17 research outputs found

    Study on stability and rotating speed stable region of magnetically suspended rigid rotors using extended Nyquist criterion and gain-stable region theory

    Get PDF
    This paper presents a novel and simple method to analyze the absolute stability and the rotor speed stable region of a magnetically suspended rotor (MSR). At the beginning of the paper, a complex variable is introduced to describe the movement of the MSR and a complex coefficient transfer function is obtained accordingly. The equivalent stability relationship between this new variable and the two traditional deflection angles is also demonstrated in a simple way. The detailed characteristics of the open-loop MSR system with time delay are studied carefully based on the characteristics of its Nyquist curve. A sufficient and necessary condition of absolute stability is then deduced by using an extended complex Nyquist stability criterion for MSRs. Based on the relationship between the rotor speed and gain-stable region proposed in this paper, the rotor speed stable region can be solved simply and directly. The usefulness and effectiveness of the proposed approaches are validated by examples and simulations

    Complex-Coefficient Frequency Domain Stability Analysis Method for a Class of Cross-Coupled Antisymmetrical Systems and Its Extension in MSR Systems

    Get PDF
    This paper develops a complex-coefficient frequency domain stability analysis method for a class of cross-coupled two-dimensional antisymmetrical systems, which can greatly simplify the stability analysis of the multiple-input multiple-output (MIMO) system. Through variable reconstruction, the multiple-input multiple-output (MIMO) system is converted into a single-input single-output (SISO) system with complex coefficients. The pole locations law of the closed-loop system after the variable reconstruction has been revealed, and the controllability as well as observability of the controlled plants before and after the variable reconstruction has been studied too, and then the classical Nyquist stability criterion is extended to the complex-coefficient frequency domain. Combined with the rigid magnetically suspended rotor (MSR) system with heavy gyroscopic effects, corresponding stability criterion has been further developed. Compared with the existing methods, the developed criterion for the rigid MSR system not only accurately predicts the absolute stability of the different whirling modes, but also directly demonstrates their relative stability, which greatly simplifies the analysis, design, and debugging of the control system

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Design definition of a mechanical capacitor

    Get PDF
    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems

    Fault tolerant control of rotor/magnetic bearing systems

    Get PDF

    Fourth International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Fourth International Symposium on Magnetic Suspension Technology was held at The Nagaragawa Convention Center in Gifu, Japan, on October 30 - November 1, 1997. The symposium included 13 sessions in which a total of 35 papers were presented. The technical sessions covered the areas of maglev, controls, high critical temperature (T(sub c)) superconductivity, bearings, magnetic suspension and balance systems (MSBS), levitation, modeling, and applications. A list of attendees is included in the document

    NASA thesaurus. Volume 3: Definitions

    Get PDF
    Publication of NASA Thesaurus definitions began with Supplement 1 to the 1985 NASA Thesaurus. The definitions given here represent the complete file of over 3,200 definitions, complimented by nearly 1,000 use references. Definitions of more common or general scientific terms are given a NASA slant if one exists. Certain terms are not defined as a matter of policy: common names, chemical elements, specific models of computers, and nontechnical terms. The NASA Thesaurus predates by a number of years the systematic effort to define terms, therefore not all Thesaurus terms have been defined. Nevertheless, definitions of older terms are continually being added. The following data are provided for each entry: term in uppercase/lowercase form, definition, source, and year the term (not the definition) was added to the NASA Thesaurus. The NASA History Office is the authority for capitalization in satellite and spacecraft names. Definitions with no source given were constructed by lexicographers at the NASA Scientific and Technical Information (STI) Facility who rely on the following sources for their information: experts in the field, literature searches from the NASA STI database, and specialized references

    Flight Mechanics/Estimation Theory Symposium, 1990

    Get PDF
    This conference publication includes 32 papers and abstracts presented at the Flight Mechanics/Estimation Theory Symposium on May 22-25, 1990. Sponsored by the Flight Dynamics Division of Goddard Space Flight Center, this symposium features technical papers on a wide range of issues related to orbit-attitude prediction, determination and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers
    corecore