1,997 research outputs found

    Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in noble-gas-filled hollow-core photonic crystal fiber

    Full text link
    We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near-infrared, spanning at least 113 to 1000 nm (i.e., 11 to 1.2 eV), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is a novel and previously undiscovered interaction between dispersive-wave emission and plasma-induced blueshifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, which modeling shows to be coherent and possess a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 attosecond duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses, through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ.Comment: 7 pages, 5 figure

    Spectral wings of the fiber supercontinuum and the dark-bright soliton interaction

    Full text link
    We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We report the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.Comment: supercontinuum, soliton, fiber; 6 page

    Efficiency of dispersive wave generation in dual concentric core microstructured fiber

    Full text link
    We describe the generation of powerful dispersive waves that are observed when pumping a dual concentric core microstructured fiber by means of a sub-nanosecond laser emitting at the wavelength of~1064 nm. The presence of three zeros in the dispersion curve, their spectral separation from the pump wavelength, and the complex dynamics of solitons originated by the pump pulse break-up, all contribute to boost the amplitude of the dispersive wave on the long-wavelength side of the pump. The measured conversion efficiency towards the dispersive wave at 1548 nm is as high as 50%. Our experimental analysis of the output spectra is completed by the acquisition of the time delays of the different spectral components. Numerical simulations and an analytical perturbative analysis identify the central wavelength of the red-shifted pump solitons and the dispersion profile of the fiber as the key parameters for determining the efficiency of the dispersive wave generation process.Comment: 11 pages, 12 figure

    Ge-Doped microstructured multicorefiber for customizable supercontinuum generation

    Get PDF
    Supercontinuum generation in a multicore fiber in which several uncoupled cores were doped with dissimilar concentrations of germanium was studied experimentally. Germanium doping provided control over the separation between the zero-dispersion wavelength and the 1064-nm wavelength of a Q-switched Nd:YAG pump laser. Supercontinua generated independently in each core of the same piece of fiber displayed clear and repeatable differences due to the influence of germanium doping on refractive index and four-wave mixing. The spectral evolution of the subnanosecond pump pulses injected into the different cores was accurately reproduced by numerical simulations

    Soliton blue-shift in tapered photonic crystal fiber

    Full text link
    We show that solitons undergo a strong blue shift in fibers with a dispersion landscape that varies along the direction of propagation. The experiments are based on a small-core photonic crystal fiber, tapered to have a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 731 nm to 640 nm over the transition. The central wavelength of a soliton translates over 400 nm towards shorter wavelength. This accompanied by strong emission of radiation into the UV and IR spectral region. The experimental results are confirmed by numerical simulation.Comment: 10 pages, 4 figure

    Coherent supercontinuum generation in a silicon photonic wire in the telecommunication wavelength range

    Get PDF
    We demonstrate a fully coherent supercontinuum spectrum spanning 500 nm from a silicon-on-insulator photonic wire waveguide pumped at 1575 nm wavelength. An excellent agreement with numerical simulations is reported. The simulations also show that a high level of two-photon absorption can essentially enforce the coherence of the spectral broadening process irrespective of the pump pulse duration.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore