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This paper develops a complex-coefficient frequency domain stability analysis method for a class of cross-coupled two-dimensional
antisymmetrical systems, which can greatly simplify the stability analysis of the multiple-input multiple-output (MIMO) system.
Through variable reconstruction, themultiple-inputmultiple-output (MIMO) system is converted into a single-input single-output
(SISO) systemwith complex coefficients.The pole locations law of the closed-loop system after the variable reconstruction has been
revealed, and the controllability as well as observability of the controlled plants before and after the variable reconstruction has been
studied too, and then the classical Nyquist stability criterion is extended to the complex-coefficient frequency domain. Combined
with the rigidmagnetically suspended rotor (MSR) systemwith heavy gyroscopic effects, corresponding stability criterion has been
further developed. Compared with the existing methods, the developed criterion for the rigid MSR system not only accurately
predicts the absolute stability of the different whirling modes, but also directly demonstrates their relative stability, which greatly
simplifies the analysis, design, and debugging of the control system.

1. Introduction

The cross-coupling effect exists widely in many systems
in practice, for example, the magnetically suspended rotor
(MSR) systems [1–4], spacecraft attitude control systems [4,
5], power electronic systems [6–9], optical systems [10, 11],
and so on [12].

Commonly, the cross-coupled systems can be classified
into two kinds: the cross-coupled symmetrical and antisym-
metrical systems [13, 14]. As for the controlled plant with
antisymmetrical cross-coupling characteristics, antisymmet-
rical cross-decoupling controller is often needed to realize
the decoupling control of the system. This paper focuses on
the stability analysis of the cross-coupled two-dimensional
antisymmetrical system. For the sake of simplicity and clarity,
the whole control system including the cross-coupled anti-
symmetrical controlled plant and its antisymmetrical cross-
decoupling controller is called the cross-coupled antisym-
metrical system in this paper.

Cross-coupled antisymmetrical system is a class of special
multi-input multi-output (MIMO) systems. As for the stabil-
ity analysis of theMIMOsystem, themost traditionalmethod
resorts to resolve the characteristic roots [15]. However, as
for the high-order cross-coupled antisymmetrical system, it
is very tedious and even impossible to obtain its analytical
expressions. Although this issuemay be alleviated by employ-
ing the Routh-Hurwitz criterion [16–18], this method cannot
present the whole information about the system stability.
Additionally, rebuilding a proper Lyapunov function is not
easy since there is no rule to follow [19], especially for a high-
order MIMO system.Therefore, when employed to judge the
stability of the cross-coupled antisymmetrical system, these
traditional methods are relatively complex. Moreover, the
resolved relative stability information is abstract since they
lack specific physical meanings. As a result, these methods
have some difficulty in combining the stability analysis with
the controller design.
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Accordingly, it is quite interesting and significative to
judge directly and simply the stability of the cross-coupled
antisymmetrical system, which is also a basic theoretical issue
to be urgently addressed in engineering applications. An ideal
stability criterion must be combined tightly with the design
process of the controller, which can effectively guide the sys-
tem design and further reveal the influence of the variation of
the system parameters on the system stability [20]. Obviously,
the above methods can not satisfy this requirement, and it
will be more difficult when considering simultaneously the
variations of the multiple system parameters.

The Nyquist stability criterion of the single-variable
systemhasmany advantages [21–24]. It not only can judge the
closed-loop stability, but also can directly reveal the relation-
ships between the relative stability of the system and its gain.
Although thismethod has been extended to themultivariable
case [25], such as characteristic locusmethod [26–31] and the
inverse Nyquist array (INA) method [32, 33], these extended
methods are quite complex since they dependon some special
computer-aided-design (CAD) softwares. Especially when
diagonal dominance does not hold, the stability of theMIMO
system cannot be judged by the INA method.

Among all the cross-coupled antisymmetrical systems,
the MSR system is a class of typical cases in which stability
analysis is quite important since the MSR system is an open-
loop unstable system with high rotor speed [34–36]. Espe-
cially for the MSR system with significant gyroscopic effects,
its whirling modes stability analysis is more challenging.
However, the existing stability analysis methods [37–40] can
only judge the stability of the whole whirling modes and can-
not present the stability information of the different whirling
modes, which is the key concern of the controller design
and debugging. To solve this issue, the whirling modes
stability criterion [41] based on complex coefficient frequency
characteristics has been proposed, which can judge the
stability of the different whirling modes. This method is of
great value to the development of stability analysis of control
theory. However, this method is only suited to the special
MSR system, and it does not suit a class of cross-coupled
antisymmetrical systems.How to extend themethod to a class
of cross-coupled systems is a great interest in engineering.

To simplify the absolute stability judgment of the cross-
coupled antisymmetrical system and reveal directly its rela-
tive stability, a complex-coefficient frequency domain stabil-
ity analysis method for a class of cross-coupled antisymmet-
rical systems is presented in this paper.

