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Abstract—This paper presents a novel and simple method to analyze the absolute stability and the rotor speed stable 

region of a magnetically suspended rotor (MSR). At the beginning of the paper, a complex variable is introduced to 

describe the movement of the MSR and a complex coefficient transfer function is obtained accordingly. The equivalent 

stability relationship between this new variable and the two traditional deflection angles is also demonstrated in a simple 

way. The detailed characteristics of the open-loop MSR system with time delay are studied carefully based on the 

characteristics of its Nyquist curve. A sufficient and necessary condition of absolute stability is then deduced by using an 

extended complex Nyquist stability criterion for MSRs. Based on the relationship between the rotor speed and gain-stable 

region proposed in this paper, the rotor speed stable region can be solved simply and directly. The usefulness and 

effectiveness of the proposed approaches are validated by examples and simulations. 

 

Index Terms—magnetically suspended rotor, complex coefficient transfer function, stability criterion, speed stable 

region. 

 

1. Introduction 

Magnetically suspended rotors (MSRs) have the advantages 

of non-contact, zero friction, low vibration and dispensing with 

lubrication. Thus, they can reach high rotating speed and achieve 

high power storage density. In practice, they are widely used in 

spacecraft inertial actuators, inertial power storage flywheels, 

turbo-machineries and industrial spindles [1]. 

MSRs are multiple-input and multiple-output (MIMO) 

systems characterized by rotor dynamics, inherently unstable 

magnetic bearing dynamics and time delay of the controller, 

which make it difficult to analyze their characteristics and to 

design proper controllers. In recent decades, many control 

strategies have been applied to MSRs, such as decentralized PID 

[2-4], decentralized PID plus cross-feedback [5, 6], centralized 

PID plus cross-feedback [1, 7-10], adaptive control [11], robust 

control [12, 13], inverse control [14, 15] and optimal control 

[16-19]. Among these control methods, centralized PID plus 

cross-feedback control is widely used in industrial applications 

because it is simple and convenient to implement. 

The stability analysis methods for MSRs are mainly divided 

into two categories. The first the classical analysis methods in the 

frequency domain, including the characteristics root method [3, 

20-22], Routh-Hurwitz criterion method [4] and root locus 

method [6]. The characteristics root method is relatively simple; 

however, it can only analyze the stability at a specified speed. 

The Routh-Hurwitz criterion method is useful for stability 

analysis of translation modes, but it can only analyze 

single-input and single-output (SISO) systems and is not suitable 

for conical modes. The root locus method is convenient for 

analyzing the rotor speed stable region, and its main 

disadvantage is that the stable margins can not be obtained 

directly. All these methods become difficult when time delay is 

considered.  

The second class of methods is to examine the system by 

using Lyapunov’s theory [14-18, 23]. The Lyapunov’s methods 

can give a perfect mathematical proof of the system stability 

with a lack of frequency domain information which is very 

useful in the MSR debugging process.  

The complex variable description method is commonly used 

in the fields of circuit analysis, induction motor, filter design and 

wireless communication [24]. In that paper, the positive and 

negative frequency method and some basic characteristics of the 

complex transfer function are introduced. And in [25], a complex 

variable is adopted to model an MSR’s conical motion. These are 

insightful works on use of the complex variable description 

method for MSRs. 

In [26-28], positive and negative frequency methods are used 

to analyze the stability of MSR; however, they can only analyze 

the stability under a given rotor speed and the stability condition 

is only necessary and not sufficient. In [21], the speed stable 

region is obtained by using a critical criterion based on its 
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closed-loop characteristic equation with complex coefficients, 

however, the calculation is complicated and the relationships 

between relative stability and stable speed region are not 

apparently given. The complex coefficient analysis method is 

extended and applied for a class of cross-coupled 

anti-symmetrical systems in [7], and is also used to analyze 

bending modes of MSRs in [29]. The limitations of these works 

are that the time-delay term should be simplified to a first-order 

or second-order inertial portion and that it is not convenient to 

calculate the speed stable region. 

This paper attempts to develop a systematical method to 

analyze the stability analysis of the conical modes of MSRs in the 

frequency domain. Compared with the existing methods, the 

proposed method is novel and simple, because the absolute 

stability and the stable margin can be directly obtained by 

analyzing the Nyquist curves of MSRs. Meanwhile, the speed 

stable region can be calculated based on several simple 

formulations deduced from the proposed gain-stable region 

theory. 

The organization of this paper is as follows. The complex 

coefficient transfer function of an MSR is deduced in Section 2, 

as well as the proof of the equivalent relationship between the 

new complex variable and the two traditional variables. The 

extended complex Nyquist stability criterion is presented in 

Section 3 with an example. Section 4 mainly focuses on the 

characteristics analysis of the open-loop transfer function of the 

MSR system. The absolute and relative stabilities and the speed 

stable region, which are the main contributions of this paper, are 

given in detail and systematically in Section 5 and Section 6. 

