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We analyze a number of systems of evolution equations that arise in

the study of physical chemistry. First we discuss the well-posedness of a sys-

tem of mixing compressible barotropic multicomponent flows. We discuss the

regularity of these variational solutions, their existence and uniqueness, and

we analyze the emergence of a novel type of entropy that is derived for the

system of equations.

Next we present a numerical scheme, in the form of a discontinuous

Galerkin (DG) finite element method, to model this compressible barotropic

multifluid. We find that the DG method provides stable and accurate solutions

to our system, and that further, these solutions are energy consistent; which

is to say that they satisfy the classical entropy of the system in addition to an

additional integral inequality. We discuss the initial-boundary problem and

the existence of weak entropy at the boundaries. Next we extend these results

to include more complicated transport properties (i.e. mass diffusion), where

exotic acoustic and chemical inlets are explicitly shown.

We continue by developing a mixed method discontinuous Galerkin

finite element method to model quantum hydrodynamic fluids, which emerge
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in the study of chemical and molecular dynamics. These solutions are solved in

the conservation form, or Eulerian frame, and show a notable scale invariance

which makes them particularly attractive for high dimensional calculations.

Finally we implement a wide class of chemical reactors using an adapted

discontinuous Galerkin finite element scheme, where reaction terms are ana-

lytically integrated locally in time. We show that these solutions, both in

stationary and in flow reactors, show remarkable stability, accuracy and con-

sistency.
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Chapter 1

Introduction

Evolution equations can generally be thought of as the objects compris-

ing any theoretical model system whose parameter space evolves dynamically

through time. Most generally, the study of evolution equations can be shown

to span nearly every theoretical field that employs quantitative models; from

mathematics [1], physics [2], chemistry [3], engineering [4] and biology [5], to

informatics [6], quantitative psychology [7], economics [8], analytic philosophy

[9] and metamathematics [10] — just to mention a sparse subclass of examples.

In particular, we are concerned in this work with the study of evolution

equations which arise in physical chemistry, chemical physics, mathematical

physics, as well as applied and numerical mathematics and engineering. More

specifically, we address a subset of evolution equations that emerge in these

fields, but which find direct application to model systems of particular impor-

tance in physical chemistry.

Studying evolution equations in theoretical and computational physical

chemistry presents a unique set of interdisciplinary challenges. First, the study

of “realistic” chemical systems – which is to say, systems which include “as

many natural, or physical, variables as possible” – often requires extensive and

complicated functionally-coupled mathematical systems. These systems may

not only be difficult and subtle to model numerically, but may also be (and

often are) extremely difficult to pose in a consistent and non-degenerate way
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analytically; which is to say, a way which does not lead to “nonphysical” and

spurious behavior.

More specifically, evolution equations comprise the substrate, in essen-

tia, of the study of chemical kinetics (for example see Ref. [11]). Here rate laws

can be seen as one of the most immediate examples of an evolution equation

arising in chemical systems, i.e. a source field — the local componentwise con-

centration of the molecular constituents of the system — evolving in time. As

reaction kinetics are so fundamental to the study of many, if not most, chem-

ical systems, it becomes immediately clear how pervasive these techniques are

in the study of chemical and biochemical systems.

A more complicated evolution equation which arises in physical chem-

istry applications include the class of transport, or advection equations. A

prime example of such an equation is given by the mixing of (inert) multi-

component fluids and gases (see Chapter 2 and 3 for examples) along the

characteristics of a flow field. These transport equations (such as Fick’s law)

are used to describe the transport properties (viscosity, conductivity, thermal

diffusion, etc. [12]) that characterize the behaviors of bulk materials.

In fact, in order to include the effects of equilibrium thermodynamics

on the mixing (which arises in standard physical chemistry [11]), one must

include the time-evolving Gibb’s free energy of mixing, G. This already in-

troduces a substantial technical difficulty at the level of mathematical repre-

sentation, since these systems, which may be modeled using the Allen-Cahn

[13] or Cahn-Hilliard [14] equations, exhibit second and fourth order differen-

tial dependencies on the evolution parameters. Nevertheless, these types of

systems are very common in physical chemistry experiments, where they may

describe spinodal decomposition, colloidal chemistry, nucleation and crystal-
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lization events, and the complicated interspecies phase dynamics of mixtures

(e.g. in dense polymeric fluids, nanocrystals, and solar cell fabrication [4, 15–

17]).

