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Abstract. Model Driven Engineering (MDE) is an important software
development paradigm. Within this paradigm, models and constraints
are essential components for expressing specifications of a software arte-
fact. Object Constraint Language (OCL), a specification language that
allows users to freely express constraints over different model features.
However, one major issue is that the lack of OCL benchmarks makes
difficult to evaluate existing and newly created OCL tools. In this paper,
we present our initial idea about automatic OCL benchmark generation.
The purpose of this paper is to show a developing idea rather than pre-
senting a more formal and complete approach. Our idea is to use an OCL
metamodel to sketch abstract syntax trees for OCL expressions, and solve
generated typing constraints to produce the concrete OCL expressions.
We illustrate this idea by using an example, discuss our work-in-progress
and outline challenges to be tackled in the future.

1 Introduction and Related Work

Object Constraint Language (OCL), as a specification language in Model Driven
Engineering (MDE), is formally used for writing rules that are not expressible
by using models [1]. It plays a central role in many model-based engineering
domains such as language engineering, model transformation and business pro-
cess modelling. One particular example is ATL, a model transformation language
that is built on top of OCL and it allows users to specify precise transformation
rules for a set of model features. On the other hand, users can use OCL for
different purposes including writing constraints/invariants for specific entities,
specifying pre/post conditions over operations or methods and running queries
over a set of features.

Recently, many approaches and techniques have been proposed for analysing
or verifying models annotated with OCL [2-13]. These approaches either pro-
vide comprehensive case studies or tool support [6,14-16] for analysing OCL
constraints. However, a major issue is the lack of OCL benchmark. This is dif-
ficult for users to evaluate or choose suitable OCL tools for their own projects.
This issue has recently been addressed by Gogolla and Cabot [17,18]. Forming
a collection of OCL benchmarks is necessary for OCL communities. Typically,
there are two ways of forming such collections: (1) Extensively collecting exist-
ing models that are annotated with OCL constraints from different locations
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such as code repositories and modelling zoos [32]. (2) Automatically generating
a collection of OCL constraints with respect to user’s requirements. For example,
users may be interested in evaluating scalability of their own tools. Thus, they
need a large number of OCL expressions. Further, users may also focus on eval-
uating a particular aspect of a tool such as conflict detection. In this scenario,
it would be very useful to automatically generate a large number of conflicted
OCL expressions.

In this paper, we propose an idea of automatic OCL benchmark generation.
We consider this idea as a complement to the idea of forming a benchmark via
manually collecting existing models annotated with OCL. By exploiting this idea,
users could create customised benchmarks to accommodate their own purposes
such as generating property-specific OCL expressions.

2 The Proposed Idea

Our idea for automatic generating OCL benchmark is visualised in Fig. 1. Given
a number of OCL constraints to be generated, users first define the properties
for each OCL constraint. For example, a property call with a logic operator
over an attribute. Here, we consider these properties are described in a standard
OCL metamodel [1]. Second, we use a tree generator to generate the shape of
an abstract syntax tree (AST) for each OCL constraint. This tree generator
consults both the OCL metamodel and OCL concrete syntax to produce the
ideal size of an AST, and generates a set of typing constraints for each AST.
These constraints restrict possible types on each node in an AST. We then use
an SMT solver to solve these constraints to derive a precise type for each node.
Finally, we traverse the AST and instantiate each node with a concrete value.
To form a OCL benchmark, we repeat these steps until the number of OCL
constraints a user asked for is met.

Generate Solve Typing__ ___ ... Instantiate
Trees ... Constraints BoolOp i AST
: P N self.year >=1
OoCL ) '_> Op op N yand
Metamodel E : ; / / ' self.year<=6
: i int |\ int :

Fig. 1. The overview of an idea for generating a OCL benchmark.

2.1 An Example

In this section, we describe a scenario to illustrate our idea of automatic OCL
benchmark generation. This scenario is based on our recent experience in eval-
uating a newly created OCL tool [19].
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Figure2 shows a UML class diagram that captures a relationship between
a doctor and accident & emergency department in a hospital. Now consider a
scenario where a user has already designed a tool for verifying OCL constraints,
and would like to evaluate the performance and scalability of this tool on the
OCL logical expressions with the model shown in Fig.2. In this case, existing
collected OCL examples such as those are in [17,18] are no longer suitable for this
scenario since they use different models and contain less number of constraints.
Typically, measuring the performance and scalability of a tool involves running
against a large number of OCL constraints. Further, this user requires a specific
criteria that models must contain a large number of expressions using logical
operators. Therefore, it would be very useful to generate a customised OCL
benchmark for this specific scenario.