Finally, some conclusions are drawn in Section 7. 

2. Complex transfer function of MSR 

An MSR system usually consists of a rotor, a controller, 

several magnetic bearings (MBs), and several sensors. Figure 1 

shows a common MSR system with the forces generated by the 

MBs in the Y-axis. In the OYZ plane, there are two pairs of MBs 

that provide magnetic forces to suspend the rotor in plane A and 

plane B. The sensors that measure the displacements of the rotor 

are in plane C and plane D. The structure of the MSR is 

symmetric around the OXY plane. The distribution of the MBs 

and the sensors in the OXZ plane is the same as those in the OYZ 

plane, so they are not plotted in the figure. 
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Figure 1. Magnetically suspended rotor system 

It is easy to analyze and synthesize the two parallel motions 

because they are both SISO and decoupled from the conical 

motions [1]. Thus, the parallel motions are not considered in this 

paper. 

According to the principle of rotor dynamics, the dynamic 

model of the MSR conical motions is given by 

 
( ) ( ) ( )

( ) ( ) ( )

r p m ay by

r p m ax bx

J t J t t l f f

J t J t t l f f





 

 

     


    

 (1) 

where m  is the mass of the rotor, 
rJ  and 

pJ  are the inertial 

parameters of the rotor, and   is the rotating speed. x , y  

are the parallel displacements of the mass center, and  ,   are 

the deflection angular displacements around the X- and Y- axes, 

respectively. 
axf , 

bxf , 
ayf , and 

byf  are magnetic forces 

generated by the corresponding MBs, and they can be 

transformed into the resultant forces, 
xf  and 

yf , on the mass 

center on the X- and Y- axes, and the overall torques, t  and t , 

on the Y- and X- axes. l  is the distance from the center of the 

rotor to the plane A. 

Suppose that the MBs are identical with each other. The 

magnetic forces on the rotor can be linearized as follows[1]: 

 , , ,h if k h k i ax ay bx by      , (2) 

where h  is the displacement between the MB and the rotor in 

the   channel, and i  is the corresponding control current. 

ik  and 
hk  denote the force-current coefficient and the 

force-displacement coefficient of each MB. 

As shown in Figure 1, the deflection angles can be calculated 

by (3) from the displacements, 
cxh , 

cyh , 
dxh  and 

dyh , which are 

measured by the sensors. 

 
( ) 2

( ) 2

cy dy s

cx dx s

h h l

h h l





 


 
. (3) 

Substituting (2) into (1) yields 

 

2

2

( ) ( ) 2 ( ) 2 ( )

( ) ( ) 2 ( ) 2 ( )

r p h m i m

r p h m i m

J t J t k l t k l i t

J t J t k l t k l i t





  

  

    


   

, (4) 

where, the control currents, ( )i t
 and ( )i t , are defined by 

 
( ) [ ( ) ( )] 2

( ) [ ( ) ( )] 2

ay by

ax bx

i t i t i t

i t i t i t





 


 

. (5) 

Then, the Laplace transformation of (4) is given by 

 

2 2

2 2

( ) ( ) 2 ( ) 2 ( )

( ) ( ) 2 ( ) 2 ( )

r p h m i m

r p h m i m

J s s J s s k l s k l i s

J s s J s s k l s k l i s





  

  

    


   

. (6) 

The decoupled and centralized PID plus cross-feedback 

control law is widely used for MSRs. As a special portion added 

to a common PID control law, the cross-feedback term is 

employed to suppress the gyro effects [7, 9, 28]. As shown in (7), 

the inputs of the controller are the angles, 
m  and 

m , while 

the outputs of the controller are the desired current commands, 

i
  and i

 . 
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( ( ))( ( ))

( ( ))( ( ))

( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )

cr m
b m

cr m
b m

P m I m D m C m

g tg t

P m I m D m C m

g tg t

i t k t k t dt k t k t

i t k t k t dt k t k t



  



  

       

       









        

        



 ]









,(7) 

where, 
Pk , 

Ik  and 
Dk  are the proportional, integral and 

differential coefficients, respectively, 
Ck  is the cross-feedback 

coefficient, and   is the time delay of the controller which is 

usually caused by the calculation time in the physical digital 

controller. ( )bg   and ( )crg   denote the common PID portion 

and the cross-feedback portion, respectively. 

The control parameters are usually determined by 

engineering experience, but some simple principles can be 

followed. The proportional coefficient 
Pk  is usually selected to 

make the stiffness of the closed-loop system approximately equal 

the force-displacement coefficient 
hk , which can give a “natural” 

stiffness for the closed-loop system to suppress uncertainties. 

