost connectivity among low-power IoT devices. To avoid interference between the carrier signal and the backscatter signal, recent works propose a frequency-shifting technique to separate these two signals in the frequency domain. Such proposals, however, have to occupy the precious wireless spectrum that is already overcrowded, and increase the power, cost, and complexity of the backscatter tag. In this paper, we revisit the classic ON-OFF Keying (OOK) modulation and propose Aloba, a backscatter system that takes the ambient LoRa transmissions as the excitation and piggybacks the in-band OOK modulated signals over the LoRa transmissions. Our design enables the backsactter signal to work in the same frequency band of the carrier signal, meanwhile achieving flexible data rate at different transmission range. The key contributions of Aloba include: (1) the design of a low-power backscatter tag that can pick up the ambient LoRa signals from other signals. (2) a novel decoding algorithm to demodulate both the carrier signal and the backscatter signal from their superposition. We further adopt link coding mechanism and interleave operation to enhance the reliability of backscatter signal decoding. We implement Aloba and conduct head-to-head comparison with the state-of-the-art LoRa backscatter system PLoRa in various settings. The experiment results show Aloba can achieve 199.4 Kbps data rate at various distances, 52.4 times higher than PLoRa

    Backscatter-assisted data offloading in OFDMA-based wireless powered mobile edge computing for IoT networks

    Get PDF
    Mobile edge computing (MEC) has emerged as a prominent technology to overcome sudden demands on computation-intensive applications of the Internet of Things (IoT) with finite processing capabilities. Nevertheless, the limited energy resources also seriously hinders IoT devices from offloading tasks that consume high power in active RF communications. Despite the development of energy harvesting (EH) techniques, the harvested energy from surrounding environments could be inadequate for power-hungry tasks. Fortunately, Backscatter communications (Backcom) is an intriguing technology to narrow the gap between the power needed for communication and harvested power. Motivated by these considerations, this paper investigates a backscatter-assisted data offloading in OFDMA-based wireless-powered (WP) MEC for IoT systems. Specifically, we aim at maximizing the sum computation rate by jointly optimizing the transmit power at the gateway (GW), backscatter coefficient, time-splitting (TS) ratio, and binary decision-making matrices. This problem is challenging to solve due to its non-convexity. To find solutions, we first simplify the problem by determining the optimal values of transmit power of the GW and backscatter coefficient. Then, the original problem is decomposed into two sub-problems, namely, TS ratio optimization with given offloading decision matrices and offloading decision optimization with given TS ratio. Especially, a closedform expression for the TS ratio is obtained which greatly enhances the CPU execution time. Based on the solutions of the two sub-problems, an efficient algorithm, termed the fast-efficient algorithm (FEA), is proposed by leveraging the block coordinate descent method. Then, it is compared with exhaustive search (ES), bisection-based algorithm (BA), edge computing (EC), and local computing (LC) used as reference methods. As a result, the FEA is the best solution which results in a near-globally-optimal solution at a much lower complexity as compared to benchmark schemes. For instance, the CPU execution time of FEA is about 0.029 second in a 50-user network, which is tailored for ultralow latency applications of IoT networks

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework
    • …
    corecore