Staff
<<DSpec>> id: integer
Surgery
Cardiology
Radiology AE_Department
Doctor |1..* workFors 1| "=2%P
N capacity: integer
sbec: Dopec staff: integer

Fig.2. A UML class diagram that represents a relationship between a doctor and
Accident & Emergency department in a hospital.

To generate OCL logical expressions for this model, we first allow users to
specify a type for each OCL constraint to be generated. To ensure the chosen
types are valid, we use the standard OCL metamodel as a reference. For example,
a user may select a property constraint for id attribute defined in the Sta f f class.
The property call of an OCL constraint corresponds to the PropertyCallExp
in the OCL metamodel that is shown in Fig. 3. Note that a user may select the
same constraint type for multiple model features. For the reason of simplicity, we
assume that users only choose a constraint type involving a single model feature.

NavigationCallExp

PropertyCallExp Property

Fig. 3. A part of an OCL metamodel representing the relationship between two classes:
PropertyCallExp and Property.

Once the type of an OCL constraint has been fixed, we then use a tree
generator to sketch the shape of an abstract syntax tree based on consulting
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the OCL concrete syntax. At this stage, users may specify a particular type
expression and tree size. For example, a user may select a binary expression
for a property constraint over the attribute id. The tree generator then tries
to generate a tree that has the specified size. However, the size may vary and
depends on OCL concrete syntax. For example, Fig.4 shows an example of a
generated abstract syntax tree for a binary expression. This tree has a size of 9,
the root R produces two other binary expressions: nl and n2.

Fig. 4. An abstract syntax tree for a binary expression.

Now, we have the shape of an AST and the goal here is to work out correct
types. More importantly, we need to ensure the type information preserved in an
AST is consistent. For example, two boolean expressions cannot be connected by
an arithmetic operator such as + and —. In order to work out type information
for each node, we generate a set of typing constraints for an AST and solve these
constraints by using an SMT solver. To illustrate these typing constraints, we
use Fig.4 as an example.

Assume the AST in Fig.4 represents a binary expression that captures an
OCL property constraint for the attribute id in the class Doctor from Fig. 2.
Since this tree represents a binary expression, the root R must be a binary oper-
ator such as > or and. Node nl and n2 could be another two OCL expressions
containing two children nodes respectively. One of the possible kinds of expres-
sions is that nl and n2 are two binary expressions as well. For the reason of
simplicity, let us assume that this is the case. If nl is a binary expression over
id, then either n3 or n4 must be the attribute id'. Similarly, this is the same for
nb and n6.

Thus, we now can generate the following typing constraints for the AST in
Fig. 4.

(R€ OP) A (nl€OP.)A(n2 € OPF,) A
(T(n3) = INT) @ (T'(n3) = INT_LITERAL) A
(T(n4) = INT) @ (T(n4) = INT_LITERAL) A
(T(n5 =INT) & (T(nb) = INT_LITERAL) A
(T(n6) = INT) ® (T(n6) = INT_LITERAL) A

Here, T is a function that returns a particular OCL type. Sets OP, and OP,
represent all possible binary operators. For the sub-tree that contains nodes n3

! In a more complex scenario, either n3 or n4 could also be an integer or an attribute.
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and n4, exactly one of the nodes has an INT type. This is because the attribute
id is an integer type. Since we consider a scenario that a constraint over a single
attribute, the other node must be an integer literal (INT_LITERAL) type®.
Since each OCL constraint is a boolean expression and the tree represents a
binary expression, R must be a logical operator. This implies that nodes nl and
n2 must be the operators that apply to two integer types and return a boolean
type. For example, comparison operators: > and <. Hence, we now can define
the following operators for OF;, and OP..

OP, = {and, or, zor, implies}
OP. = {>,>=,<,<=,<>,=}

To generate constraints for OP; and O P., we use an integer variable to encode
each operator and constrain this integer vairable to cover all possibilities. We
then use an SMT solver to solve generated typing constraints and interpret the
successful assignment for each node in the AST [20]. For example, Fig. 5(a) shows
an example of solved type constraints for the AST in Fig. 4.

Finally, we instantiate an AST with concrete values. Currently, we use a
random value generation for each OCL literal type string, int and boolean. In
this example, we use attribute id for each INT and randomly choose two integers
for both INT_LITERAL. The final resulting OCL constraint for the attribute
id in the class Doctor is shown in Fig. 5(b).

or or
/ \ instantiate / \
—>
> > >

/\INT INT/<\ /\id id/<>\

INT_LITERAL INT_LITERAL
(a) (

Fig. 5. (a) An example of solved typing constraints. (b) An abstract syntax tree with
concrete values.