2. Complex-Coefficient Frequency Domain
Stability Analysis Method

2.1. Variable Reconstruction of the Cross-Coupled Antisymmet-
ric System. Figure 1 shows the structural scheme of the cross-
coupled two-dimensional antisymmetrical system, where
𝐾
1
(𝑠) = 𝐾

2
(𝑠) = 𝐾(𝑠), 𝑇

𝑑1
(𝑠) = 𝑇

𝑑2
(𝑠) = 𝑇

𝑑
(𝑠), 𝑇

𝑐𝑟1
(𝑠) =

𝑇
𝑐𝑟2
(𝑠) = 𝑇

𝑐𝑟
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Figure 1: Structural scheme of the cross-coupled two-dimensional
antisymmetrical system.
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Figure 2: Structural scheme of the SISO control system with
complex coefficients.

of the cross-coupled antisymmetrical controlled plant can be
written as

[
[
[

[

A
𝑑

−A
𝑐𝑟

A
𝑐𝑟

A
𝑑

B 0
0 B

C 0
0 C 0

]
]
]

]

, (1)

where A
𝑑
,A

𝑐𝑟
∈ 𝑅

𝑛×𝑛, B ∈ 𝑅
𝑛×1, and C ∈ 𝑅

1×𝑛.
According to Figure 1, we assume that the state vector of

the controlled plant P(𝑠) is [𝛼 𝛽]𝑇, where 𝛼,𝛽 ∈ 𝑅
𝑛×1. The

variable reconstruction is performed as follows: 𝑟 = 𝑟
1
+ 𝑗𝑟

2
,

𝑢̂ = 𝑢
1
+ 𝑗𝑢

2
, 𝑦 = 𝑦

1
+ 𝑗𝑦

2
, 𝜑 = 𝛼 + 𝑗𝛽. Then, after

the variable reconstruction, the original MIMO system with
real coefficients is converted into a SISO control system with
complex coefficients, which is shown in Figure 2.

Based on the information of the original controlled plant,
the system realization of the SISO controlled plant𝑃

𝑐𝑚𝑝
(𝑠) can

be written as

[
A
𝑑
+ 𝑗A

𝑐𝑟
B

C 0 ] . (2)

And the open-loop transfer function of the SISO system
is given by

𝐺
𝑐𝑚𝑝

(𝑠) = 𝐾 (𝑠) 𝑃
𝑐𝑚𝑝

(𝑠) (𝑇
𝑑
(𝑠) + 𝑗𝑇

𝑐𝑟
(𝑠)) . (3)
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2.2. Pole Locations Law before and after
Variable Reconstruction

Theorem 1. Suppose that the linear differential equations have
the form

𝐷[
𝛼

𝛽
] = A [
𝛼

𝛽
] , (4)

where𝐷 is the differential operator, A ∈ 𝑅
2𝑛×2𝑛, and dim(𝛼) =

dim(𝛽). If all the solutions [𝛼 𝛽]𝑇 for the above satisfy the
following differential equations:

𝐷(𝛼 + 𝑗𝛽) = Ã (𝛼 + 𝑗𝛽) , (5)

where Ã ∈ 𝐶
𝑛×𝑛, then the eigenvalues of theA and Ã satisfy the

following relationships:

(1) If 𝑎 + 𝑗𝑏̂ ∈ 𝜎
𝜆
(Ã), then 𝑎 ± 𝑗𝑏̂ ∈ 𝜎

𝜆
(A);

(2) If 𝑎 + 𝑗𝑏 ∉ 𝜎
𝜆
(Ã) and 𝑎 − 𝑗𝑏 ∉ 𝜎

𝜆
(Ã), then 𝑎 ± 𝑗𝑏 ∉

𝜎
𝜆
(A).

Proof. Assume that the basic solution set of ẋ = Ax is 𝜓(𝑡) =
{v
1
(𝑡), v

2
(𝑡), . . . , v

𝑛
(𝑡)}, according to the theory of the linear

differential equations, v
𝑖
(𝑡) has one of the following three

forms: 𝑡𝑘𝑒𝑎𝑡 cos(𝑏𝑡)v
𝑐
, 𝑡𝑘𝑒𝑎𝑡 sin(𝑏𝑡)v

𝑐
, and 𝑡

𝑘
𝑒
𝑎𝑡v

𝑐
, where v

𝑐
is

a constant real vector and v
𝑐
∈ 𝑅

2𝑛×1.
At the same time, 𝜓(𝑡) can also be given by

𝜓 (𝑡) = {[
v
11
(𝑡)

v
12
(𝑡)
] , [

v
21
(𝑡)

v
22
(𝑡)
] , . . . , [

v
𝑛1
(𝑡)

v
𝑛2
(𝑡)
]} . (6)

As for the complex-coefficient differential equations ẋ =

Ãx, its basic solution set can be described as 𝜓̃(𝑡) =

{ṽ
1
(𝑡), ṽ

2
(𝑡), . . . , ṽ

𝑚
(𝑡)}, where ṽ

𝑖
(𝑡) has a form of 𝑡𝑘𝑒(𝑎+𝑗𝑏̂)𝑡v̂

𝑐
,

where v̂
𝑐
is the constant complex vector and v̂

𝑐
∈ 𝐶

𝑛×1.
Define the following function space:

𝜐
𝑟
= span{[v11 (𝑡)v

12
(𝑡)
] , [

v
21
(𝑡)

v
22
(𝑡)
] , . . . , [

v
𝑛1
(𝑡)

v
𝑛2
(𝑡)
]} ,

𝜐
𝑟𝑐
= span {v

11
(𝑡) + 𝑗v

12
(𝑡) , v

21
(𝑡)

+𝑗v
22
(𝑡) , . . . , v

𝑛1
(𝑡) + 𝑗v

𝑛2
(𝑡)} ,

𝜐
𝑐
= span {ṽ

1
(𝑡) , ṽ

2
(𝑡) , . . . , ṽ

𝑚
(𝑡)} .

(7)

From the proposition, it can be obtained that 𝜐
𝑟𝑐

⊂ 𝜐
𝑐
.

According to the property of the general solution for the
ordinary differential equations, one can obtain that dim(𝜐

𝑐
) =

𝑛 = dim(𝜐
𝑟𝑐
). Accordingly, 𝜐

𝑟𝑐
= 𝜐

𝑐
.

