
TWMS J. App. and Eng. Math. V.13, N.2, 2023, pp. 649-660

NUMERICAL SOLUTION OF THE INVERSE GARDNER EQUATION

S. FOADIAN1, R. POURGHOLI1∗, M. G. BALADEZAEI2, §

Abstract. In this paper, the numerical solution of the inverse Gardner equation will be
considered. The Haar wavelet collocation method (HWCM) will be used to determine
the unknown boundary condition which is estimated from an over-specified condition
at a boundary. In this regard, we apply the HWCM for discretizing the space deriva-
tives and then use a quasilinearization technique to linearize the nonlinear term in the
equations. It is proved that the proposed method has the order of convergence O(∆x).
The efficiency and robustness of the proposed approach for solving the inverse Gardner
equation are demonstrated by one numerical example.

Keywords: Haar wavelet, Ill-posed inverse problems, Quasilinearization technique, The
Tikhonov regularization method.
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1. Introduction

Inverse problems have become more and more important in various fields of science and
technology. They arise, for example, in the study of heat conduction processes, diffusion,
control theory, and have certainly been one of the fastest-growing areas in applied mathe-
matics over the last three decades due partly to its importance in applications. However,
as inverse problems typically lead to mathematical models that are ill-posed, their so-
lutions are unstable under data perturbations and classical numerical techniques fail to
provide accurate and stable solutions. Fortunately, many methods have been reported to
solve the inverse parabolic problems [4, 9, 32, 8] and among the most versatile methods the
following can be mentioned: the TR [34, 33], iterative regularization [1], and mollification
[24].

Haar wavelets are based on the functions which were introduced by Hungarian math-
ematician Alfred Haar in 1910. The Haar wavelets are made up of piecewise constant
functions and are mathematically the simplest among all the wavelet families. A good
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feature of these wavelets is the possibility to integrate them analytically at arbitrary times.
They can be interpreted as a first-order Daubechies wavelet. Haar wavelets are the only
compactly supported orthogonal wavelets that have explicit formulas. The other wavelets
are given implicitly as the recursive procedures [7], and subsequently, they cannot be used
directly in identification algorithms when the input signal is random and require design-
ing special computational algorithms ([31, 15]). Due to mathematical simplicity, the Haar
wavelet method has turned out to be an effective tool for solving differential and integral
equations. Furthermore, the Haar wavelets are very efficient tools for solving the non-
linear systems in physics, biology, chemical reactions, and fluid mechanics [3, 18, 25, 29].
Lepik [20, 19] use Haar wavelets to solve differential and integral equations. Hariharan
and Kannan [14, 13] introduced the Haar wavelet method for solving some linear and
nonlinear one-dimensional reaction-diffusion equations and the well-known nonlinear par-
abolic PDEs. In the field of numerical solution of the inverse problems, Pourgholi et al.
[28, 27, 26] have used the Haar wavelet method for the solution of a variety of PDEs.

In this paper, as the main problem, we use the HWCM for solving the inverse Gardner
equation. The Gardner equation, or the combined KdV and modified-KdV equation, reads
[35]

ut + 2αuux − 3βu2ux + uxxx = 0, α, β > 0, (1)

where α and β arbitrary constants, and u(x, t) is the amplitude of the relevant wave mode.
Equation (1) is completely integrable, like the KdV equation, by the inverse scattering
method. Equation (1) is studied in [35, 10] where new kind of solutions was obtained. The
Gardner equation is widely used in various branches of physics, such as plasma physics,
fluid physics, quantum field theory, hydrodynamics, and theoretical physics [10, 17, 2, 11,
36, 37]. It also describes a variety of wave phenomena in plasma and solid-state [35, 16].
Various methods for studying integrability properties and exact solutions of the Gardner
equation have been reported [35, 22, 23].