When these transported properties are coupled to conservation laws,

nonlinear fluid dynamical models emerge, such as the Euler system of par-

tial differential equations, or the Navier-Stokes system of partial differential

equations (PDEs). These coupled systems of PDEs quickly become quite com-

plicated, as they are invariably determined from k equations and k unknowns.

For example, the Euler equations solve a system of three equations (mass, mo-

mentum, and energy conservation) and three unknowns (density ρ, velocity

u, and total energy E). This system of PDEs is highly nonlinear and admits

naturally discontinuous solutions (i.e. shockwaves). Similarly the Navier-

Stokes system introduces viscous effects and rotational field effects, such as

turbulence; which immediately introduce additional mathematical complica-

tions into the solution space. The coupling of higher order transport effects

(as mentioned above) to these conservation laws lead to elaborate systems of

of partial differential equations, such as seen in Korteweg-type fluid equations

[18], surface tension phase-field models [19], quantum hydrodynamics [20] and

magnetofluid models [21, 22]. All of these systems arise commonly in physical

chemistry, in the form of interfacial diffusion [23], multiphase dynamics (e.g.

bubbles in water) [24], (quantum) chemical kinetics [20], and the dynamics of

strongly (or weakly) ionized multicomponent gases [25, 26], respectively.

The theoretical foundation of the above mentioned fluid models may

be derived from molecular collision theory (see Ref. [12, 27]). In fact, fluid

models may be viewed as `-th order moment expansions that emerge from

the molecular description of fluids, given by the Boltzmann equation [28] (or
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the Vlasov equation for neutral plasmas [29]). That is, we may consider the

statistical “flow field” of the probability density f of individual particles in

phase space, which comprise the well-known kinetic theory of liquids and gases

(see Ref. [30–32]), and in the Chapman-Enskog expansion, these lead in ` = 0

to the Euler equations, in ` = 1 to the Navier-Stokes equations, in ` = 2 to

the Burnett equations, in ` = 3 to the super-Burnett equations [33], etc.

In the present work, we focus on the chemical dynamics of systems

which are either in a stationary state, or those which follow the flow fields of

“fluids” (for us, either gases, plasmas, liquids or electronic probability den-

sities) which obey compressible fluid mechanics. Compressible fluid mechan-

ics are distinguished from incompressible fluid mechanics, in that the diver-

gence (source or sink) of the velocity vector vanishes in incompressible fluids:

∇·u = 0. The concept of a compressible fluid in continuum mechanics should

not, however, be confused with the concept of the compressibility Z of a “real

gas” in equilibrium thermodynamics. For instance, in Chapter 2 we will be

concerned with a time evolving compressible flow of an idealized gas whose

pressure is a function of the density p = p(ρ), and whose compressibility fac-

tor Z = 1.

More specifically, in this work we cover a large family of continuum pro-

cesses which are described by conservation form partial differential equations

of mixed hyperbolic-parabolic type. We are generally interested in a diverse

set of initial-boundary value problems which can accommodate a large number

of physically and chemically relevant contexts. Where possible, we have stayed

as close as possible to the concept of “mathematical well-posedness,” in the

sense of Hadamard. We find, and demonstrate, that this not only improves the

stability of our results, but also the accuracy and consistency of our solutions.
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In Chapter 2 we address the issue of well-posedness directly. Here

we show the existence, uniqueness and regularity results for a compressible

barotropic flow comprised of miscible (and reactively inert) chemical con-

stituents. We rely heavily on the previous results of Solonnikov [34], Vasseur

[35], Mellet [36], Desjardins [37] and Bresch [38], and demonstrate how the

fluid obeys a novel multicomponent entropy with functional concentration de-

pendent viscosity, which in tandem with the classical entropy is enough to

control variational (or weak) solutions in the L2-norm globally in time. Some

of the work in this chapter is duplicated from Ref. [39].