As for any v̂, ṽ ∈ 𝐶
𝑚×1, v̂, ṽ ̸= 0⃗, it can be proven that

𝑒
(𝑎+𝑗𝑏̂)𝑡ṽ, 𝑒𝑎𝑡 cos(𝑏𝑡)v̂, and 𝑒

𝑏𝑡 sin(𝑏𝑡)v̂ are linearly indepen-
dent if 𝑎 + 𝑗𝑏̂ ̸= 𝑎 + 𝑗𝑏. When 𝑎 + 𝑗𝑏̂ ∈ 𝜎

𝜆
(Ã), ṽ is the

corresponding eigenvector; according to the format of the
solution to the ordinary differential equations, 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ is the
solution of (5); that is, 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ ∈ 𝜐

𝑐
= 𝜐

𝑟𝑐
. When 𝑎 + 𝑗𝑏̂ ∈

𝜎
𝜆
(Ã), ṽ is the corresponding eigenvector, according to the

format of the solution to the ordinary differential equations,
𝑒
(𝑎+𝑗𝑏̂)𝑡ṽ is the solution to (5), that is, 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ ∈ 𝜐

𝑐
= 𝜐

𝑟𝑐
.

If 𝑎 + 𝑗𝑏̂ ∉ 𝜎
𝜆
(A), from the format of the fundamental-

solution matrix for (4), it can be derived that 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ ∉ 𝜐
𝑟𝑐

since any v
𝑖1
(𝑡)+𝑗v

𝑖2
(𝑡) and 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ are linearly independent

and {v
𝑖1
(𝑡) + 𝑗v

𝑖2
(𝑡)} is the set of the base vectors of 𝜐

𝑟𝑐
. And

this contradicts the fact that 𝑒(𝑎+𝑗𝑏̂)𝑡ṽ ∈ 𝜐
𝑟𝑐
. Accordingly,

proposition (1) is right.
Simultaneously, if 𝑎 ± 𝑗𝑏 ∈ 𝜎

𝜆
(A), then both 𝑒

𝑎𝑡 cos(𝑏𝑡)v
and v ∈ 𝑅

2𝑛×1 are the solutions for (4). One can define
v = {

v
1v
2
}, where v

1
, v
2
∈ 𝑅

𝑛×1; then one can obtain that
𝑒
𝑎𝑡 cos(𝑏𝑡)(v

1
+ 𝑗v

2
) ∈ span{ṽ

1
(𝑡), ṽ

2
(𝑡), . . . , ṽ

𝑛
(𝑡)}. If 𝑎 +

𝑗𝑏 ∉ 𝜎
𝜆
(Ã) and 𝑎 − 𝑗𝑏 ∉ 𝜎

𝜆
(Ã), then it can be drawn

that 𝑒
𝑎𝑡 cos(𝑏𝑡)(v

1
+ 𝑗v

2
) ∉ span{ṽ

1
(𝑡), ṽ

2
(𝑡), . . . , ṽ

𝑛
(𝑡)},

which is not in accordance with 𝑒
𝑎𝑡 cos(𝑏𝑡)(v

1
+ 𝑗v

2
) ∈

span{ṽ
1
(𝑡), ṽ

2
(𝑡), . . . , ṽ

𝑛
(𝑡)}. Accordingly, proposition (2) is

positive. This completes the proof.

Theorem 2. The systems before and after variable reconstruc-
tion satisfy the pole locations law presented in Theorem 1.

Proof. Note that systemmatrix determines the pole locations;
therefore, it should be obtained at first. Since 𝑇

𝑑1
(𝑠) = 𝑇

𝑑2
(𝑠),

their system realization is given by

[
Â
𝑑

B̂
𝑑

Ĉ
𝑑

D̂
𝑑

] . (8)

And the state variables of 𝑇
𝑑1
(𝑠) and 𝑇

𝑑2
(𝑠) are x

𝑑1
, x

𝑑2
,

respectively.
Similarly the system realization of 𝑇

𝑐𝑟1
(𝑠) and 𝑇

𝑐𝑟2
(𝑠) is

given by

[
Â
𝑐𝑟

B̂
𝑐𝑟

Ĉ
𝑐𝑟

D̂
𝑐𝑟

] . (9)

And the state variables of 𝑇
𝑐𝑟1
(𝑠) and 𝑇

𝑐𝑟2
(𝑠) are, respectively,

x
𝑐𝑟1

and x
𝑐𝑟2
.

Also, the system realization of 𝐾
1
(𝑠) and 𝐾

2
(𝑠) can be

described as

[
Â
𝑘

B̂
𝑘

Ĉ
𝑘

D̂
𝑘

] , (10)

with the state variables of x
𝑘1
and x

𝑘2
, respectively.

Define 𝜒 = [𝛼
𝑇 x𝑇

𝑑1
x𝑇
𝑐𝑟1

x𝑇
𝑘1
𝛽
𝑇 x𝑇

𝑑2
x𝑇
𝑐𝑟2

x𝑇
𝑘2
]
𝑇

; then
𝜒̇ = A𝜒. According to the closed-loop structure diagram of
the control system, one has

𝛼̇ = (A
𝑑
− BD̂

𝑑
D̂
𝑘
C)𝛼 + BĈ

𝑑
x
𝑑1

− BD̂
𝑑
Ĉ
𝑘
x
𝑘1
− (A

𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C)𝛽

− BĈ
𝑐𝑟
x
𝑐𝑟2

+ BD̂
𝑐𝑟
Ĉ
𝑘
x
𝑘2
,

𝛽̇ = (A
𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C)𝛼 + BĈ

𝑐𝑟
x
𝑐𝑟1

− BD̂
𝑐𝑟
Ĉ
𝑘
x
𝑘1
+ (A

𝑑
− BD̂

𝑑
D̂
𝑘
C)𝛽

+ BĈ
𝑑
x
𝑑2
− BD̂

𝑑
Ĉ
𝑘
x
𝑘2
.