Then the choice of the differential coefficient 
Dk  is subject to 

the closed-loop stiffness, which should be high enough to 

provide enough oscillation attenuation and not too high to avoid 

a high noise level [1]. The integral coefficient 
Ik  is usually very 

small and relatively easy to determine. The cross-feedback 

coefficient 
Ck  is very useful to achieve a high rotating speed of 

the rotor and can be neglected in the low speed range, which can 

be demonstrated in the simulation in Section 5, where 0Ck  . 

Then, the Laplace transformation of (7) is given by 

 
( ) [ ( ) ( ) ( ) ( )]

( ) [ ( ) ( ) ( ) ( )]

s

b m cr m

s

b m cr m

i s G s s G s s e

i s G s s G s s e









 

 

 

 

   


  

. (8) 

where, 
1

( )b P I DG s k k k s
s

    and ( )cr CG s k . 

The transfer functions of the sensor, the power amplifier and 

the low-pass filter should also be considered in the closed-loop 

control system. They are defined as 
sk , ( )aG s and ( )fG s , 

respectively. sk  is a scale parameter, while ( )aG s and ( )fG s  

are given by 

 

2

1
( )

1

1
( )

( 1)

a

a

f

f

G s
s

G s
s






 


 
 

, (9) 

where, a  is the time constant of ( )aG s  and 
f  is the 

low-pass filter coefficient of ( )fG s , respectively. 

The final closed-loop control system is shown as the block 

diagram in Figure 2. 

( ) s

bG s e 

( ) s

crG s e 

( ) s

crG s e 

( )aG s

( )aG s

2 m il k

2 m il k

1

rJ s

2

1

rJ s

pJ 

22 m hl k

22 m hl k

pJ 

1

s

1

s

( )s fk G s

( )s fk G s

( )s

( )s

( )i s


( )i s

























( ) s

bG s e 

( )i s



( )i s

( )m s

( )m s

 

Figure 2. Block diagram of MSR control system 

From the block diagram and equations (6)~(8), the 

closed-loop model is given by 

 

2 2

2 2

( ) ( ) 2 ( )

2 ( ) ( )[ ( ) ( ) ( ) ( )]

( ) ( ) 2 ( )

2 ( ) ( )[ ( ) ( ) ( ) ( )]

r p h m

s

i s m a f b cr

r p h m

s

i s m a f b cr

J s s J s s k l s

k k l G s G s G s s G s s e

J s s J s s k l s

k k l G s G s G s s G s s e





  

 

  

 





   


 


  


 

. (10) 

Define ( ) ( ) ( )t t j t    , where 1j   . The convergence 

characteristics of   and those of   and   are equivalent, 

which can be proved as follows. 

a. If   is asymptotically stable, then   and   are also 

asymptotically stable. 

If  is asymptotically stable, it is also exponentially stable 

because the system (10) is linear if neglecting time delay. Thus, a 

positive constant   exists so that ( ) (0) tt e    . Then, the 

relationship (11) holds, where    max( (0) (0), (0) (0))    . 

So,   and   are asymptotically stable. 

 

2 2

2 2

( ) ( ) ( ) ( ) (0) (0)

( ) ( ) ( ) ( ) (0) (0)

t t

t t

t t t t e e

t t t t e e

 

 

      

      

 

 

     


    

. (11) 

b. If   and   are asymptotically stable, then   is also 

asymptotically stable. 

If   and   are asymptotically stable, they are also 

exponentially stable because the system (10) is linear if 

neglecting time delay. Thus, two positive constants 
1 , 

2  exist, 

so that 1( ) (0) tt e     and 2( ) (0) tt e    . Then, the 

relationship (12) holds, where 
1 2min( , )   . So,   is 

asymptotically stable. 

 
   

   

1 2
2 2

2 2

2 2

( ) ( ) ( ) (0) (0)

(0) (0) (0)

t t

t t

t t t e e

e e

 

 

    

  

 

 

   

  

. (12) 

The Laplace transform of ( )t  is given by

( ) ( ) ( )s s j s    . Then Eq. (10) can be reformulated as (13) 

with the complex variable ( )s . Similarly, Figure 2 can be 
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transformed into Figure 3. 