We proceed in Chapter 3 by presenting a computationally well-posed

discontinuous Galerkin finite element implementation of the system from Chap-

ter 2. That is to say, we present a local variational formulation of a slightly

generalized form of the system from Chapter 2, where as many underlying

assumptions, approximations and implementational nuances are made as com-

pletely explicit as possible, with an eye towards making these systems exactly

numerically reproducible. Along these lines, a special emphasis is made on

the consistent treatment of boundary data. We show how one may generally

introduce so-called weak entropy boundary conditions, which are aptly named,

versus the so-called “characteristic treatment” of boundary data; which also

introduce local perturbations in the solution space. Here we explicitly in-

troduce some physically relevant boundary conditions, such as chemical and

acoustic inlets, and perform some extensive numerical experiments on these

physical systems. We further show how our discontinuous Galerkin scheme not

only conserves mass, momentum and species (for inert constituents), but also

conserves both entropy inequalities from Chapter 2, as long as the Courant-

Friedrichs-Lewy (CFL) condition is satisfied (which is a standard restriction
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on the timestep in terms of the spacial resolution of the solution for explicit

solutions). Finally we introduce more physics into the system, by adding the

Fick’s mass diffusion to the species equation, which yields a flow field which

not only mixes, but whose concentration dependent viscosity and mass diffu-

sion allow for a slow local homogenization effect to proceed across the domain,

and we analyze some chemically pertinent numerical experiments. Some of

the work in this chapter is duplicated in Ref. [3].

In Chapter 4 we shift our attention to conservation form quantum

hydrodynamics. Quantum hydrodynamics is generally viewed as a natural

outcropping of time-dependent quantum mechanics (in relation to the time-

dependent Schrödinger equation), leading to a direct formal equivalence to

a system of conservation law continuum mechanics, comprised of a continu-

ity equation and a conservation of momentum equation that contains the so-

called Bohmian quantum potential (in honour of one of the early pioneers of

the field, David Bohm [40, 41]). This system has recently received substan-

tial attention in chemical and molecular dynamics, and in particular, to the

study of quantum (or ~) resolution chemical kinetics occurring over compli-

cated high-dimensional potential energy surfaces [20]. These systems are also

of importance in modeling semiconductor systems [42] as well as diffuse in-

terfacial phase dynamics [43]. We show a novel mixed discontinuous Galerkin

finite element scheme for solving the conservation (or Eulerian frame) form of

these equations in their full generality.

We view our solution as a complement to the more standard Lagrangian

frame (or characteristic) based solutions. Again our approach emphasizes

boundary conditions, and the importance and recurring nuances which arise

with respect to boundary data in the implementation of systems of partial dif-
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ferential equations. We also show explicitly ways of recovering the “Bohmian

trajectories,” or pathlines of the flow field. We perform a number of numer-

ical experiments and show some careful analysis of these results, including

explicitly measuring our solutions against those well established by Wyatt et

al. in Ref. [20], to analyze accuracy, efficiency, and convergence properties of

our results. A nice feature of our mixed method solution, is that it displays

a remarkable scale invariance, making solutions over extremely small meshes

qualitatively equivalent to solutions over much larger meshes, and thus yield-

ing a realistic time scaling for complicated high dimensional problems. Some

of the work in this chapter is duplicated in Ref. [44].

Finally, in Chapter 5 we return to the classical and semi-classical evo-

lution equations, and look at chemical reactors in a generalized setting. We

define a chemical reactor model as any time-evolving system that models chem-

ical reactions. In particular, we emphasize reaction-diffusion systems of partial

differential equations, which are of importance in physical chemistry [30, 45], as

well as in chemical and aerospace engineering [46, 47]. We present an adapted

discontinuous Galerkin finite element scheme, which solves for the reacting

source locally in time by direct integration. We use this methodology to an-

alyze stationary chemical reactors (which arise in studies of chemical vapour

deposition and flame theory, for example), as well as compressible flow re-

actors. We implement our scheme explicitly for a simple hypergolic ignition

reaction, and look at stationary behavior, catalytic shockwave formation and

supersonic nozzle inlet boundary conditions via numerical experiment. Finally

we extend our results to full dimension, while showing stability, accuracy and

consistency of solutions.

Let us conclude with a brief, though necessary, apologia. Throughout
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this work we often find ourselves at a bifurcation between two incongruous

set of conventions, and thus in the delicate position of having to choose one

over another. A prime example of such a convention, which may have already

precipitated concern amongst the chemical readership of this thesis, is the

habitual use of the nominative plural “we,” in place of the far more standard

passive voice convention used in physical chemistry. In this instance we have

adopted the mathematics convention, where “we” is used interchangeably to

denote any number of usages from a diverse family of pronouns; that is, it

may denote: the collective set of individuals in some sense explicitly behind

the present work, the collective and inclusive scientific body as a connected and

interdependent institution of research, the collective presence of the current

audience (i.e. the objective, though time-dependent, “us” of the readership),

and so forth. With this in mind, it then naturally follows for single author

texts to regularly adopt the plural nominative “we;” and do so as a choice of

convention.

In contrast we have adopted the chemistry convention on the bibliogra-

phy, where references are numbered by order of appearance, as opposed to by

the first author’s last name. Additionally we use a mathematics convention for

the given entropy S a convex function, as well as for the sign of the Bohmian

quantum potential Q. When cases such as these arise in the the body of the

text, the given convention is explicitly stated once, and then taken as implicit.
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Chapter 2

A Well-posed System for Compressible

Multicomponent Flows

2.1 Introduction

In this chapter we show the well-posedness of a global strong solution

to a multifluid problem over R+ × R characterized by the one-dimensional

compressible barotropic Navier-Stokes equations. That is, we consider the

following system of equations,

∂tρ+ ∂x(ρu) = 0, (2.1)

∂t(ρu) + ∂x(ρu
2) + ∂xp(ρ,µ)− ∂x(ν(ρ, µ)∂xu) = 0, (2.2)

∂t(ρµ) + ∂x(ρuµ) = 0, (2.3)

with initial conditions given by:

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, µ|t=0 = µ0.

The conservation of mass (2.1), conservation of momentum (2.2) and conser-

vation of species (2.3) describe the flow of a barotropic compressible viscous

fluid defined for (t, x) ∈ R+×R. Here the density is given as ρ, the velocity as

u, the momentum as m, and the mass fraction µ denotes the relative weight-

ing for each fluid component of the adiabatic exponent γ(µ) ∈ R associated to

the generalized pressure p(ρ, µ), thus effectively tracking the “mixing” of the
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fluid components. In one dimension the shear viscosity and the bulk viscos-

ity collapse into a single coefficient function depending on ρ and µ which we

denote here ν(ρ, µ). Monofluid one-dimensional compressible Navier-Stokes

equations have been studied by many authors when the viscosity coefficient ν

is a positive constant. The existence of weak solutions was first established

by A. Kazhikhov and V. Shelukhin in Ref. [48] for smooth enough data close

to the equilibrium (bounded away from zero). The case of discontinuous data

(still bounded away from zero) was addressed by V. Shelukhin [49, 50] and then

by D. Serre[51, 52] and D. Hoff [53]. First results concerning vanishing intial

density were also obtained by V. Shelukhin [54]. In Ref. [55], D. Hoff proved

the existence of global weak solutions with large discontinuous initial data,

possibly having different limits at x = ±∞. He proved moreover that the con-

structed solutions have strictly positive densities (vacuum states cannot form

in finite time). In dimension greater than two, similar results were obtained

by A. Matsumura and T. Nishida [56–58] for smooth data and D. Hoff [59] for

discontinuous data close to the equilibrium. The first global existence result

for an initial density that is allowed to vanish was due to P.-L. Lions (see

Ref. [60]). The result was later improved by B. Desjardins[61] and E. Feireisl

et al. (See Ref. [62–64] and [65]). The class of solutions was then extended by

A. Zlotnik, G.-Q. Chen, D. Hoff, B. Ducomet, and K. Trivisa in Ref. [66–70]

and [71] to the case of a thermally active compressible flow coupled by the

systems chemical kinetics, where global existence results are shown for an Ar-

rhenius type biphasic combustion reaction tracking only the reactants level of

consumption. Y. Amirat and V. Shelukin have further provided in Ref. [72]

weak solutions for the case of a miscible flow in porous media.

The problem of regularity and uniqueness of solutions was first analyzed
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by V. Solonnikov [34] for smooth initial data and for small time. However, the

regularity may blow-up as the solution gets close to vacuum. This leads to

another interesting question of whether vacuum may arise in finite time. D.

Hoff and J. Smoller [73] show that any weak solution of the Navier-Stokes

equations in one space dimension do not exhibit vacuum states, provided that

no vacuum states are present initially.