(11)
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Then the system matrix of the whole system before variable
reconstruction is given by

A =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

A
𝑑
− BD̂

𝑑
D̂
𝑘
C BĈ

𝑑
0 −BD̂

𝑑
Ĉ
𝑘

− (A
𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C) 0 −BĈ

𝑐𝑟
BD̂

𝑐𝑟
Ĉ
𝑘

−B̂
𝑑
D̂
𝑘
C Â

𝑑
0 −B̂

𝑑
Ĉ
𝑘

0 0 0 0
−B̂

𝑐𝑟
D̂
𝑘
C 0 Â

𝑐𝑟
−B̂

𝑐𝑟
Ĉ
𝑘

0 0 0 0
B̂
𝑘
C 0 0 Â

𝑘
0 0 0 0

A
𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C 0 BĈ

𝑐𝑟
−BD̂

𝑐𝑟
Ĉ
𝑘

A
𝑑
− BD̂

𝑑
D̂
𝑘
C BĈ

𝑑
0 −BD̂

𝑑
Ĉ
𝑘

0 0 0 0 −B̂
𝑑
D̂
𝑘
C Â

𝑑
0 −B̂

𝑑
Ĉ
𝑘

0 0 0 0 −B̂
𝑐𝑟
D̂
𝑘
C 0 Â

𝑐𝑟
−B̂

𝑐𝑟
Ĉ
𝑘

0 0 0 0 B̂
𝑘
C 0 0 Â

𝑘

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)

Define the new state variables 𝜒̃ =

[𝛼
𝑇
+ 𝑗𝛽

𝑇 x𝑇
𝑑1
+ 𝑗x𝑇

𝑑2
x𝑇
𝑐𝑟1

+ 𝑗x𝑇
𝑐𝑟2

x𝑇
𝑘1
+ 𝑗x𝑇

𝑘2
]
𝑇

; then,
according to (12) and Theorem 1, the corresponding system
matrix Ã of 𝜒̃ can be derived as

Ã =

[
[
[
[
[

[

(A
𝑑
− BD̂

𝑐𝑟
D̂
𝑘
C) + 𝑗 (A

𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C) BĈ

𝑑
𝑗BĈ

𝑐𝑟
−B (D̂

𝑑
+ 𝑗D̂

𝑐𝑟
) Ĉ

𝑘

−B̂
𝑑
D̂
𝑘
C Â

𝑑
0 −B̂

𝑑
Ĉ
𝑘

−B̂
𝑐𝑟
D̂
𝑘
C 0 Â

𝑐𝑟
−B̂

𝑐𝑟
Ĉ
𝑘

B̂
𝑘
C 0 0 Â

𝑘

]
]
]
]
]

]

. (13)

As for the SISO system with complex coefficients, the
system realization of 𝑇

𝑑
(𝑠) + 𝑗𝑇

𝑐𝑟
(𝑠) can be derived from the

system realizations of 𝑇
𝑑
(𝑠) and 𝑇

𝑐𝑟
(𝑠) as follows:

[
[

[

Â
𝑑

0 B̂
𝑑

0 Â
𝑐𝑟

B̂
𝑐𝑟

Ĉ
𝑑

𝑗Ĉ
𝑐𝑟

D̂
𝑑
+𝑗D̂

𝑐𝑟

]
]

]

. (14)

Similarly, the complex-coefficient system matrix of the
SISO system after variable reconstruction can be derived as

A
𝑐𝑚𝑝

=

[
[
[
[
[

[

(A
𝑑
− BD̂

𝑐𝑟
D̂
𝑘
C) + 𝑗 (A

𝑐𝑟
− BD̂

𝑐𝑟
D̂
𝑘
C) BĈ

𝑑
𝑗BĈ

𝑐𝑟
−B (D̂

𝑑
+ 𝑗D̂

𝑐𝑟
) Ĉ

𝑘

−B̂
𝑑
D̂
𝑘
C Â

𝑑
0 0

−B̂
𝑐𝑟
D̂
𝑘
C 0 Â

𝑐𝑟
0

B̂
𝑘
C 0 0 Â

𝑘

]
]
]
]
]

]

. (15)

From (13) and (15), it can be drawn that A
𝑐𝑚𝑝

= Â.
Accordingly, the original system and the new system are in
line with the same pole locations laws with that ofTheorem 1.
This concludes the proof.

2.3. Controllability and Observability before and after Variable
Reconstruction

Lemma3. If (A + 𝑗B)𝑛 = A
𝑛
+𝑗B

𝑛
, then [ A B

−B A ]
𝑛

= [
A
𝑛

B
𝑛

−B
𝑛
A
𝑛

],
where A, B, A

𝑛
, B

𝑛
∈ 𝑅

𝑚×𝑚.

Proof. When 𝑛 = 1, the conclusion holds obviously. Suppose
that the conclusion also holds when 𝑛 = 𝑁; then when

𝑛 = 𝑁 + 1, (A + 𝑗B)𝑛+1 = (A
𝑛
+ 𝑗B

𝑛
)(A + 𝑗B) =

(A
𝑛
A − B

𝑛
B) + 𝑗(B

𝑛
A + A

𝑛
B); that is, A

𝑛+1
= A

𝑛
A − B

𝑛
B

and B
𝑛+1

= B
𝑛
A + A

𝑛
B.