 

2 2( ) ( ) 2 ( )

2 ( ) ( )[ ( ) ( )] ( )

r p h m

s

m i s a f b cr

J s s jJ s s k l s

l k k G s G s G s jG s s e 

  

 

  

  
. (13) 

( ) s

crjG s e 

( )aG s 2 m il k 2

1

rJ s

22 m hl k

pjJ 

1

s

( )s fk G s
( ) ( ) ( )s s j s   













( ) s

bG s e 

( )i s


( )i s

 

Figure 3. Block diagram of MSR control system with complex variable 

Then, the model of the MSR is given by 

 
2 2

2
( )

2

m i

r p h m

l k
P s

J s jJ s k l


  
. (14) 

The transfer function of the whole controller, whose inputs 

are the complex deflection angles and whose outputs are the 

currents in the coils of the MBs, is given by 

 ( ) ( ) ( )[ ( ) ( )] s

s f a b crC s k G s G s G s jG s e   . (15) 

The open-loop complex coefficient transfer function can be 

obtained as 

 
2 2

( ) ( ) ( )

2
( ) ( )[ ( ) ( )]

2

open

s m i
s a f b cr

r p h m

G s C s P s

l k
k G s G s G s jG s e

J s jJ s k l





 
  

, (16) 

where, ( )e s  is the error between the required angles and the 

real ones. Here, the rotor is expected to be suspended at the 

equilibrium position, so the desired angles are both zero. 

3. Nyquist criterion for complex coefficient transfer 

functions with time delay 

Since there are several complex coefficients in the open-loop 

transfer function of the MSR, it is necessary to discuss whether 

the Nyquist criterion, which is always used in real coefficient 

transfer functions, can be directly used. 

For a real coefficient polynomial, the complex roots are 

known to arise in pairs and are also conjugated. However, a 

single complex root can solely arise in a complex coefficient 

polynomial. Thus, for complex coefficient transfer functions, the 

symmetrical nature of the roots around the real axis in the 

complex plane no longer holds true [24]. As a result, the Nyquist 

curve should be plotted completely in the whole frequency 

region from   to  . An example is given below to show the 

asymmetry of the roots of a complex coefficient polynomial. 

Example 1: ( )G s s a bj   , , Ra b , 0b  . 

Since Im[ ( )] Im( )G j j a bj b       , and Im[ ( )]G j 

Im( )j a bj   b   , ( , )    , then, Im[ ( )]G j 

Im[ ( )]G j . If 2a   and 8b  , when 2  , Im[ (2 )] 10G j  ; 

however, Im[ ( 2 )] 6G j   . 

3.1. Extended Nyquist criterion 

Theorem 1 (Nyquist Stability Criterion for Complex 

Coefficient Transfer Functions): As for a real transfer function 

with complex coefficients and time delay, there are P poles on the 

right-half plane. The sufficient and necessary condition for the 

absolute stability of its closed-loop transfer function is that its 

Nyquist curve encircles (-1, j0) counter-clockwise P times for 

s j ,   . 

Proof: The real transfer function with complex coefficients and 

time-delay is meromorphic, according to Cauchy's argument 

principle, the number of poles of the closed-loop transfer function 

in the right-half plane equals the number of poles of the 

open-loop transfer function in the right-half plane minus the 

number of its Nyquist curve encircles (-1, j0) counter-clockwise. 

When they are equal, the closed-loop transfer function has no 

pole on the right-half complex plane and the system is absolutely 

stable. 

The transfer functions of physical systems are always strictly 

real, that is, the order of the numerator m is always smaller than 

that of the denominator n (m<n). Because the gain is always zero 

on the domain of s  , 90 90   , the phase value will be 

meaningless. Thus, only the domain of s j ( )   is 

considered in this paper. 

Remark 1: Since the Nyquist curve is not always symmetric 

around the real axis, the gain-frequency curve and the 

phase-frequency curve are also not always symmetric around the 

imaginary axis 0  . Thus, they must be plotted fully in all 

frequency regions from   to   in the Bode diagram. 

Corollary 1: For the complex coefficient transfer function 

with time-delay and if there are P poles on the right-half plane, 

the sufficient and necessary condition for the absolute stability of 

its closed-loop function is that its phase-frequency curve 

positively crosses the lines that (2 1)k    ( 1, 2, 3k     ) 

for P times in the frequency region ( ) ( ) 1A G j   .  

According to the geometrical relationships among the 

gain-frequency curve, phase-frequency curve and Nyquist curve, 

Corollary 1 can be easily deduced from Theorem 1. 

Remark 2: The definition of a positive crossing is that the 

Nyquist curve crosses the lines that (2 1)k    

( 1, 2, 3k     ) from bottom to top when   increases. So the 

negative crossing is from top to bottom when   increases. This 

definition is more simple and distinct than that in [21, 27]. It is 

important to note that  increases from   to  . 

3.2. Relative stability 

For transfer functions with real coefficients, when the system 

is absolutely stable, the relative stabilities can be obtained based 

on the Nyquist curve, or based on the gain-frequency curve and 

the phase-frequency curve. They are often described by stability 

margins, including gain margin and phase margin. For complex 

coefficient transfer functions, the stability margins are redefined 

as the gain-stable region and the phase-stable region in this 

paper. 