We have considered the inverse form of equation (1) in the dimensionless form;

ut + 2αuux − 3βu2ux + uxxx = 0, α, β > 0, (2)

with the initial and boundary conditions

u(x, 0) = f(x), x ∈ Ωx, (3)

u(a, t) = g(t), u(b, t) = q(t), ux(b, t) = h(t), t ∈ Ωt, (4)

and the overspecified conditions

u(`, t) = k1(t), t ∈ Ωt, (5)

ux(`, t) = k2(t), t ∈ Ωt, (6)

where Ωx = (a, b), Ωt = (0, tF ), a < ` < b are fixed points, f(x), q(t), h(t), k1(t), and
k2(t) are piecewise known continuous functions, and tF represents the final existence time
for the time evolution of the problem, while function g(t) is unknown which remains to be
determined from some interior temperature measurements.

The current study aims to clarify the accuracy issues of the HWCM, for solving the
inverse Gardner equation (2)–(6), which can be one of the advantages of our method.

The paper is organized as follows: In the next Section, the Haar wavelets family and
their integrals are introduced. In the following, Haar matrices for the numerical solutions,
the desired issue are described and the expanding functions into the Haar wavelet series
are discussed. Also, the convergence analysis of the HWCM is given in this Section. In
Section 3, the presented method is detailed for solving the inverse problem (2)–(6). In
Section 4, a numerical result is reported and finally, the conclusion is made in Section 5.
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2. Haar Wavelets

2.1. Haar wavelets family and their integrals. Let us consider the interval x ∈ [a, b],
where a and b are given constants. We define the quantity M = 2J , where J is the
maximal level of resolution. The interval [a, b] is divided into 2M subintervals of equal
length; the length of each subinterval is ∆x = b−a

2M . Next two parameters are introduced;

j = 0, 1, . . . , J and k = 0, 1, . . . , 2j−1. The wavelet number i is identified as i = 2j +k+1.
The i-th Haar wavelet is defined as [21],

hi(x) =


1, x ∈

[
ξ1(i), ξ2(i)

)
,

−1, x ∈
[
ξ2(i), ξ3(i)

)
,

0, elsewhere,

(7)

where µ = M
2j

and

ξ1(i) = a+ 2kµ∆x, ξ2(i) = a+ (2k + 1)µ∆x, ξ3(i) = a+ 2(k + 1)µ∆x. (8)

These equations are valid if i > 2. The case i = 1 corresponds to the scaling function:

h1(x) =

{
1, x ∈ [a, b],

0, elsewhere.

The parameters j and k have concrete meaning. The support (the width of the i-th
wavelet) is

ξ3(i)− ξ1(i) = 2µ∆x =
b− a

2j
= (b− a)2−j .

It follows from here that if we increase j then the support decreases (the wavelet becomes
more narrow). By this reason it is called the dilatation parameter. The other parameter k
localises the position of the wavelet in the x-axis; if k changes from 0 to 2j − 1 the initial

point of the i-th wavelet ξ1(i) moves from x = a to x = a+(2j−1)b
2j

. The integer k is called
the translation parameter.

If the maximal level of resolution J is prescribed then it follows from (7) that∫ b

a
hi1(x)hi2(x) dx =

{
(b− a)2−j , i1 = i2,

0, i1 6= i2.
(9)

So we see that the Haar wavelets are orthogonal to each other. In Section 3, we need the
integrals of the Haar functions

pv,i(x) =

∫ x

a

∫ x

a
. . .

∫ x

a︸ ︷︷ ︸
v−times

hi(t) dtv =
1

(v − 1)!

∫ x

a
(x− t)v−1hi(t) dt, (10)

where, v = 1, 2, . . . , n and i = 1, 2, . . . , 2M . Taking account of (7) these integrals can be
calculated analytically; by doing it we obtain

pv,i(x) =


0, x < ξ1(i),
1
v! [x− ξ1(i)]

v, x ∈ [ξ1(i), ξ2(i)],
1
v!

{
[x− ξ1(i)]v − 2[x− ξ2(i)]v

}
, x ∈ [ξ2(i), ξ3(i)],

1
v!

{
[x− ξ1(i)]v − 2[x− ξ2(i)]v + [x− ξ3(i)]v

}
, x > ξ3(i).