Similarly, [
A B
−B A ]

𝑛+1

= [
A
𝑛

B
𝑛

−B
𝑛
A
𝑛

] [
A B
−B A ] =

[
A
𝑛
A−B
𝑛
B A

𝑛
B+B
𝑛
A

−(A
𝑛
B+B
𝑛
A) A
𝑛
A−B
𝑛
B ] = [

A
𝑛+1

B
𝑛+1

−B
𝑛+1

A
𝑛+1

]. This concludes the
proof.

Theorem 4. If the SISO system (2) is controllable and
observable, that is, rank (B ÃB ⋅ ⋅ ⋅ Ã𝑛−1B) = 𝑛 and
rank ([C CÃ ⋅ ⋅ ⋅ CÃ𝑛−1

]
𝑇

) = 𝑛, where Ã = A
𝑑
+𝑗A

𝑐𝑟
, then

the MIMO system (1) is controllable and observable too.
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Proof. Denote [ A
𝑑
−A
𝑐𝑟

A
𝑐𝑟

A
𝑑

]
𝑛

= [
A
𝑑𝑛

−A
𝑐𝑟𝑛

A
𝑐𝑟𝑛

A
𝑑𝑛

], where 𝑛 ∈ N. If the
MIMO system (1) is not controllable, then

rank [A𝑑0
B −A

𝑐𝑟0
B A

𝑑1
B −A

𝑐𝑟1
B ⋅ ⋅ ⋅ A

𝑑(𝑛−1)
B −A

𝑐𝑟(𝑛−1)
B

A
𝑐𝑟0
B A

𝑑0
B A

𝑐𝑟1
B A

𝑑1
B ⋅ ⋅ ⋅ A

𝑐𝑟(𝑛−1)
B A

𝑑(𝑛−1)
B ]

< 2𝑛.

(16)

That is, there exists a set of real numbers {𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑛−1
,

𝜆
0
, 𝜆

1
, . . . , 𝜆

𝑛−1
} which are not all zeros so that

𝑛−1

∑

𝑖=0

𝛾
𝑖
A
𝑑𝑖
B −

𝑛−1

∑

𝑖=0

𝜆
𝑖
A
𝑐𝑟𝑖
B = 0,

𝑛−1

∑

𝑖=0

𝛾
𝑖
A
𝑑𝑖
B +

𝑛−1

∑

𝑖=0

𝜆
𝑖
A
𝑐𝑟𝑖
B = 0.

(17)

According to Lemma 3, it can be obtained that Ã𝑖
= A

𝑑𝑖
+

𝑗A
𝑐𝑟𝑖
. Suppose 𝜉

𝑖
= 𝛾

𝑖
+ 𝑗𝜆

𝑖
; then, from (17), it can be drawn

that ∑𝑛−1

𝑖=0
𝜉
𝑖
Ã𝑖B = 0, which is not in accordance with the

assumption.
Similarly, it can be proven that if the SISO system (2)

is observable, then the MIMO system (1) is observable too.
Proof of the proposition is completed.

2.4. Complex-Coefficient Frequency Domain Stability Crite-
rion. According toTheorems 1–4, the following corollary can
be achieved.

Corollary 5. As for the complex-coefficient system (15), the
sufficient and necessary condition for the system stability is that
all the characteristic roots lie in the left half plane (LHP). And
the sufficient and necessary condition for the system critical
stability is that there is at least a pure imaginary root and there
is no right-half plane (RHP) pole.

From the analysis above, it can be drawn that the stability
of the cross-coupled antisymmetrical system can be demon-
strated by that of the corresponding complex-coefficient sys-
tem. Note that the argument principle applies to the complex
variable function which is defined on the complex plane, and
the complex-coefficient open-loop transfer function 𝐺

𝑐𝑚𝑝

also belongs to this class of complex variable functions. Since
the Nyquist stability criterion is based on the argument prin-
ciple and the system controllability and observability are the
precondition of Nyquist stability criterion, the corresponding
SISO system can be employed to analyze the stability of the
original control system by using complex-coefficient Nyquist
stability criterion. Accordingly, one can achieve the follow-
ing stability analysis method based on complex-coefficient
frequency characteristics. Denote enc

𝐷
(𝐺

𝑐𝑚𝑝
(𝑠), −1 + 𝑗0) as

the number of anticlockwise encirclements of the −1 + 𝑗0

point by the 𝐺
𝑐𝑚𝑝

(𝑠) locus as a representative point 𝑠 traces
on the path 𝐷 in the clockwise direction, where 𝐷 is the
semicircle contour that encloses the entire right-half 𝑠 plane.
Then one can obtain the following stability criterion for two-
dimensional cross-coupled antisymmetrical systems.

Dynamic signal
analyzer

Controller and
amplifier

MSCMG

Figure 3: Photograph of the experimental setup.

Criterion 1. As for the cross-coupled two-dimensional anti-
symmetrical system (12), if its corresponding SISO con-
trolled plant (2) is both controllable and observable, and its
number of the RHP poles is 𝑁

𝑂𝑅
, then the sufficient and

necessary condition for the stability of system (12) is that
enc

𝐷
(𝐺

𝑐𝑚𝑝
(𝑠), −1 + 𝑗0) = 𝑁

𝑂𝑅
.

Compared with the traditional Nyquist stability criterion
for the multi variable systems, the proposed one greatly sim-
plified the stability analysis since the complex multivariable
system has become a single-variable system.

