642 research outputs found

    NOVEL OFDM SYSTEM BASED ON DUAL-TREE COMPLEX WAVELET TRANSFORM

    Get PDF
    The demand for higher and higher capacity in wireless networks, such as cellular, mobile and local area network etc, is driving the development of new signaling techniques with improved spectral and power efficiencies. At all stages of a transceiver, from the bandwidth efficiency of the modulation schemes through highly nonlinear power amplifier of the transmitters to the channel sharing between different users, the problems relating to power usage and spectrum are aplenty. In the coming future, orthogonal frequency division multiplexing (OFDM) technology promises to be a ready solution to achieving the high data capacity and better spectral efficiency in wireless communication systems by virtue of its well-known and desirable characteristics. Towards these ends, this dissertation investigates a novel OFDM system based on dual-tree complex wavelet transform (D

    “Multicarrier Modulation for Wireless Communication using Wavelet Packets

    Get PDF
    Success of OFDM has proved that Multi carrier modulation is an efficient solution for wireless communications. Wavelet Packet Modulation (WPM) is a new type of modulation for transmission of multicarrier signal on wireless channel that uses orthogonal wavelet bases other than sine functions. Though this modulation is over all similar to that of OFDM, it provides interesting additional features. In this thesis, a detailed study is given on Wavelets and WPM and the BER performance comparison between the OFDM systems and WPM systems and equalization techniques are analysed. The analysis is done for different types of wavelet generating families, various number of modulations QAM constellation points (16 to 64), and simulated over AWGN channel, and other Multipath fading channels

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    A Unique Wavelet-based Multicarrier System with and without MIMO over Multipath Channels with AWGN

    Get PDF
    yesRecent studies suggest that multicarrier systems using wavelets outperform conventional OFDM systems using the FFT, in that they have well-contained side lobes, improved spectral efficiency and BER performance, and they do not require a cyclic prefix. Here we study the wavelet packet and discrete wavelet transforms, comparing the BER performance of wavelet transform-based multicarrier systems and Fourier based OFDM systems, for multipath Rayleigh channels with AWGN. In the proposed system zero-forcing channel estimation in the frequency domain has been used. Results confirm that discrete wavelet-based systems using Daubechies wavelets outperform both wavelet packet transform- based systems and FFT-OFDM systems in terms of BER. Finally, Alamouti coding and maximal ratio combining schemes were employed in MIMO environments, where results show that the effects of multipath fading were greatly reduced by the antenna diversity