3 Work in Progress

We have implemented this idea into a prototype tool: OCLGen. We use OCLGen
in our most recent work for generating a customised OCL benchmark to evaluate
a technique for finding achievable features and OCL constraint conflicts [19,31].
OCLGen uses the examples presented by Gogolla and Cabot as candidate models
and further generates a much larger number OCL constraints based on the calcu-
lated configuration [17]. The configuration contains a set of different parameters
including number of the quantifiers, logical operators and navigations. These

2 In a multiple attributes scenario, the node could be either an integer literal or another
integer type attribute.
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generated OCL constraints cover a variety of features such as constraints over
multiple inheritances, the nested quantified OCL expressions and random con-
straint conflicts. At the moment, OCLGen is able to handle the generation of
simple binary and quantified OCL expressions containing arithmetic, navigation
and logical operators.?

4 Challenges and Future Work

Though we have a working prototype for automatically generating OCL bench-
marks, there are quite a few much more challenging problems remain.

1. Choosing/Designing an appropriate domain-specific language for describing
benchmarks. Formally, users would be able to use a well-defined language
to describe the kinds of benchmarks to be generated. For example, allowing
users to quantify the number of operators in an OCL expression or specify
the type of constraints to be generated such as navigations. Recently, a large
number of OCL analysis and verification tools have been developed [6,16,21,
22]. However, not many of them evaluated their tools on a large number of
inconsistent OCL constraints. The challenge here is that this language not
only allows users to specify valid number of OCL constraints to be generated
but also constraints cause inconsistencies. The generated benchmarks thus
can be used for the purpose of evaluating the soundness of an OCL analysis
tool.

2. Measuring the generated computational complexity of OCL benchmarks using
a set of metrics. Users may use different or the same OCL benchmarks for
evaluating existing, or their own OCL tools for different purposes. In this
context, a set of suitable metrics for a benchmark is necessary. Those metrics
can be used as a standard way of measuring the computational complexity
of an OCL benchmark so that researchers and users in the community could
have a clear idea of what tools are capable of. Even if the evaluation is not
performed on the same benchmark [23]. For example, the metrics may include
the measurement of the number of OCL data types, the maximum/minimum
(AST) size of generated OCL expressions, the depths of quantifiers, etc. Fur-
ther, a much more challenging problem here is that to automatically generate
a benchmark meeting those metrics so that users can use it for focusing on a
particular aspect of an evaluation.

3. Generating OCL benchmarks efficiently and effectively. Typically, the genera-
tion process should be completed within a reasonable time frame. As it can be
seen from the example in Sect. 2.1, the shape of an AST and its type informa-
tion can be naturally and formally tackled by constraints. The properties of
an OCL expression such as the number of quantifiers can also be expressed as
SAT/SMT constraints. The use of constraint solvers (SAT/SMT) have been
proven to be successful in many domains [7,24-27]. However, one problem

3 The fully generated benchmark is available at https://github.com/classicwuhao/
maxuse/tree/master/maxuse_examples/benchmark.
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of those solvers is that they usually do not scale very well. Based on our
recent experience, we discover that sometimes those solvers may lose accu-
racy when the problem size is too big [19]. This is probably caused by the
heuristic algorithms used within solvers. For this reason, the predication of
how those solvers’ will performance on a particular problem could be helpful
to tell users what to expect [28]. Additionally, a benchmark formed by a mix-
ture of manually created examples with generated ones could be a practical
way for determining where a numerous number of OCL constraints needed.

In this paper, we have presented our initial idea of automatically generating
OCL benchmark by producing skeletons of OCL abstract syntax trees based on
an OCL metamodel and solving generated typing constraints for each AST. The
experience of using our prototype tool OCLGen is the very first step towards
proposing a complete framework for automatic OCL benchmark generation.

In the long term, we plan to tackle the above challenges individually and
continue extending our work in OCLGen. This involves investigating the design
of a domain-specific language for generating metrics-oriented OCL benchmarks.
Though we have done preliminary work on generating graph-oriented instances,
OCL constraint generation is much more challenging since we need to take many
aspects into account such as tree shapes and typing constraints [29,30]. Further,
we will also enhance our tree generator to generate more complex structures
such as queries over a collection data type. Our ultimate goal is to solve these
challenges listed above and build a framework for automatically generating cus-
tomised OCL benchmarks that can be used for evaluating OCL analysis and
verification tools to accommodate different user requirements.
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