In fact, as for a special controlled plant, this criterion
can be further developed according to its practical physical
meaning, for example, the MSR system with heavy gyro-
scopic effects; it can be proven that the closed-loop right-
half-poles and left-half-poles of the complex-coefficient SISO
system denote the forward and backward whirling modes of
the MSR respectively, which is the theoretical base for the
whirling modes stability criterion [41].

3. Simulation and Experimental Results

Note that the large magnetically suspended control moment
gyroscope (MSCMG) has a rigid MSR with significant cross-
coupling effects which is a typical coupled-coupled anti-
symmetrical system; thus, it is taken as the example. To
demonstrate the effectiveness and superiority of the proposed
stability criterion, comparative simulation between the pro-
posedmethod and the traditional one (root locuswith respect
to rotor speed) and experiments have been performed.

3.1. Experiment Setup. Figure 3 shows the experimental
setup, where the MSR has two 2-degree-of-freedom (DOF)
radial MBs and two single-DOF axial MBs, which are driven
by five H-bridge unipolar switching power amplifiers inde-
pendently [42], realizing 5-DOF active control.

The well-known decentralized PID plus filtered cross
feedback control approach [34] is adopted. The main param-
eters of the MSCMG and the controller coefficients used in
simulation and experiments have been listed in Tables 1 and 2.

The experiments are performed in a TMS320C32 digital
signal processor (DSP) board.The total digital control system
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Table 1: System parameters of the MSCMG.

Parameter Value
𝑚 56 kg
𝐽
𝑥

0.6032 kg⋅m2

𝐽
𝑧

0.7958 kg⋅m2

𝑘
𝑖

1140N/A
𝑘
𝑠

75926
𝑥
𝑎

120 𝜇m
𝐽
𝑦

0.6032 kg⋅m2

𝑙
𝑠

0.177m
𝑘
ℎ

2.83N/𝜇m
𝑙
𝑚

0.113m

Table 2: Parameters of the controller.

Parameter Value
𝑘am 2.0
𝑘
𝑝

0.167
𝑘
𝑑

0.0008
𝑘
𝑙𝑐

0.00015
𝑓
ℎ

280Hz
𝑖
𝑐

10.0
𝑘
𝑖

1.7
𝑘
ℎ𝑐

0.0045
𝑘
𝑐

1.0
𝑓
𝑙

30Hz

delay can be tested, which is about 150𝜇s. To facilitate draw-
ing the root locus diagrams [43] and compare fairly, the delay
unit is simplified as its second-order Taylor’s series approx-
imation when drawing the root locus and the complex-
coefficient frequency characteristics plots; that is,

𝑔
𝜏
(𝑠) = 𝑒

−𝜏𝑠
≈

1

1 + 𝜏𝑠 + 0.5𝜏2𝑠2
, (18)

where 𝜏 = 0.00017. In fact, this approximate has little
influence on the stability analysis for the MSR system since
the interested critical stability frequencies of the whirling
modes are relatively low.That is, the phase errors at the critical
stability frequencies are tolerant.

The closed-loop rotation dynamic model with the anti-
symmetrical cross-decoupling controller can be given by [41,
44]

𝐽
𝑟
̈𝛽 (𝑡) − 𝐽

𝑧
Ω𝛼̇ (𝑡) − 2𝑘

ℎ
𝑙
2

𝑚
𝛽 (𝑡)

= −2𝑙
𝑚
𝑙
𝑠
𝑘
𝑖
𝑘
𝑠
𝑔
𝑎
𝑔
𝜏
𝑔
𝑓
[𝑔

𝑏
(𝛽 (𝑡)) + 𝑔

𝑐𝑟
(𝛼 (𝑡))] ,

𝐽
𝑟
𝛼̈ (𝑡) + 𝐽

𝑧
Ω ̇𝛽 (𝑡) − 2𝑘

ℎ
𝑙
2

𝑚
𝛼 (𝑡)

= −2𝑙
𝑚
𝑙
𝑠
𝑘
𝑖
𝑘
𝑠
𝑔
𝑎
𝑔
𝜏
𝑔
𝑓
[𝑔

𝑏
(𝛼 (𝑡)) − 𝑔

𝑐𝑟
(𝛽 (𝑡))] ,

(19)

where 𝐽
𝑟
and 𝐽

𝑧
are the momenta of inertia of the rotor

about the radial and axial directions, respectively; Ω is the
rotor speed; 𝑙

𝑚
and 𝑙

𝑠
are the distances from the geometry

center of the MSR to the radial and the radial sensor; 𝛼 and
𝛽 are the rotor angular displacements about the 𝑋- and 𝑌-
axes; 𝑔

𝑏
, 𝑔

𝑐𝑟
, 𝑔

𝑎
, 𝑔

𝑓
, and 𝑔

𝜏
denote the basic controller, the

antisymmetrical cross-decoupling controller, the switching
power amplifier, the antialias filter, and the control system
delay unit, respectively; 𝑘

ℎ
is the force-displacement factor of

the radial magnetic bearings, and 𝑘
𝑠
is the proportional gain

of the displacement sensor.
The open-loop transfer function of the SISO system with

complex coefficients can be derived as [44]

𝐺
𝑐𝑚𝑝

(𝑠) =

2𝑙
𝑚
𝑙
𝑠
𝑘
𝑖
𝑘
𝑠
𝑔
𝑎
(𝑠) 𝑔

𝜏
(𝑠) 𝑔

𝑓
(𝑔

𝑏
(𝑠) + 𝑗𝑔

𝑐𝑟
(𝑠))

𝐽
𝑟
𝑠2 − 𝑗𝐽

𝑧
Ω𝑠 − 2𝑘

ℎ
𝑙2
𝑚

.