(11)

These formulas hold for i > 1. In the case i = 1 we have ξ1(1) = a, ξ2(1) = ξ3(1) = b and

pv,1(x) =
1

v!
(x− a)v. (12)
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2.2. Haar matrices. If we want to use the Haar wavelets for the numerical solutions we
must put them into a discrete form. There are different ways to do it; in this paper, the
collocation method is applied. The collocation points defined as

xl = a+ (l − 0.5)∆x, l = 1, 2, . . . , 2M, (13)

and replace x → xl in equations (7), (11), and (12). It is convenient to put these results
into the matrix form. For this, we introduce the Haar matrices H, P1, P2, . . . , Pv which
are 2M × 2M matrices. The elements of these matrices are H(i, l) = hi(xl) and Pv(i, l) =
pv,i(xl), v = 1, 2, . . . , n.

2.3. Expanding functions into the Haar wavelet series. This Section aims to de-
scribe a new modification of the Haar wavelet method for solving the inverse Gardner
equation (2). It is known that any integrable function u(x) ∈ L2([a, b]) can be expanded
by a Haar series with an infinite number of terms [28],

u(x) =

∞∑
i=1

cihi(x),

where the Haar wavelet coefficients are determined as

ci =
2j

b− a

∫ b

a
u(x)hi(x) dx, i = 2j + k + 1, j ≥ 0, 0 ≤ k < 2j ,

specially c1 = 1
b−a

∫ b
a u(x) dx. So, u(x) = c1h1(x) +

∑∞
j=0

∑2j−1
k=0 c2j+k+1h2j+k+1(x). If

u(x) is piecewise constant by itself, or may be approximated as piecewise constant during
each subinterval, then u(x) will be terminated at finite terms, that is

uJ(x) ∼= c1h1(x) +

J∑
j=0

2j−1∑
k=0

c2j+k+1h2j+k+1(x) = CT2MH2M (x), (14)

where the coefficient CT2M and the Haar function vectors H2M (x) are defined as

CT2M =
(
c1, c2, . . . , c2M

)
, H2M (x) =

(
h1(x), h2(x), . . . , h2M (x)

)T
,

2.4. Convergence analysis of the Haar wavelet method. In this Section, we present
the error analysis for our proposed scheme. In order to analyze the convergence of our
method, we assume that uJ(x) is approximation solution of u(x). The corresponding error
at J-th level of u(x) is defined as

eJ(x) = u(x)− uJ(x) =
∞∑

j=J+1

2j−1∑
k=0

c2j+k+1h2j+k+1(x).

Now, we state and prove the following convergence theorem:

Theorem 2.1. Suppose that u(x) satisfy the Lipschitz condition on [a, b], that is,

∃ κ > 0, ∀ x1, x2 ∈ [a, b] : |u(x1)− u(x2)| ≤ κ|x1 − x2|. (15)

Then the error bound for ‖eJ‖2 is obtained as ‖eJ‖2 ≤ κ(b−a)√
6

∆x. Also, the HWCM will

converge in the sense that eJ(x) go to zero as M goes to infinity. Moreover, the convergence
is of order one, that is, ‖eJ‖2 = O(∆x).
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Proof. We compute ‖eJ‖22 as the following:

‖eJ‖22 =

∫ b

a

( ∞∑
j=J+1

2j−1∑
k=0

c2j+k+1h2j+k+1(x)
)2

dx

=

∞∑
j=J+1

2j−1∑
k=0

∞∑
l=J+1

2l−1∑
q=0

c2j+k+1c2l+q+1

(∫ b

a
h2j+k+1(x)h2l+q+1(x) dx

)
.

Taking account of (9), we have

‖eJ‖22 =
∞∑

j=J+1

2j−1∑
k=0

b− a
2j

c22j+k+1

and since, c2j+k+1 = 2j

b−a
∫ b
a u(x)h2j+k+1(x) dx, according to the Haar wavelet functions

(7), we can write

c2j+k+1 =
2j

b− a

(∫ ξ2(2j+k+1)

ξ1(2j+k+1)
u(x) dx−

∫ ξ3(2j+k+1)

ξ2(2j+k+1)
u(x) dx

)
.

