20,223 research outputs found

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    Currents and finite elements as tools for shape space

    Full text link
    The nonlinear spaces of shapes (unparameterized immersed curves or submanifolds) are of interest for many applications in image analysis, such as the identification of shapes that are similar modulo the action of some group. In this paper we study a general representation of shapes that is based on linear spaces and is suitable for numerical discretization, being robust to noise. We develop the theory of currents for shape spaces by considering both the analytic and numerical aspects of the problem. In particular, we study the analytical properties of the current map and the HsH^{-s} norm that it induces on shapes. We determine the conditions under which the current determines the shape. We then provide a finite element discretization of the currents that is a practical computational tool for shapes. Finally, we demonstrate this approach on a variety of examples

    Classification of involutions on Enriques surfaces

    Full text link
    We present the classification of involutions on Enriques surfaces. We classify those into 18 types with the help of the lattice theory due to Nikulin. We also give all examples of the classification.Comment: 25 pages, 42 figure

    On natural deformations of symplectic automorphisms of manifolds of K3^[n] type

    Get PDF
    In the present paper we prove that finite symplectic groups of automorphisms of manifolds of k3^[n] type can be obtained by deforming natural morphisms arising from K3 surfaces if and only if they satisfy a certain numerical condition
    corecore