Interfacial multicomponent flows have been extensively studied in the

literature, and span a rich array of applied topics with natural analogues in

continuum dynamics. For example, there has been numerous work on mul-

ticomponent flows in biological systems, including bifurcating vascular flows

[74, 75] and pulsatile hemodynamics [76], in vitro tissue growth [77] and the

“amœboid motion” of cells by way of surface polymerization [78], chemotac-

tic transport[79] in aqueous media under chemical mixing (e.g. varying rela-

tive concentrations) applied to specialized cell types [80], as well as biological

membrane dynamics due to local gradients in surface tension caused by flux

in local boundary densities [2]. Another important and popular field of ap-

plication is that of dispersed nanoparticles in colloidal media (e.g. aerosols,

emulsifications, sols, foams, etc. [81–83]) applied to, for example, electrospray

techniques in designing solar cells [4], or more generally to diagnostic and flow

analysis in the applied material sciences [84, 85]. In addition, phase separation

and spinodal decomposition have received a great deal of attention [14, 17, 86],

especially with respect to morphological engineering [87]. Another field which

is heavily weighted with multifluid applications is that of combustion dynamics

[46] and chemical kinetics [12, 45], where the conservation of species equation

(2.3) is regularly invoked, including numerous topics in reaction diffusion dy-

namics and phase mixing, spanning many essential topics in the atmospheric
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[88, 89] and geophysical [90, 91] sciences. In electrochemistry and chemical en-

gineering recent work has been done on porous multiphase fuel cells [92, 93],

and in sonochemistry recent studies have shown acoustically induced trans-

port properties across interfacial phase changes [24, 94], Finally in the fields

of astronomy and astrophysics exotic multicomponent magnetohydrodynamic

plasmas are studied [21, 95].

Many applied results exist for computational methods and schemes for

solving multicomponent flows. Let us briefly mention some notable exam-

ples. An early generalized numerical approach in multiphase modeling was

presented by F. Harlow and A. Amsden in Ref. [96], which provides an ex-

tensive system of dynamically coupled phases using a conservation of species

(2.3) equation obeying a number of relevant physical boundary conditions and

which applies, in particular, to compressible flows. In Ref. [97] J. Dukow-

icz implements a particle-fluid model for incompressible sprays, an approach

extended by G. Faeth in Ref. [98, 99] to combustion flows. D. Youngs then,

in Ref. [100], expanded numerical mixing regimes to include interfacial tur-

bulent effects. These basic schemes and approaches have been applied by a

large number of authors to a large number of fields, modeling an extremely

diverse number of natural phenomenon, from star formation [101] to volcanic

eruptions [102]. Some good reviews of the foundational numerics of these ap-

proaches can be found in the books of C. Hirsch [103], P. Shih-I and L. Shijun

[104], and M. Feistauer, J. Felcman, and I. Straškraba [105].

Let us briefly outline the physical meaning of the subject of this Chap-

ter, namely, the system of equations (2.1)-(2.3). Here we have a barotropic

system with the flow driven by a pressure p that depends on the density ρ and

the mass fraction µ of each chemical/phase component of the system. Since
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the function γ(µ) depends on the constant heat capacity ratios γi > 1 of each

component of the multifluid, the pressure p(ρ, µ) effectively traces the thermo-

dynamic “signature” of mixing chemicals/phases in solution. Note that this is

very similar, for example, to the system of equations set out in Ref. [46], except

here, for simplicity, we have neglected the associated diffusion and chemical

kinetics which break the strict (and mathematically convenient) conservation

in the species equation (2.3). Another important facet of the system (2.1)-(2.3)

is that the viscosity ν is a function of the pressure p. Much recent work has

been done by M. Franta, M. Buĺıček, J. Málek, and K. Rajagopal in providing

results on these type of viscosity laws [106–109]. Moreover, since the form of

the pressure p is chosen up to any state equation that satisfies the assump-

tions given in §2, the formulation is general enough to include, for example,

multi-nuclear regimes. That is, in addition to describing the flow of mixing

fluids characterized by their concentrations with respect to their heat capacity

ratios, this construction also educes applications in nuclear hydrodynamics,

where one can derive the pressure law using the time-dependent Hartree-Fock

approximation [110]. Such a nuclear fluid obeying the assumptions given by

the Eddington Standard Model for stellar phenomena has a pressure law [63]