Now, using the mean value theorem for integral, we can conclude

∃ x1 ∈
[
ξ1(2

j + k + 1), ξ2(2
j + k + 1)

]
, x2 ∈

[
ξ2(2

j + k + 1), ξ3(2
j + k + 1)

]
,

such that∫ ξ2(2j+k+1)

ξ1(2j+k+1)
u(x) dx =

b− a
2j+1

u(x1),

∫ ξ3(2j+k+1)

ξ2(2j+k+1)
u(x) dx =

b− a
2j+1

u(x2).

Thus, we can compute c2j+k+1 as follows;

c2j+k+1 =
2j

b− a

(
b− a
2j+1

u(x1)−
b− a
2j+1

u(x2)

)
=

1

2

(
u(x1)− u(x2)

)
≤ 1

2
κ
(
x1 − x2

)
≤ b− a

2j+1
κ.

The first inequality is obtained with regard to relation (15). On the other hand, we have

‖euJ‖22 =
∞∑

j=J+1

2j−1∑
k=0

b− a
2j

c22j+k+1 ≤
∞∑

j=J+1

2j−1∑
k=0

b− a
2j

κ2
(b− a)2

22j+2
=

(b− a)3

3
κ2
(1

4

)J+1
.

Since 2M = 2J+1, we obtain

‖eJ‖22 ≤
(b− a)3

3
κ2
( 1

2M

)2
.

Therefore, the error bound can be expressed as

‖eJ‖2 ≤
κ(b− a)√

3
∆x.

So, the Haar wavelet method will be convergent, i.e., lim
J→∞

eJ(x) = 0. Moreover, the

convergence is of order one, that is, ‖eJ‖2 = O(∆x), and the proof is complete. �
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3. Solution Of The Inverse Gardner Equation

In this section, we first present our method based on the HWCM for solving the inverse
Gardner equation (2)–(6). Then, to get to an ill-posed system, we introduce the TR
method to obtain a stable approximation of the solution of the final system.

Let us divide the interval [0, tF ] into N equal parts of length ∆t = tF
N and denote

ts = (s − 1)∆t, s = 1, 2, . . . , N . We assume that u̇′′′(x, t), can be expanded in terms of
the Haar wavelets as, [6],

u̇′′′(x, t) ∼= cs1h1(x) +
J∑
j=0

2j−1∑
k=0

cs2j+k+1h2j+k+1(x) = CT2MH2M (x), (16)

where dot and prime mean differentiation with respect to t and x, respectively. Also, the
vector CT2M is constant in each subinterval [ts, ts+1], s = 1, 2, . . . , N .

We integrate (16) one time with respect to t from ts to t and three times with respect
to x from ` to x. These, respectively, yield

u′′′(x, t) = (t− ts)CT2MH2M (x) + u′′′(x, ts), (17)

u̇′(x, t) = CT2MP2(x) + u̇′(`, t) + (x− `)u̇′′(`, t), (18)

u̇(x, t) = CT2MP3(x) + u̇(`, t) + (x− `)u̇′(`, t) +
(x− `)2

2
u̇′′(`, t), (19)

where, P2(x) = p2,i(x) and P3(x) = p3,i(x) are obtained from (10). Now, integrating
formula (18), with respect to t from ts to t, we obtain

u′(x, t) = (t− ts)CT2MP2(x)+u′(x, ts)+u′(`, t)−u′(`, ts)+(x−`)[u′′(`, t)−u′′(`, ts)]. (20)

By using the boundary conditions u(b, t) and ux(b, t) and overspecified conditions (5) and
(6), equations (19) and (20) are changed as follows:

u̇(x, t) = CT2M

[
P3(x)− (x− `)2

(b− `)2
P3(b)

]
+
[
1− (x− `)2

(b− `)2
]
k′1(t)

