1,994 research outputs found

    Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging

    Full text link
    Left-invariant PDE-evolutions on the roto-translation group SE(2)SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based methods (equivalent to SE(2)SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of all numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions, crucial in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining left-invariant PDE-evolutions with invertible orientation scores.Comment: A final and corrected version of the manuscript is Published in Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9), p.1-50, 201

    Multiscale modelling and identification of a class of lattice dynamical systems

    Get PDF
    A new multiscale modelling framework is introduced to describe a class of lattice dynamical systems (LDS), which can be used to model natural systems involving multiphysics and the multi-resolution facets of a single spatio-temporal dynamical system. The emphasis of the paper is on the multi-resolution facets, with respect to the spatial domain, of a single spatio-temporal dynamical system by using a Haar wavelet decomposition technique. A multiscale identification method for such systems is then proposed, which can be considered as a dual of the multigrid method. The proposed identification method involves three steps: the system dynamics at some specific scale of interest are identified using a recursive least-squares algorithm; the residual is then projected onto coarser scales using Haar wavelets and the parameter estimation errors are minimized; and finally a coarse correction procedure is applied to the original scale. An outstanding advantage of the proposed identification method is a saving on the computational costs. Numerical examples are provided to demonstrate the application of the proposed new approach

    Iterative algorithms for total variation-like reconstructions in seismic tomography

    Full text link
    A qualitative comparison of total variation like penalties (total variation, Huber variant of total variation, total generalized variation, ...) is made in the context of global seismic tomography. Both penalized and constrained formulations of seismic recovery problems are treated. A number of simple iterative recovery algorithms applicable to these problems are described. The convergence speed of these algorithms is compared numerically in this setting. For the constrained formulation a new algorithm is proposed and its convergence is proven.Comment: 28 pages, 8 figures. Corrected sign errors in formula (25

    Adaptive multiresolution analysis based on synchronization

    Get PDF
    We propose an adaptive multiscale approach to data analysis based on synchronization. The approach is nonlinear, data driven in the sense that it does not rely on a priori chosen basis, and automatically determines the data scale. Numerical results for one- and two-dimensional cases illustrate that the method works effectively for the usual modulated signals such as chirps, etc., as well as for more complicated data with multiple scales. The method extends straightforwardly to functions defined on weighted graphs and grids in high dimensions. Connections with some other recent approaches to multiscale analysis are briefly discussed

    Numerical solution of the inverse Gardner equation

    Get PDF
    In this paper, the numerical solution of the inverse Gardner equation will be considered. The Haar wavelet collocation method (HWCM) will be used to determine the unknown boundary condition which is estimated from an over-specified condition at a boundary. In this regard, we apply the HWCM for discretizing the space derivatives and then use a quasilinearization technique to linearize the nonlinear term in the equations. It is proved that the proposed method has the order of convergence O(∆x). The efficiency and robustness of the proposed approach for solving the inverse Gardner equation are demonstrated by one numerical example.Publisher's Versio

    Wavelets and their use

    Get PDF
    This review paper is intended to give a useful guide for those who want to apply discrete wavelets in their practice. The notion of wavelets and their use in practical computing and various applications are briefly described, but rigorous proofs of mathematical statements are omitted, and the reader is just referred to corresponding literature. The multiresolution analysis and fast wavelet transform became a standard procedure for dealing with discrete wavelets. The proper choice of a wavelet and use of nonstandard matrix multiplication are often crucial for achievement of a goal. Analysis of various functions with the help of wavelets allows to reveal fractal structures, singularities etc. Wavelet transform of operator expressions helps solve some equations. In practical applications one deals often with the discretized functions, and the problem of stability of wavelet transform and corresponding numerical algorithms becomes important. After discussing all these topics we turn to practical applications of the wavelet machinery. They are so numerous that we have to limit ourselves by some examples only. The authors would be grateful for any comments which improve this review paper and move us closer to the goal proclaimed in the first phrase of the abstract.Comment: 63 pages with 22 ps-figures, to be published in Physics-Uspekh
    • …
    corecore