(20)

According to the definition used by logarithmic fre-
quency stability criterion [45], we make the following def-
initions: 𝑁

𝑝+
, 𝑁

𝑝−
denote the number of the positive and

negative phase cross-over points of 𝐺
𝑐𝑚𝑝

(𝑗𝜔) in the set of
𝐿
𝑃
= {𝜔 | 𝜔 ≥ 0, log |𝐺

𝑐𝑚𝑝
(𝑗𝜔)| ≥ 0}, when 𝜔 changes from

0 to +∞; 𝑁
𝑠𝑓+

, 𝑁
𝑠𝑓−

denote the number of the positive and
negative phase cross-over points of𝐺cmp(𝑗𝜔) in 𝐿𝑆 = {𝜎 | 𝜎 ≥

0, log |𝐺
𝑐𝑚𝑝

(𝜎)| ≥ 0}, when 𝜎 decreases from +∞ to 0; 𝑁
𝑠𝑏+

,
𝑁
𝑠𝑏−

are the number of the positive and negative phase cross-
over points of𝐺cmp(𝜎) in 𝐿 𝑠, when 𝜎 increases from 0 to +∞;
and𝑁

𝑛+
,𝑁

𝑛−
denote the number of the positive and negative

phase cross-over points of 𝐺
𝑐𝑚𝑝

(𝑗𝜔) in 𝐿
𝑁

= {𝜔 | 𝜔 ≤ 0,
log |𝐺

𝑐𝑚𝑝
(𝑠)| ≥ 0} when 𝜔 changes from −∞ to 0. According

to the proposed Criterion 1 and the whirling modes stability
criterion for aMSRwith bendingmodes [41], one can further
obtain the following whirlingmodes stability criterion for the
rigid MSR without bending modes.

Criterion 2. As for the rigid MSR system (19), the sufficient
and necessary conditions for the nutation and precession
modes stability are 𝑁

𝑂𝐹𝑅
= 𝑁

𝑝+
+ 𝑁

𝑠𝑓+
− 𝑁

𝑝−
− 𝑁

𝑠𝑓−
and

𝑁
𝑂𝐵𝑅

= 𝑁
𝑛+

+ 𝑁
𝑠𝑏+

− 𝑁
𝑛−

− 𝑁
𝑠𝑏−

, respectively.

3.2. Simulation and Experimental Results. At first, under
the conditions that the cross proportion is 48Hz, the Bode
diagram is drawn, respectively, at the rotation speed of
140Hz and 145Hz, which is shown in Figure 4. Substituting
the system parameters and rotor speed into (20), it can be
calculated that𝑁

𝑂𝐹𝑅
= 0 and𝑁

𝑂𝐵𝑅
= 0. From Figure 4(a), it

can be achieved that𝑁
𝑝+
+𝑁

𝑠𝑓+
−𝑁

𝑝−
−𝑁

𝑠𝑓−
= 0+0.5−0.5−0 =

0 and 𝑁
𝑛+

+ 𝑁
𝑠𝑏+

− 𝑁
𝑛−

− 𝑁
𝑠𝑏−

= 1 + 0 − 0.5 − 0.5 = 0.
According to the whirling modes stability criterion, 𝑁

𝑂𝐹𝑅
=

𝑁
𝑝+
+𝑁

𝑠𝑓+
−𝑁

𝑝−
−𝑁

𝑠𝑓−
,𝑁

𝑂𝐵𝑅
= 𝑁

𝑛+
+𝑁

𝑠𝑏+
−𝑁

𝑛−
−𝑁

𝑠𝑏−
; that

is, both the forward and backward whirling modes are stable.
Simultaneously, from Figure 4(b), it can be achieved that
𝑁
𝑝+
+𝑁

𝑠𝑓+
−𝑁

𝑝−
−𝑁

𝑠𝑓−
= 0+0.5−1.5−0 = −1 and𝑁

𝑛+
+𝑁

𝑠𝑏+
−

𝑁
𝑛−

− 𝑁
𝑠𝑏−

= 1 + 0 − 0.5 − 0.5 = 0. Therefore, the backward
whirling mode is stable, while the forward whirling mode is
unstable at the speed of 145Hz. The root locus with respect
to the rotor speed is drawn, which is shown in Figure 5.
The speed range is from 0Hz to 150Hz and it is plotted every
5Hz. According to Figure 5, it can be derived that the system
is stable at the speed of 140Hz while unstable at the speed
of 145Hz; that is, the margin speed is located between 140Hz
and 145Hz, which is in accordancewith the conclusion drawn
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Figure 4: Complex-coefficient frequency characteristics of the SISO system with 48Hz cross proportion and different rotation speeds. (a)
140Hz. (b) 145Hz.
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Figure 5: Root locuswith respect to rotor speed from0Hz to 150Hz.
Note: the arrowhead denotes the increased direction of rotor speed
from 0 to 150Hz.

from the proposed stability criterion. It is necessary to note
that phase margin of the nutation and precession modes can
be obtained from the proposed stability criterion, while it
cannot be obtained from the root locus.

