19 research outputs found

    A numerical method for functional Hammerstein integro-differential equations

    Get PDF
    In this paper, a numerical method is presented to solve functional Hammerstein integro-differential equations. The presented method combines the successive approximations method with trapezoidal quadrature rule and natural cubic spline interpolation to solve the mentioned equations. The existence and uniqueness of the problem is also investigated. The convergence and numerical stability of the problem are proved, and finally, the accuracy of the method is verified by presenting some numerical computations

    Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations

    Get PDF
    This article addresses the solution of multi-dimensional integro-differential equations (IDEs) by means of the spectral collocation method and taking the advantage of the properties of shifted Jacobi polynomials. The applicability and accuracy of the present technique have been examined by the given numerical examples in this paper. By means of these numerical examples, we ensure that the present technique is simple and very accurate. Furthermore, an error analysis is performed to verify the correctness and feasibility of the proposed method when solving IDE

    a collocation method via the quasi affine biorthogonal systems for solving weakly singular type of volterra fredholm integral equations

    Get PDF
    Abstract Tight framelet system is a recently developed tool in applied mathematics. Framelets, due to their nature, are widely used in the area of image manipulation, data compression, numerical analysis, engineering mathematical problems such as inverse problems, visco-elasticity or creep problems, and many more. In this manuscript we provide a numerical solution of important weakly singular type of Volterra - Fredholm integral equations WSVFIEs using the collocation type quasi-affine biorthogonal method. We present a new computational method based on special B-spline tight framelets and use it to introduce our numerical scheme. The method provides a robust solution for the given WSVFIE by using the resulting matrices based on these biorthogonal wavelet. We demonstrate the validity and accuracy of the proposed method by some numerical examples

    A Computational Method for System of Linear Fredholm Integral Equations

    Get PDF
    This paper focuses on developing a numerical method based on a cubic spline approach for the solution of system of linear Fredholm equations of the second kind. This method produces a system of algebraic equations. The efficiency and accuracy of the method are demonstrated by a numerical example and the mathematical software Matlab R2010a was used to carry out the necessary computations. Keywords: System of linear Fredholm integral equations, natural cubic splin

    Numerical solution of fractional Fredholm integro-differential equations by spectral method with fractional basis functions

    Full text link
    This paper presents an efficient spectral method for solving the fractional Fredholm integro-differential equations. The non-smoothness of the solutions to such problems leads to the performance of spectral methods based on the classical polynomials such as Chebyshev, Legendre, Laguerre, etc, with a low order of convergence. For this reason, the development of classic numerical methods to solve such problems becomes a challenging issue. Since the non-smooth solutions have the same asymptotic behavior with polynomials of fractional powers, therefore, fractional basis functions are the best candidate to overcome the drawbacks of the accuracy of the spectral methods. On the other hand, the fractional integration of the fractional polynomials functions is in the class of fractional polynomials and this is one of the main advantages of using the fractional basis functions. In this paper, an implicit spectral collocation method based on the fractional Chelyshkov basis functions is introduced. The framework of the method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with smooth and non-smooth solutions in comparison with other existing methods

    An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method

    Get PDF
    The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique

    Chebyshev cardinal functions for solving volterra-fredholm integro- differential equations using operational matrices

    Get PDF
    Abstract In this paper, an effective direct method to determine the numerical solution of linear and nonlinear Fredholm and Volterra integral and integro-differential equations is proposed. The method is based on expanding the required approximate solution as the elements of Chebyshev cardinal functions. The operational matrices for the integration and product of the Chebyshev cardinal functions are described in detail. These matrices play the important role of reducing an integral equation to a system of algebraic equations. Illustrative examples are shown, which confirms the validity and applicability of the presented technique

    Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions

    Get PDF
    This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton’s iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions
    corecore