Gain-Stable Region 

Suppose that there are 
 

intersection points of a Nyquist 

curve and the negative real axis, denoted as 
1L , 

2L , …, L
. 
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Among these points, 
1L  

is the nearest one to (-1, j0) outside the 

unit circle and 
2L  is the nearest one to (-1, j0) inside the unit 

circle. As shown in Figure 4, 
1l  and 

2l  
are the distances from 

1L
 

and 
2L  to (-1, j0), respectively. Afterwards, the gain-stable 

condition is 
1 21 1l h l   which means that the system will be 

unstable if the gain of the open-loop function increases by 
21 l  

times or decreases by 
11 l  times. 

γn

γp

Γ n

Γ p

Re

Im [Go]
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l1
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Figure 4. Relative stabilities 

Phase-Stable Region 

Suppose that there are 
 

intersections points of the Nyquist 

curve and the unit circle, denoted as 
1Γ , 

2Γ , …, 
mΓ . 

pΓ  is 

the nearest one to (-1, j0) in the positive frequency segments 

below the negative real axis, and 
nΓ  is the nearest one to (-1, j0) 

in the negative frequency segments above the negative real axis. 

As shown in Figure 4, 
p  and 

n  are the absolute angles from 

pΓ  and 
nΓ  to the negative real axis, respectively. Moreover, 

p  and 
n  are the frequencies at 

pΓ  and 
nΓ , respectively. 

Afterwards, the phase-stable region is defined as: 
p  at 

p  

and 
n  at 

n , which means the system will be unstable if the 

phase angle is delayed by 
p  at 

p  or delayed by 
n  at the 

frequency 
n .  

Furthermore, the time-delay margin also can be solved by  

 min( , )c n n p p     , (17) 

which means that the system will lose stability if the time delay 

increases by 
c . 

Remark 4: The definitions of the gain-stable region and the 

phase-stable region are very useful for designing a proper 

controller, selecting controller parameters and solving the stable 

region of variable parameters. For example, when there is a 

variable parameter in the transfer function, to ensure stability, 

some inequality constraints with this parameter will hold to 

meet the gain-stable and the phase-stable conditions. Then, it 

will be very convenient to solve the stable region of this 

parameter. This method will be used for solving the speed stable 

region of MSRs. 

3.3. Example 2 

An example is employed to demonstrate the proposed 

theories. The example system is given by 

 
( ) 3 ( ) 2 ( )

( ) 3 ( ) 2 ( )

t t t u

t t t u





  

  

   


  

. (18) 

Suppose the control law is PID plus cross-feedback control, 

the cross-feedback coefficient is not accurate with a bias and the 

time delay is 0.1   in the controller. The whole controller is 

formulated as 

 
4 ( ) 2 ( ) 0.1 ( ) 2.8 ( )

4 ( ) 2 ( ) 0.1 ( ) 2.8 ( )

u t t t dt t

u t t t dt t





       

       

         


        




 (19) 

Define ( ) ( ) ( )t t j t    , u ju    , then, the system is 

converted into (20). 

 
( ) 3 ( ) 2 ( )

4 ( ) (2 2.8 ) ( ) 0.1 ( )

t j t t

t j t t dt

   

      

  


        
. (20) 

Suppose the system has a unit negative feedback loop. By 

conducting a Laplace transform for (20), the transfer functions of 

the plant and the controller are given by 

 
2

0.1

1
'( )

3 2

0.1
'( ) [4 (2 2.8 ) ] s

P s
s j s

C s j s e
s




  


    


. (21) 

Thus, the open-loop transfer function is 

 

0.1

2

2
0.1

2

0.1 1
( ) '( ) '( ) [4 (2 2.8 ) ]

3 2

(2 2.8 ) 4 0.1

( 3 2)

s

o

s

G s C s P s j s e
s s j s

j s s
e

s s j s





     
 

  


 

. (22) 

The Nyquist curve of ( )oG s  is given as Figure 5. As shown 

in the figure, the Nyquist curve of ( )oG s  encircles (-1, j0) 

counter-clockwise for zero time. Thus, there is no unstable pole 

in the closed-loop system and the system is stable. From the 

Nyquist curve in Figure 5, 
1 1.66l   and 

2 0.49l  . Based on the 

gain- and phase-stable theories, the gain- and phase-stable 

regions of the system (22) are approximately given by: 

2.04 0.60h  , 104.2p   at 5.58p   and 10.4n   at 

1.57n  . 
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Figure 5. Global (a) and local (b) plots of Nyquist curve of 
' ( )oG s .are a global plot and a local plot, respectively. There are three 

clockwise infinite semi-circles not plotted in the figure (a), they are arcs 

from A to A’, B to B’, and C to C’. 