that takes the form, p(ρ) = C1ρ
3−C2ρ

2 +C3ρ
7/4 where C1, C2 and C3 are pos-

itive constants. In particular, this exotic pressure law can be shown to model

nontrivial physical phenomena; such as spin and isospin wavefront propoga-

tion in nuclear fluids. It has further been shown to be in good agreement with

nuclear hydrodynamic models of the sun [63]. Thus the result in §2 allows us

to extend the above to nuclear multifluids that satisfies

p(ρ, µ) = C1ρ
γi(µ) − C2ρ

γj(µ) + C3ρ
γk(µ),

as long as it verifies the conditions given in §2. It however remains to be seen
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if quantum multi-molecular fluids [20] have an analogous formulation.

At the level of the mathematical results, incompressible (for general

background on the incompressible Navier-Stokes equations see Ref. [111]) mul-

ticomponent flows have been addressed by a number of authors. First S. An-

tontsev and A. Kazhikhov in Ref. [112], A. Kazhikhov in Ref. [113], S. An-

tontsev, A. Kazhikhov and V. Monakhov in Ref. [114], and B. Desjardins in

Ref. [61] show results for mixing flows where homogenization of the density

ρ is allowed. These solutions can be seen in contrast with P.L. Lions’ and

R. DiPerna’s solutions in Ref. [115, 116] which provide a multiphase solution

for immiscible inhomogenizable flows given discrete constant densities for each

component. A. Nouri, F. Poupaud and Y. Demay[116, 117] extend these results

to functional densities where boundary components ∂Ωi are set between each

fluid domain Ωi that satisfy the so-called kinematic condition, which restricts

the viscosity ν to obey ∂tν + u · ∇ν = 0 (see Ref. [118] for further discussion

on the kinematic condition). These results apply to immiscible flows with

boundary surfaces that effectively fix the number of fluid particles on the in-

terface. These solutions were then further extended by N. Tanaka [119, 120],

V. Solonnikov and A. Tani [121–125] to include boundary conditions tracking

both the surface tension at the interface using a mean curvature flow on the

interfacial surface, as well as the inclusion of self-gravitating parcels.

In this Chapter we consider viscosity coefficients depending on the pres-

sure satisfying a barotropic-type pressure law, a result based upon the paper of

A. Mellet and A. Vasseur in Ref. [35] and extended to the multifluid case with

a viscosity functional ν(p) given no a priori uniform bound from below. Thus,

in addition to modeling the miscible multiflow regimes that have generated

substantial physical interest (see above), our result further incorporates a very
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inclusive form of the generalized viscosity. We show the global existence with

uniqueness result for a one-dimensional compressible barotropic multicompo-

nent Navier-Stokes problem. In order to aquire the existence result, we rely

heavily on an energy inequality provided by D. Bresch and B. Desjardins (see

for example Ref. [18] and [126]). This beautiful and powerful tool is central to

our result, and, as it turns out, the breakdown of this calculation is the only

(known) obstruction to acquiring similar results in dimension greater than

one. Next we obtain the uniqueness result by adapting a proof of Solonnikov’s

[34] to the case of the barotropic system (2.1)-(2.2) coupled to the species

conservation equation (2.3).

Let us take this opportunity to discuss difficulties and related systems

of equations in higher dimension. Again, the present result relies heavily on

the calculation of an energy inequality (see §3) as provided by D. Bresch and

B. Desjardins [37, 38, 127]. However, in dimension n ≥ 2, the derivation of

this entropy inequality leads to an unnatural form of the viscosity coefficiant

ν(ρ, µ); which is to say, the calculation no longer demonstrates the type of

symmetry which leads to the essential cancellation of singularities (for example

see Ref. [55]) required in the calculation (see Ref. [36] for the monofluid case).

