215 research outputs found

    A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains

    Full text link
    The Navier-Stokes-Korteweg (NSK) system is a classical diffuse interface model which is based on van der Waals theory of capillarity. Diffuse interface methods have gained much interest to model two-phase flow in porous media. However, for the numerical solution of the NSK equations two major challenges have to be faced. First, an extended numerical stencil is required due to a third-order term in the linear momentum and the total energy equations. In addition, the dispersive contribution in the linear momentum equations prevents the straightforward use of contact angle boundary conditions. Secondly, any real gas equation of state is based on a non-convex Helmholtz free energy potential which may cause the eigenvalues of the Jacobian of the first-order fluxes to become imaginary numbers inside the spinodal region. In this work, a thermodynamically consistent relaxation model is presented which is used to approximate the NSK equations. The model is complimented by thermodynamically consistent non-equilibrium boundary conditions which take contact angle effects into account. Due to the relaxation approach, the contribution of the Korteweg tensor in the linear momentum and total energy equations can be reduced to second-order terms which enables a straightforward implementation of contact angle boundary conditions in a numerical scheme. Moreover, the definition of a modified pressure function enables to formulate first-order fluxes which remain strictly hyperbolic in the entire spinodal region. The present work is a generalization of a previously presented parabolic relaxation model for the isothermal NSK equations

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched

    Pore-scale modeling of phase change in porous media

    Get PDF
    The combination of high-resolution visualization techniques and pore-scale flow modeling is a powerful tool used to understand multiphase flow mechanisms in porous media and their impact on reservoir-scale processes. One of the main open challenges in pore-scale modeling is the direct simulation of flows involving multicomponent mixtures with complex phase behavior. Reservoir fluid mixtures are often described through cubic equations of state, which makes diffuse-interface, or phase-field, theories particularly appealing as a modeling framework. What is still unclear is whether equation-of-state-driven diffuse-interface models can adequately describe processes where surface tension and wetting phenomena play important roles. Here we present a diffuse-interface model of single-component two-phase flow (a van der Waals fluid) in a porous medium under different wetting conditions. We propose a simplified Darcy-Korteweg model that is appropriate to describe flow in a Hele-Shaw cell or a micromodel, with a gap-averaged velocity. We study the ability of the diffuse-interface model to capture capillary pressure and the dynamics of vaporization-condensation fronts and show that the model reproduces pressure fluctuations that emerge from abrupt interface displacements (Haines jumps) and from the breakup of wetting films

    Evolution equations in physical chemistry

    Get PDF
    textWe analyze a number of systems of evolution equations that arise in the study of physical chemistry. First we discuss the well-posedness of a system of mixing compressible barotropic multicomponent flows. We discuss the regularity of these variational solutions, their existence and uniqueness, and we analyze the emergence of a novel type of entropy that is derived for the system of equations. Next we present a numerical scheme, in the form of a discontinuous Galerkin (DG) finite element method, to model this compressible barotropic multifluid. We find that the DG method provides stable and accurate solutions to our system, and that further, these solutions are energy consistent; which is to say that they satisfy the classical entropy of the system in addition to an additional integral inequality. We discuss the initial-boundary problem and the existence of weak entropy at the boundaries. Next we extend these results to include more complicated transport properties (i.e. mass diffusion), where exotic acoustic and chemical inlets are explicitly shown. We continue by developing a mixed method discontinuous Galerkin finite element method to model quantum hydrodynamic fluids, which emerge in the study of chemical and molecular dynamics. These solutions are solved in the conservation form, or Eulerian frame, and show a notable scale invariance which makes them particularly attractive for high dimensional calculations. Finally we implement a wide class of chemical reactors using an adapted discontinuous Galerkin finite element scheme, where reaction terms are analytically integrated locally in time. We show that these solutions, both in stationary and in flow reactors, show remarkable stability, accuracy and consistency.Chemistry and Biochemistr
    corecore