+
[
(x− `)− (x− `)2

b− `

]
k′2(t) +

(x− `)2

(b− `)2
q′(t), (21)

u′(x, t) = (t− ts)CT2M
[
P2(x)− x− `

b− `
P2(b)

]
+ u′(x, ts)

+
x− `
b− `

[
h(t)− h(ts)

]
+
[
1− x− `

b− `

][
k2(t)− k2(ts)

]
. (22)

Now, individual integrating of equation (21) with respect to t, yield

u(x, t) =(t− ts)CT2M
[
P3(x)− (x− `)2

(b− `)2
P3(b)

]
+
[
1− (x− `)2

(b− `)2
][
k1(t)− k1(ts)

]
+
[
(x− `)− (x− `)2

b− `

][
k2(t)− k2(ts)

]
+

(x− `)2

(b− `)2
[
q(t)− q(ts)

]
+ u(x, ts). (23)
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Discretizing the results (17) and (21)–(23), by assuming x → xl, t → ts+1 and using
notation ∆t = ts+1 − ts we obtain

u′′′(xl, ts+1) = ∆tCT2MH2M (xl) + u′′′(xl, ts), (24)

u̇(xl, ts+1) = CT2M

[
P3(xl)−

(xl − `)2

(b− `)2
P3(b)

]
+
[
1− (xl − `)2

(b− `)2
]
k′1(ts+1)

− (xl − `)
xl − b
b− `

k′2(ts+1) +
(xl − `)2

(b− `)2
q′(ts+1), (25)

u′(xl, ts+1) = ∆tCT2M

[
P2(xl)−

xl − `
b− `

P2(b)
]

+ u′(xl, ts)

+
xl − `
b− `

[
h(ts+1)− h(ts)

]
− xl − b

b− `

[
k2(ts+1)− k2(ts)

]
, (26)

u(xl, ts+1) = ∆tCT2M

[
P3(xl)−

(xl − `)2

(b− `)2
P3(b)

]
+
[
1− (xl − `)2

(b− `)2
][
k1(ts+1)− k1(ts)

]
+ u(xl, ts)

− (xl − `)
xl − b
b− `

[
k2(ts+1)− k2(ts)

]
+

(xl − `)2

(b− `)2
[
q(ts+1)− q(ts)

]
. (27)

Here, the well known technique quasilinearization is used to tackle the nonlinearity terms
in equation (2) ([5]). So, we have

u(x, t)ux(x, t) = ux(x, ts)u(x, ts+1) + u(x, ts)ux(x, ts+1)− u(x, ts)ux(x, ts),

u2(x, t)ux(x, t) = 2u(x, ts)ux(x, ts)u(x, ts+1)− 2(u(x, ts))
2ux(x, ts) + u2(x, ts)ux(x, ts+1).

Therefore, the nonlinear equation (2) is as follows:

u̇(x, ts+1) +
[
2αux(x, ts)− 6βu(x, ts)ux(x, ts)

]
u(x, ts+1) + u′′′(x, ts+1)

+
[
2αu(x, ts)− 3βu2(x, ts)

]
ux(x, ts+1) = 2αu(x, ts)ux(x, ts)− 6βu2(x, ts)ux(x, ts). (28)

Now, discretizing the result (28) by x→ xl and using equations (24)–(27), we have

CT2M

[
(1 +R1∆t)

[
P3(xl)−

(xl − `)2

(b− `)2
P3(b)

]
+R2∆t

[
P2(xl)−

xl − `
b− `

P2(b)
]
+

∆tH2M (xl)

]
= 2αu(xl, ts)ux(xl, ts)− 6βu2(xl, ts)ux(xl, ts)− u′′′(xl, ts)

−

[[
1− (xl − `)2

(b− `)2
]
k′1(ts+1)− (xl − `)

xl − b
b− `

k′2(ts+1) +
(xl − `)2

(b− `)2
q′(ts+1)

]

−R1

[[
1− (xl − `)2

(b− `)2
][
k1(ts+1)− k1(ts)

]
− (xl − `)

xl − b
b− `

[
k2(ts+1)− k2(ts)