To evaluate the influences of the time delay on the system, 

the gain and phase of the time-delay portion are calculated by 

 
1j

j

e

e



 





 

  

. (23) 

Define ( )oG s  as the transfer function of the system (22)

without the time-delay portion, the gain and phase frequency 

functions of the original transfer function ( )oG s  are given by 

 
( ) ( )

( ) ( )

o o

o o

G j G j

G j G j

 

  

  


    

. (24) 

Since the gain of the time-delay portion always equals one 

regardless of the value of the time-delay, the time-delay will only 

affect the phase lag. From the second equitation of (24), the 

larger the time delay is, the larger the phase lag is. As for the 

Nyquist curve, the positive segment will turn clockwise 

(counter-clockwise) and the negative will turn counter-clockwise 

(clockwise) if the time delay increases (decreases). To illustrate 

the phenomenon, Figure 6 is plotted to show the Nyquist curve 

of the system (22) when 0.2  . Meanwhile, the time-delay 

margin can be calculated by (17), that is 0.12c  . 
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Figure 6. Nyquist curve of 
oG  when 0.2   

As shown in Figure 6 and compared with Figure 5, the 

segments (blue lines) of the Nyquist curve in the positive 

frequency region have rotated clockwise, and the ones (red lines) 

in the negative frequency region have rotated counter-clockwise. 

Based on the definition of the phase-stable region and the 

above analysis, it is concluded that the time delay will minimize 

phase-stable region and make the stability of a stable system 

weak. However, the influence on the gain-stable region is 

uncertain because there is no certain relationship between 

gain-stable region and time delay. In this example, the 

gain-stable region also shrinks. 

4. Characteristics of open-loop MRS system 

During the working period in the MSR system, rotor speed is 

a variable parameter, which is a difference from example 2. The 

transfer function will change if the rotor speed changes. To 

conveniently study the MSR stability problem, the detailed 

characteristics of the open-loop MSR system should be 

previously analyzed. 

4.1. Unstable poles and poles on the imaginary axis  

The unstable poles of ( )openG s
 

will be those in the MSR plant 

( )P s  because there is no unstable pole in the controller ( )C s . 

Define 2 2( ) 2r p h mf s J s jJ s k l   
 

which is the denominator 

portion of ( )P s
 

in (14). The roots of the equation, ( ) 0f s  , are: 

 1
2

p

r

jJ
s

J

 
 , 2

2

p

r

jJ
s

J

 
 , (25) 

where 2 28 ( )r h m pJ k l J    . Then, the number of the unstable 

poles is discussed in two cases as in Table 1. 

Table 1. Unstable pole Number of ( )openG s  

Case A: | | c  , 0   1 unstable pole.  

Case B: | | c  , 0   0 unstable pole. 

Before analyzing the curve shape of ( )openG j  in the 

complex plane, the poles on the imaginary axis should be 

examined. There is one pole at the original point of the complex 

plane for both cases because of the integral part of the PID plus 

cross-feedback controller. The distribution of poles on the 

imaginary axis of ( )P s
 

should also be discussed in the two 

cases as in Table 2. 

Table 2. Pole number on imaginary axis of ( )openG s  

Case A: | | c   
1 0s j .  

Case B: | | c   
1 0s j ,

2 2Cs j ,
3 3Cs j . 

where 28c r h m pJ k l J  . 
2C  and 

3C  are given by (26), 

and they can be obtained by solving the equation Re[ ( )] 0f j  . 

It is easy to find that the sum of 
2C  and 

3C  
is 

p rJ J  from 

(26). 
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  2 2

2

1

2

p

C c

r

J

J
      ,  2 2

3

1

2

p

C c

r

J

J
      . (26) 

4.2. Characteristics of ( )openG j  on the Complex Plane 

Substituting s j  into (16), the open-loop frequency 

response function is given by 

 
2 2

( ) ( )[ ( ) ( )] ( )

2

2

j

open s a b cr f

m i

r p h m

G j k G j G j jG j G j e

l k

J J k l

     

 

 


   

. (27) 

Table 3. Number of Infinite Semi-Circles 

Case A: | | c   1 at 0  . 

Case B: | | c   3 at 0  , 
2C , 

3C . 

According to the plotting principles of Nyquist curves, it will 

turn 180° clockwise with an infinite radius once if there is one 

pole on the imaginary axis. The number of poles on the 

imaginary axis changes for different rotor speeds, and the 

Nyquist curves will have different shapes accordingly. The 

number of infinite semi-circles of the system is given in Table 3. 

4.3. Relationships between ( )openG j and ( )C j , ( )P j  

The frequency response functions of the MSR and the 

controller are given by 

 
2 2

2
( )

2

( ) ( )[ ( ) ( )] ( )

m i

r p h m

j

s a b cr f

l k
P j

J J k l

C j k G j G j jG j e G j 


 

    


    

  

. (28) 

Thus, the gain-frequency function and the phase-frequency 

function can be obtained as in (29) accordingly. 

Note that ( )P j
 

is real when   increases from   to  . 