    Cognitive Radio Dynamic Access Techniques

    Get PDF

    Cognitive Radio Communications for Vehicular Technology – Wavelet Applications

    Get PDF
    Wireless communications are nowadays a dominant part of our lives: from domotics, through industrial applications and up to infomobility services. The key to the co-existence of wireless systems operating in closely located or even overlapping areas, is sharing of the spectral resource. The optimization of this resource is the main driving force behind the emerging changes in the policies for radio resources allocation. The current approach in spectrum usage specifies fixed frequency bands and transmission power limits for each radio transmitting system. This approach leads to a very low medium utilization factor for some frequency bands, caused by inefficient service allocation over vast geographical areas (radiomobile, radio and TV broadcasting, WiMAX) and also by the usage of large guard bands, obsolete now due to technological progress. A more flexible use of the spectral resource implies that the radio transceivers have the ability to monitor their radio environment and to adapt at specific transmission conditions. If this concept is supplemented with learning and decision capabilities, we refer to the Cognitive Radio (CR) paradigm. Some of the characteristics of a CR include localization, monitoring of the spectrum usage, frequency changing, transmission power control and, finally, the capacity of dynamically altering all these parameters (Haykin, 2005). This new cognitive approach is expected to have an important impact on the future regulations and spectrum policies. The dynamic access at the spectral resource is of extreme interest both for the scientific community as, considering the continuous request for wideband services, for the development of wireless technologies. From this point of view, a fundamental role is played by the Institute of Electrical and Electronic Engineers (IEEE) which in 2007 formed the Standards Coordinating Committee (SCC) 41 on Dynamic Spectrum Access Networks (DySPAN) having as main objective a standard for dynamic access wireless networks. Still within the IEEE frame, the 802.22 initiative defines a new WRAN (Wireless Regional Area Network) interface for wideband access based on cognitive radio techniques in the TV guard bands (the so-called “white spaces”). Coupled with the advantages and flexibility of CR systems and technologies, there is an ever-growing interest around the world in exploiting CR-enabled communications in vehicular and transportation environments. The integration of CR devices and cognitive radio networks into vehicles and associated infrastructures can lead to intelligent interactions with the transportation system, among vehicles, and even among radios within vehicles. Thus, improvements can be achieved in radio resource management and energy efficiency, road traffic management, network management, vehicular diagnostics, road traffic awareness for applications such as route planning, mobile commerce, and much more. Still open within the framework of dynamic and distributed access to the radio resource are the methods for monitoring the radio environment (the so-called “spectrum sensing”) and the transceiver technology to be used on the radio channels. A CR system works on a opportunistic basis searching for unused frequency bands called “white spaces” within the radio frequency spectrum with the intent to operate invisibly and without disturbing the primary users (PU) holding a license for one or more frequency bands. Spectrum sensing, that is, the fast and reliable detection of the PU’s even in the presence of in-band noise, is still a very complex problem with a decisive impact on the functionalities and capabilities of the CRs. The spectrum sensing techniques can be classified in two types: local and cooperative (distributed). The local techniques are performed by single devices exploiting the spectrum occupancy information in their spatial neighbourhood and can be divided into three categories (Budiarjo et al., 2008): "matched filter" (detection of pilot signals, preambles, etc.), "energy detection” (signal strength analysis) and “feature detection" (classification of signals according to their characteristics). Also, a combination of local techniques in a multi-stage design can be used to improve the sensing accuracy (Maleki et al., 2010). Nevertheless, the above-mentioned techniques are mostly inefficient for signals with reduced power or affected by phenomena typical for vehicular technology applications, such as shadowing and multi-path fading. To overcome such problems, cooperatives techniques can be used. Cooperative sensing is based on the aggregation of the spectrum data detected by multiple nodes using cognitive convergence algorithms in order to avoid the channel impairment problems that can lead to false detections. (Sanna et al., 2009). Within the energy detection method, a particular attention needs to be paid to the properties of the packets wavelet transformation for subband analysis, which, according to the literature, seems to be a feasible alternative to the classical FFT-based energy detection. Vehicular applications are in most cases characterized by the need of coping with fast changes in the radio environment, which lead, in this specific case of cognitive communication, to constrains in terms of short execution time of the spectrum sensing operations. From this point of view, the computational complexity of the wavelet packets method is of the same order of the state-of-the-art FFT algorithms, but the number of mathematical operations is lower using IIR polyphase filters (Murroni et al., 2010). In our work we are investigating the use of the wavelet packets for energy detection spectrum sensing operations based on the consideration that they have a finite duration and are self- and mutually-orthogonal at integer multiples of dyadic intervals. Hence, they are suitable for subband division and analysis: a generic signal can be then decomposed on the wavelet packet basis and represented as a collection of coefficients belonging to orthogonal subbands. Therefore, the total power of the signal can be evaluated as sum of the contributions of each subband, which can be separately computed in the wavelet domain. Furthermore, the wavelet packets can be used also for the feature detection spectrum sensing, using statistical parameters such as moments and medians. We concentrate in our research on both applications of the wavelet packets to the spectrum sensing operations, investigating their efficiency in terms of reliability and execution time, applied specifically to the needs of vehicular technology and transportation environments. The other key issue for the development of the previously mentioned standard is the choice of an adaptive/multicarrier modulation as basic candidate for data transmission, having as the most known representative the Orthogonal Frequency Division Multiplexing (OFDM) modulation. OFDM-like schemes are mature enough to be chosen as a core technology for dynamic access wireless networks. At the same time, the potentialities in terms of optimization for this specific purpose are not yet thoroughly investigated. Particularly, the Wavelet Packet Division Multiplexing (WPDM) modulation method, already known for about ten years to the scientific community, is a suitable candidate to satisfy the requirements on physical level for a dynamic access network (Wong et al., 1997): WPDM has already proven to be able to overcome some of the OFDM limits (limited spectral efficiency, problems with temporal synchronization especially in channels affected by fading) and is at the same time based on use of the same wavelet packets employed for subband analysis used for spectrum sensing operations . Our research investigates the use of the WPDM for cognitive radio purposes, combined with the wavelet approach for spectrum sensing, for offering a complete, wavelet-based solution for cognitive application focused on the problematic of vehicular communication (channel impairments, high relative velocity of the communication peers etc.)
    corecore