]
+

(xl − `)2

(b− `)2
[
q(ts+1)− q(ts)

]
+ u(xl, ts)

]

−R2

[
u′(xl, ts) +

xl − `
b− `

[
h(ts+1)− h(ts)

]
− xl − b

b− `

[
k2(ts+1)− k2(ts)

]]
, (29)

where

R1 = 2αux(xl, ts)− 6βu(xl, ts)ux(xl, ts), R2 = 2αu(xl, ts)− 3βu2(xl, ts).
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From the equation (29), a system of 2M linear equations in the 2M unknown coefficients
is obtained. This system can be written in the matrix vector form as follows:

AX = B. (30)

The solution of the linear algebraic equation (30) for vector X can be get by the TR
method ([34, 12]).

4. Numerical Experiments

In this section, we apply the HWCM as discussed in Section 3, to obtain the numerical
solution for unknown boundary condition in the problem (2)–(6). The proposed method is
written in the MATLAB 7.14 (R2012a) and is tested on a personal computer with Intel(R)
Core(TM)2 Duo CPU and 4GB RAM.

To illustrate the performance of the method and justify the accuracy and efficiency of
the proposed method, we considered one test example. To this end, we take a = 0, b = 1,
α = β = 1, ` = 0.5, tF = 1, ∆t = 0.01, and the noisy data=input data+0.001×randn.
Numerical results are compared with the Legendre wavelet method [30].

Remark 4.1. The error norm L∞ and the root mean square (RMS) error norm, are
calculated to measure the accuracy of the numerical scheme using following formulas:

L∞ = ||u(x, t)− u∗(x, t)||∞ = max
1≤i≤2M

|u(xi, t)− u∗(xi, t)|,

RMS =

[
1

2M

2M∑
i=1

(
u(xi, t)− u∗(xi, t)

)2] 1
2

,

where, u∗(x, t) is the estimated value of u(x, t).

Example 4.1. We consider the inverse Gardner equation (2)–(6) satisfying,

ut + 2uux − 3u2ux + uxxx = 0, x ∈ Ωx, t ∈ Ωt.

The exact solution of this problem is, ([35]),

u(x, t) =
1

3

[
1− tanh

( 1

3
√

2
(x− 2

9
t)
)]
, x ∈ Ωx, t ∈ Ωt,

u(0, t) =
1

3

[
1 + tanh

(√2

27
t
)]
, t ∈ Ωt.

The numerical results of the unknown boundary condition u(0, t) = g(t) are reported in
Table 1. Furthermore, Table 2 reports the absolute error (L∞) and RMS error u(x, t), for
different time steps. Figures 1–3, show the physical behavior of numerical solutions, in
2-dimensional, 3-dimensional, and contour forms when J = 1 and J = 4, respectively.

5. Conclusions

In this paper, we applied the HWCM to estimate unknown boundary condition for the
inverse Gardner equation (2)–(6). The convergence rate of the proposed method has been
discussed and shown that it is O(∆x). Numerical comparisons have been made between
the implementations of the proposed method and the Legendre wavelet method. Due
to the numerical solutions which are presented in the Tables and Figures, the obtained
numerical solutions by the presented method are the most accurate in comparison with
the Legendre wavelet method and are in good agreement with the exact solutions. The



S. FOADIAN, R. POURGHOLI, M. G. BALADEZAEI: NUMERICAL SOLUTION OF THE ... 657

Table 1. The comparison among the exact and numerical solutions for
g(t).