Thus, ( )P j  is a real function about frequency and rotor speed, 

which can be formulated as ( , )P   . The phase-frequency 

function ( )openG j  of ( )openG j  will vary with rotor speed, 

which is given by Table 4. 

From the aforementioned analysis, the characteristics of the 

phase-frequency function are completely determined by the 

controller ( )C s  when the rotor speed is given. 

Remark 4: There are one (three) infinite-semi circle(s) when 

the absolute value of the rotor speed is below (above) 
c . The 

rotor speed will only change the gain of the open-loop transfer 

function, because the controller does not contain any term about 

the rotor speed, which makes it possible to solve the speed stable 

region by using the proposed gain-stable region in Section 3. 

Table 4. Phase Characteristics of ( )
open

G j  

Case A： | | c 
 

( ) 180P j   , ( ) ( ) 180openG j C j     

Case B： | | c   

2( , )C    ( ) 180P j   ( ) ( ) 180openG j C j     

2 3( , )C C    ( ) 360P j   ( ) ( ) 360openG j C j     

3( , )C    ( ) 540P j   ( ) ( ) 540openG j C j     

 

2 2

2 2

2
( ) ( )[ ( ) ( )] ( ) ( ) ( ) ( ) ( , )

2

2
( ) ( )[ ( ) ( )] ( ) ( ) ( , )

2

j m i
open s a b cr f

r p h m

j m i
open s a b cr f

r p h m

l k
G j k G j G j jG j e G j C j P j C j P

J J k l

l k
G j k G j G j jG j e G j C j P

J J k l

 

 

        
 

      
 






    

   


   
        

      

 (29) 

5. Stability criterion of the MSR  

5.1. Stability criterion of the MSR 

According to the Nyquist stability criterion for complex 

coefficient transfer functions in Section 3 and the analysis in 

Section 4, a stability criterion under a given rotor speed can be 

concluded as Theorem 2. 

Theorem 2 (Stability Criterion of MSR): the sufficient and 

necessary condition for the absolute stability of an MSR utilizing 

PID plus cross-feedback controller, is that its open-loop Nyquist 

curve encircles (-1, j0) counter-clockwise once if | | c   and 

zero times if | | c  . 

5.2. Example 3 

The parameters of an MSR are given in Table 5. Thus, 
c  

can be obtained as  

 28 7988.6rpmc r h m pJ k l J   . (30) 

The Nyquist curve when the rotor speed is 3000 rpm is 

shown in Figure 7, and that of 12000 rpm is shown in Figure 8.  

In Figure 7, there is only one infinite semi-circle at frequency 

  0 rad/s, while in Figure 8 there are three infinite semi-circles 

at the frequencies   0 rad/s, 177.2rad/s, and 1219.1rad/s, 

which validates the analysis in Section 4. According to the 

relationships between the Bode diagram and the Nyquist curve, 

the phase-frequency curve of the Bode diagram will turn 180° 

for once at   0 rad/s and thrice at   0 rad/s, 177.2 rad/s, and 

1219.1 rad/s in the whole frequency region in this case. This 

phenomenon can also be found in [21, 26, 27]. 

Table 5. System and control parameters of an MSR  

Parameters Values Parameters Values 

pJ  1.0 kg·m2 ak  4.8 A/V 
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hk  3 N/μm Pk  0.2 

rJ  0.9 kg·m2 Ck  0.0 

sk  8000 V/μm Ik  1.7 

ik  1350 N/A Dk
 

0.0008 

ml  0.24 m 
 

0.00013 s 

f  3.3×10-5 
a  

0.0005 

Absolute stability: When 3000rpm , the open-loop 

transfer function has one unstable pole on the right half-plane, 

namely 1P  . Its Nyquist curve encircles (-1, j0) once, thus 

1N  . The number of unstable poles of the closed-loop system is 

0Z P N   , so the system is stable. When 12000rpm , 

0P   and 0N  , so 0Z P N    and the closed-loop system 

is also stable. 
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Figure 7. Global (left) and local (right) plots of Nyquist curve when 3000rpm . The Nyquist curve begins from the original point 

at    , reaches infinite point A along the red line, turns 180° clockwise from A to A’, then comes back to the original point along the blue 

line. The direction is shown by arrows. 
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Figure 8. Global (left) and local (right) plots of Nyquist curve when 12000rpm . The Nyquist curve begins from the original point 

at    , reaches infinite point A along the red line, and turns 180° clockwise from A to A’, from B to B’ and from C to C. Finally, comes 

back to the original point along the blue line. The direction is shown by arrows. 
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Figure 9. Simulation results at 3000 rpm (left`) and 12000 rpm (right). The initial condition is: 0.1  , 0.1   . 

Relative Stability: Figure 7 shows that at 3000rpm , the 

nearest points inside and outside the unit circle are L1 and L2 

respectively, thus, the gain-stability region is (0.5405,1.9841) . 

