6 research outputs found

    Traduciendo OCL como lenguaje de consultas y restricciones

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Informática, Departamento de Sistemas Informáticos y Computación, leída el 30-06-2017Esta tesis doctoral debe gran parte de su motivación inicial y enfoque final a la discusión muy animada y perspicaz que tuvo lugar durante el seminario “Automated Reasoning on Conceptual Schemas” en Dagstuhl (19-24 Mayo, 2013) [18], en el cual tuvimos la fortuna de participar.Incluso antes de asistir al seminario, sobre la base de nuestra propia experiencia aplicando la metodología de desarrollo dirigida por modelos en el proyecto Action GUI [1],ya estábamos convencidos de la veracidad y la importancia de tres declaraciones claves contenidas en la presentación del mismo, que resumen muy bien las motivaciones finales de esta tesis:“La calidad de un sistema de información se determina en gran medida a principios del ciclo de desarrollo, es decir, durante la especificación de los requisitos y el modelado conceptual, ya que los errores introducidos en estas etapas suelen ser mucho más costosos de corregir que los errores cometidos durante el diseño o la implementación.”“Por lo tanto, es deseable prevenir, detectar y corregir errores tan pronto como sea posible en el proceso de desarrollo evaluando la corrección de los esquemas conceptuales construidos.”“La alta expresividad de los esquemas conceptuales requiere adoptar técnicas de razonamiento automatizadas para apoyar al diseñador en esta importante tarea.”...This doctoral dissertation owes a great deal of its initial motivation and final focusto the very lively and insightful discussion that took place during the Dagstuhl Seminar“Automated Reasoning on Conceptual Schemas” (19-24 May, 2013) [18], which we havethe fortune to participate in.Even before attending the seminar, based on our own experience applying the modeldrivendevelopment methodology within the ActionGUI project [1], we were already convincedof the truthfulness and importance of three key statements contained in the seminar’spresentation, which summarize very well this dissertation’s ultimate motivations:“The quality of an information system is largely determined early in the developmentcycle, i.e., during requirements specification and conceptual modeling, since errorsintroduced at these stages are usually much more expensive to correct than errorsmade during design or implementation.”“Thus, it is desirable to prevent, detect, and correct errors as early as possible in thedevelopment process by assessing the correctness of the conceptual schemas built.”“The high expressivity of conceptual schemas requires to adopt automated reasoningtechniques to support the designer in this important task.”..Depto. de Sistemas Informáticos y ComputaciónFac. de InformáticaTRUEunpu

    Step 0: An Idea for Automatic OCL Benchmark Generation

    Get PDF
    Model Driven Engineering (MDE) is an important software development paradigm. Within this paradigm, models and constraints are essential components for expressing specifications of a software artefact. Object Constraint Language (OCL), a specification language that allows users to freely express constraints over different model features. However, one major issue is that the lack of OCL benchmarks makes difficult to evaluate existing and newly created OCL tools. In this paper, we present our initial idea about automatic OCL benchmark generation. The purpose of this paper is to show a developing idea rather than presenting a more formal and complete approach. Our idea is to use an OCL metamodel to sketch abstract syntax trees for OCL expressions, and solve generated typing constraints to produce the concrete OCL expressions. We illustrate this idea by using an example, discuss our work-in-progress and outline challenges to be tackled in the future

    Tool Paper: A Lightweight Formal Encoding of a Constraint Language for DSMLs

    Get PDF
    International audienceDomain Specific Modeling Languages (dsmls) plays a key role in the development of Safety Critical Systems to model system requirements and implementation. They often need to integrate property and query sub-languages. As a standardized modeling language, ocl can play a key role in their definition as they can rely both on its concepts and textual syntax which are well known in the Model Driven Engineering community. For example, most dsmls are defined using mof for their abstract syntax and ocl for their static semantics as a metamodeling dsml. OCLinEcore in the Eclipse platform is an example of such a metamodeling dsml integrating ocl as a language component in order to benefit from its property and query facilities. dsmls for Safety Critical Systems usually provide formal model verification activities for checking models completeness or consistency, and implementation correctness with respect to requirements. This contribution describes a framework to ease the definition of such formal verification tools by relying on a common translation from a subset of ocl to the Why3 verification toolset. This subset was selected to ease efficient automated verification. This framework is illustrated using a block specification language for data flow languages where a subset of ocl is used as a component language

    A formal approach to finding inconsistencies in a metamodel

    Get PDF
    Checking the consistency of a metamodel involves finding a valid metamodel instance that provably meets the set of constraints that are defined over the metamodel. These constraints are often specified in Object Constraint Language. Often, a metamodel is inconsistent due to conflicts among the constraints. Existing approaches and tools are typically incapable of pinpointing the conflicting constraints, and this makes it difficult for users to debug and fix their metamodels. In this paper, we present a formal approach for locating conflicting constraints in inconsistent metamodels. Our approach has four distinct features: (1) users can rank individual metamodel features using their own domain-specific knowledge, (2) we transform these ranked features to a weighted maximum satisfiability modulo theories problem and solve it to compute the set of maximum achievable features, (3) we pinpoint the conflicting constraints by solving the set cover problem using a novel algorithm, and (4) we have implemented our approach into a fully automated tool called MaxUSE. Our evaluation results, using our assembled set of benchmarks, demonstrate the scalability of our work and that it is capable of efficiently finding conflicting constraints

    OCL2FOL +: Coping with Undefinedness

    No full text
    Abstract. At present, the OCL language includes two constants, null and invalid, to represent undefinedness. This effectively turns OCL into a four-valued logic. It makes also problematic its mapping to first-order logic and, as a consequence, hinders the use of first-order automated-reasoning tools for OCL reasoning. We address this problem and propose a solution, grounded on the same principles underlying OCL2FOL, in order to cope with undefinedness in OCL.
    corecore