Then we set the cross proportion to be 150Hz, the corre-
sponding simulation and experiments have been developed
too, and their results are shown in Figures 6 and 7. Also, it
can be obtained that 𝑁

𝑂𝐹𝑅
= 0 and 𝑁

𝑂𝐵𝑅
= 0 at the speeds

of 200Hz and 205Hz and 𝑁
𝑂𝐹𝑅

= 1 and 𝑁
𝑂𝐵𝑅

= 0 at the
speeds of 55Hz and 50Hz. From Figure 6(a), one can obtain
that 𝑁

𝑝+
+ 𝑁

𝑠𝑓+
− 𝑁

𝑝−
− 𝑁

𝑠𝑓−
= 0 + 0.5 − 0.5 − 0 = 0,

𝑁
𝑛+
+𝑁

𝑠𝑏+
−𝑁

𝑛−
−𝑁

𝑠𝑏−
= 1+ 0− 0.5 − 0.5 = 0. According to

the proposed criterion, it can be drawn that both the forward
and backward whirling modes are stable at the speed of
200Hz. From Figure 6(b), one can obtain that𝑁

𝑂𝐹𝑅
̸=𝑁

𝑝+
+

𝑁
𝑠𝑓+

− 𝑁
𝑝−

− 𝑁
𝑠𝑓−

and 𝑁
𝑂𝐵𝑅

= 𝑁
𝑛+

+ 𝑁
𝑠𝑏+

− 𝑁
𝑛−

− 𝑁
𝑠𝑏−

;
that is, the backward whirling mode remains stable while
the forward whirling mode loses its stability at the speed of
205Hz. Similarly, from Figures 6(c) and 6(d), the conclusion
can be achieved that both the forward and backward modes
are stable at the speed of 55Hz while the backward whirling
mode is unstable at the speed of 50Hz. Also, from Figures
6(c) and 6(d), it can be calculated that the phase margins of
the forward whirling mode at the speed of 50Hz and 55Hz
are 56 degree and 52 degrees, respectively. Usually the rise
of the rotation speed will result in the decrease of the phase
margins of the forward whirling mode, and consequently the
coefficient of the controller should be adjusted with the rotor
speed in order to guarantee the adequate phasemargins of the
different whirling modes in the expected speed range.

Simultaneously, from the root locus with respect to rotor
speed from 0 to 220Hz, the MSR system loses its stability
when the rotor speed is lower than 55Hz or higher than
200Hz, which also agrees well with the results from the pro-
posed method.

To further testify the correctness of the stability criterion,
the corresponding experiments have been performed. For the
reason that the MSR is unstable at the speed of 0Hz, the
speed increases from 0Hz to nearly 60Hz by setting the cross
proportion 48Hz. And then the MSR decreases its speed
slowly with 150Hz cross proportion. It can be found that the
MSR loses its stability and collides with the auxiliary bearing
at about 52Hz. Figures 8(a) and 8(b) present, respectively,
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Figure 6: Complex-coefficient Bode diagram of the SISO system with 150Hz cross proportion and different rotation speeds. (a) 200Hz. (b)
205Hz. (c) 55Hz. (d) 50Hz.

its radial displacement responses in 𝑌-direction (including
channels 𝐴

𝑦
and 𝐵

𝑦
) and the corresponding frequency

spectrum characteristics before and after the whirling mode
loses its stability. Besides, the Lissajous figure of terminal 𝐴
of theMSR, which is generated by ℎ

𝑎𝑥
and ℎ

𝑎𝑦
, is also tracked

as shown in Figure 8(c). From Figure 8(a), it can be seen
that the instability is caused by rotational mode instead of
translational mode since the motion directions of channels
𝐴
𝑦
and 𝐵

𝑦
are opposite, which can also be testified from

Figure 8(c). From Figure 8(b), the critical rotor speed is
about 52Hz, and its corresponding whirling frequency is
about 70Hz, which agrees well with the simulation results.
Additionally, from Figure 8(c), it can be obtained that

the instability mode is backward whirl instead of forward
whirl since the whirling direction is opposite to the rotation.

4. Conclusion

To analyze directly and simply the stability of the cross-
coupled two-dimensional antisymmetrical system, this paper
presents a stability analysis method based on complex-
coefficient frequency characteristics.Through variable recon-
struction, the MIMO system is converted into a SISO system
with complex coefficients.The closed-loop pole locations law
and the controllability as well as observability before and
after the variable reconstruction are studied and revealed,
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Figure 8: Experimental results. (a) Radial displacement responses of channels 𝐴
𝑦
and 𝐵

𝑦
. (b) Frequency spectrum of displacement ℎ

𝑎𝑦
.

(c) Lissajous figure of terminal 𝐴 of the MSR. Note: the arrowhead denotes the direction of the rotation and the circle drawn by dotted line
means the auxiliary bearing.

which demonstrate that the two systems before and after
variable reconstruction possess the same absolute and relative
stability. Then the Nyquist stability criterion is extended
from a real-coefficient system to a complex-coefficient system
according to argument principle.

Combined with the rigid MSR system with signifi-
cant gyroscopic effects, simulation and experimental results
demonstrate that the proposed stability analysis method is
feasible, correct, and quite simple to implement. Compared
with the existing methods, the presented one can greatly
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simplify the analysis, design, and debugging of the control
system.

Appendix

In Table 1, 𝑥
𝑎
is the radial clearance of the auxiliary bearings,

that is, the protective air gaps of the ball bearings.
In Table 2, 𝑘

𝑎𝑚
and 𝑖

𝑐
are the proportional and feedback

coefficients of the current-loop controller for the MSR sys-
tem, 𝑘

𝑝
, 𝑘

𝑖
, 𝑘

𝑑
are the proportional, integral, and differential

coefficients of the basic PID controller for the MSR system;
𝑘
ℎ𝑐
and 𝑘

𝑙𝑐
are the cross coefficients of the high-pass and low-

pass filters, respectively; 𝑘
𝑐
is the total cross coefficient;𝑓

ℎ
and

𝑓
𝑙
are the cut-off frequencies of the two-order high-pass and

low-pass filters, respectively.
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