And when 12000rpm , the gain-stable region is 

(0.5988,1.7123)  in Figure 8. The simulation results in the time 

domain at different rotor speeds are shown in Figure 9. 

6. Speed stable region 

6.1. Methods 

In Section 4, it is concluded that the varying rotor speed will 

only change the gain of the open-loop transfer function. In other 

words, rotor speed will not change the crossing frequencies of 

the intersection points of the Nyquist curve and the negative real 

axis. 

Suppose the rotor speed is positive. The case of the negative 

rotor speed will be symmetric with that of the positive one. 

Define 2 2( , ) 2r p h mg J J k l       . The ratio of the gains 

in two different speeds at a certain frequency can be given by 

 

 
 

1 1

2 2

2 2

2,

2 2
, 1

2

1

( ) 2

( ) 2

( , )
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i

i

i r i p i h mL

L i r i p i h m

i

i

G j J J k ll

l G j J J k l

g
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 (31) 

The equations below can be obtained from (29). 

 
( , )

( )
( , ) ( , )

G j l
C j

P P




 



 

 
, (32)

 
1

2

( , ) 1

( , ) 1

G j

G j





  


 

, (33) 

where 
1  and 2  are the frequencies at points L1 and L2, 

respectively. Namely, 
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1 1 1

, 2 1
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2 1 2

( , )
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P g

l g
P l

P g
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. (34) 

Hence, the rotor speed stable region is determined by 
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1 , 1 1 , 1 2

2 , 2 1 , 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

L L

L L

g l g l g

g l g l g

  

  

 

 

     


    

. (35) 

If the MSR system is stable at a given rotor speed, then the 

rotor stable region can be solved by (35). 

6.2. Example 4 

As for Example 3 in Section 5, the crossing frequencies, as 

well as the corresponding gains, are given in Table 6. As shown 

in the figure, the varying rotor speed does not affect the crossing 

frequencies, but it changes the gains at these frequencies. 

 

 

 

Table 6. Crossing frequencies and the corresponding gains 

Rotor Speed Crossing Frequencies Gains 

3000rpm 
1 22rad/s    

1 ,1 1.85l   

2 8010rad/s   
1 ,2 0.504l   

12000rpm 
1 22rad/s    

1 ,1 1.67l   

2 8010rad/s   
1 ,2 0.584l   

 

Substituting the crossing frequencies and their corresponding 

gains into (35) yields 
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( 22, ) 1.85 ( 22,3000rpm)

(8010, ) 0.504 (8010,3000rpm)

g g

g g

    


 

. (36) 

By solving the inequations (36), the positive rotor speed 

stable region is 4[0rpm,3.58 10 rpm) . Accordingly, the negative 

rotor speed stable region is 4( 3.58 10 rpm,0rpm]  . Thus the rotor 

speed stable region is 4 4( 3.58 10 rpm,3.58 10 rpm)   . In fact, we 

can get the equation below from (31) 

 
0

0

, ,

( , )

( , )i i

i

L L

i

g
l l

g




 





. (37) 

Thus, 

 
1 2 1

2 2 2

1 2

, ,

2

1 2

, ,

2

( , )

( , )

( , )

( , )

L L

L L

g
l l

g

g
l l

g









 

 

 





 
 

, (38) 

where 
2 3000rpm  , the gains at the crossing frequencies 

1  
and 2  under different rotor speeds are shown in Figure 10.  
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Figure 10. Gains at crossing frequencies under different rotor speeds 

0 0.01 0.02 0.03 0.04 0.05 0.06
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

time(sec)

A
n

g
le

s 
(d

eg
)

 

 





 

(a)  =35000rpm 
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(b)  =36000rpm 

Figure 11. Simulation results at speeds below and above the critical 

stable speed respectively 

The MSR system will arrive at a critical stable status when the 

rotor speed is approximately 3.58×104 rpm at 8010 rad/s. And it 

will lose stability if the speed continues to increase. The 

simulation results are shown in Figure 11 (a) and (b) at a speed 

of 43.5 10 rpm  below the critical stable speed and at a speed of
 

43.6 10 rpm  above the critical stable speed, respectively. 

7. Conclusion 

This paper presents a novel approach to study the absolute 

and relative stabilities for MSRs in the frequency domain. 

Several important theories and methods are proposed, including 

the equivalent stability relationship between the single complex 

variable and the two traditional real deflection angles, the 

extended Nyquist criterion for complex coefficient transfer 

functions, the absolute stability theorem for MSRs with 

centralized PID plus cross-feedback controller and the method to 

calculate the rotating speed stable region. The methods and 

theories in this paper make it easier and more systematical to 

study the stability for MSRs and examples and simulations are 

employed to demonstrate them. Moreover, the extended Nyquist 

criterion is also valid to a wider class of systems with a similar 

dynamic model. 
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