Haar wavelet (2M = 4) Legendre wavelet (k = 1, M = 4)

t g(t) g∗(t) |g(t)− g∗(t)| g∗(t) |g(t)− g∗(t)|

0.1 0.335079 0.335079 5.821170e− 07 0.335068 1.131338e− 05
0.2 0.336825 0.336824 1.171149e− 06 0.336905 8.018074e− 05
0.3 0.338571 0.338569 1.767145e− 06 0.338654 8.283780e− 05
0.4 0.340316 0.340314 2.369855e− 06 0.340438 1.221634e− 04
0.5 0.342061 0.342058 2.979024e− 06 0.342239 1.777258e− 04
0.6 0.343806 0.343802 3.594395e− 06 0.344011 2.050502e− 04
0.7 0.345549 0.345545 4.215701e− 06 0.345803 2.539438e− 04
0.8 0.347293 0.347288 4.842675e− 06 0.347561 2.686224e− 04
0.9 0.349035 0.349030 5.475044e− 06 0.349348 3.123698e− 04
1 0.350777 0.350771 6.112529e− 06 0.351077 2.997438e− 04

CPU time (s) 0.944683 86.357375

Figure 1. Comparison between the exact and numerical solutions g(t) in
2-dimensional graph using the HWCM.

Figure 2. Comparison between the exact and numerical solutions u(x, t)
in 3-dimensional graph using the HWCM.

strong point of this method is its easy and simple computation with low-storage space and
cost.



658 TWMS J. APP. AND ENG. MATH. V.13, N.2, 2023

Table 2. The absolute error (L∞) and RMS error u(x, t), for different
values of t.

t
Haar wavelet (2M = 4) Legendre wavelet (k = 1, M = 4)
L∞ RMS L∞ RMS

0.1 4.364209e− 11 2.797793e− 11 2.218248e− 05 1.118012e− 05
0.3 1.291322e− 10 9.569208e− 11 7.173131e− 05 4.407432e− 05
0.5 2.172547e− 10 1.597837e− 10 1.172653e− 04 7.840790e− 05
0.7 3.079276e− 10 2.192898e− 10 1.573861e− 04 1.077401e− 04
1 4.483989e− 10 3.008370e− 10 2.049956e− 04 1.353533e− 04

CPU time (s) 0.944683 86.357375

t
Haar wavelet (2M = 8) Legendre wavelet (k = 1, M = 8)
L∞ RMS L∞ RMS

0.1 3.073597e− 12 1.960665e− 12 7.381023e− 05 2.979840e− 05
0.3 4.176554e− 11 2.595888e− 11 8.894824e− 05 3.956907e− 05
0.5 8.116213e− 11 5.070258e− 11 1.526883e− 04 8.417704e− 05
0.7 1.178229e− 10 7.365077e− 11 2.071996e− 04 1.158957e− 04
1 1.674241e− 10 1.045204e− 10 2.732977e− 04 1.401590e− 04

CPU time (s) 2.376038 163.189158

t
Haar wavelet (2M = 16) Legendre wavelet (k = 1, M = 16)
L∞ RMS L∞ RMS

0.1 1.489231e− 11 9.849202e− 12 3.331613e− 05 9.516170e− 06
0.3 5.648260e− 12 3.837684e− 12 1.141762e− 04 5.397525e− 05
0.5 4.939937e− 12 3.048181e− 12 2.122533e− 04 9.720945e− 05
0.7 1.470157e− 11 9.397067e− 12 2.430660e− 04 1.190776e− 04
1 2.814687e− 11 1.812136e− 11 3.399978e− 04 1.653103e− 04

CPU time (s) 7.071569 324.216722

t
Haar wavelet (2M = 32) Legendre wavelet (k = 1, M = 32)
L∞ RMS L∞ RMS

0.1 2.190170e− 11 1.434979e− 11 3.905646e− 05 1.380812e− 05
0.3 1.895811e− 11 1.243817e− 11 1.207854e− 04 3.850523e− 05
0.5 1.668449e− 11 1.095391e− 11 1.953040e− 04 7.795909e− 05
0.7 1.454431e− 11 9.558472e− 12 2.614209e− 04 1.076496e− 04
1 1.159794e− 11 7.641397e− 12 3.461528e− 04 1.467908e− 04

CPU time (s) 24.244557 674.541283

Figure 3. Comparison between the exact and numerical solutions u(x, t)
in contour plot using the HWCM.
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[19] Lepik, Ü., (2008). Solving integral and differential equations by the aid of non-uniform Haar wavelets,
Applied Mathematics and Computation, 198 (1), pp. 326-332.
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