We briefly recall some exciting results known for compressible fluids

in higher dimension, and note that extending these to multifluid regimes in-

troduces both beautiful and difficult mathematics, while also addressing very

important and physically relevant questions in the applied fields. For exam-

ple, a result of A. Valli and W. Zajaczkowski [128] shows global weak solutions

to the mutlidimensional problem for a heat conducting fluid with inflow and

outflow conditions on the boundary. In Ref. [129] A. Solonnikov and A. Tani

offer a uniqueness proof for an isentropic compressible problem given a free
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boundary in the presence of surface tension. D. Hoff and E. Tsyganov next

provide a very nice extension of the system to find weak solutions to the com-

pressible magnetohydrodynamics regime in Ref. [130]. G. Chen and M. Kratka

in Ref. [131] further show a free boundary result for a heat-conducting flow

given spherically symmetric initial data and a constant viscosity coefficient in

higher dimension; a result which is extended by E. Feireisl’s work [63] under

the notion of the variational solution for heat-conducting flows in multiple

dimensions; though this result restricts the form of the equation of state.

Further existence results are provided by B. Ducomet and E. Feireisl [1, 132]

for gaseous stars and the compressible heat-conducting magnetohydrodynamic

regime. Further, D. Donatelli and K. Trivisa [133, 134] have extended the ex-

istence results for the coupled chemical kinetics system mentioned above to

higher dimensions. In Ref. [82], A. Mellet and A. Vasseur provide global weak

solutions for a compressible barotropic regime coupled to the Vlasov-Fokker-

Planck equation, which characterizes the evolution of dispersed particles in

compressible fluids, such as with spray phenomenon. Finally, important re-

sults of D. Bresch and B. Desjardins, in a very recent paper [135], has worked

to extend the existence results to a more general framework (using their energy

inequality) for a viscous compressible heat-conducting fluid.

We conclude by noting a number of important and interesting results

related to vacuum solutions. That is, though in this work we are concerned

with densities that obey uniform bounds in R, a number of nice results exist

for the case where over some open U ⊂ R,∫
U

ρ0dx ≥ 0;

which is to say, solutions that incorporate vacuum states. For example, T. Yang

and C. Zhu show in Ref. [136] global existence for a 1D isentropic fluid con-
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nected continuiously to a vacuum state boundary with a density dependent

viscosity. Additionally, in dimension one, a recent result by C. Cho and H. Kim

[137] provides unique strong local solutions to a viscous polytropic fluid, where

they utilize a compatibility condition on the initial data.

2.2 Statement of Result

Let us first state the hypothesis we make on the pressure and viscosity

functional p(ρ, µ) and ν(ρ, µ). First we assume that the pressure p(ρ, µ) is an

increasing function of the density ρ such that a.e.,

∂ρp(ρ, µ) ≥ 0. (2.4)

The viscosity coefficient ν(ρ, µ) is chosen such that it satisfies the fol-

lowing relation,

ν(ρ, µ) = ρ∂ρp(ρ, µ)ψ′(p(ρ, µ)), (2.5)

where ψ(p) is a function of the pressure restricted only by the form of its

derivative in p.

We consider a multifluid for which the pressure functional does not

change too much with respect to the fractional mass. Namely, Consider two

γ̌ > 1 and γ̂ > 1, where γ̌ < γ < γ̂ up to the constraint that,

γ̂ − 1/2

γ̌
<
γ̌ + 1/2

γ̂
, (2.6)

γ̌ − 1/2

γ̂
>
γ̂ + 1/2

γ̌
− 1. (2.7)

These relations are satisfied when γ̂ = 1.4 and γ̌ = 1.3, for example.

17



Then, we ascribe the existence of constants C ≥ 0 such that the fol-

lowing conditions hold:

ψ′(p) ≥ C sup(p−α, p−α),

ργ̌/C ≤ p(ρ, µ) ≤ Cργ̂ for ρ ≥ 1, µ ∈ R,

ργ̂/C ≤ p(ρ, µ) ≤ Cργ̌ for ρ ≤ 1, µ ∈ R,

(2.8)

where α and α are such that

γ̂ − 1/2

γ̌
< α ≤ γ̌ + 1/2

γ̂
, (2.9)

γ̌ − 1/2

γ̂
> α ≥ γ̂ + 1/2

γ̌
− 1. (2.10)

Note that the existence of α and α comes from (2.6) and (2.7).

Next we set conditions on the derivatives of the pressure in ρ and µ;

given first in ρ by,

ργ̌−1/C ≤ ∂ρp(ρ, µ) ≤ Cργ̂−1 for ρ ≥ 1, µ ∈ R,

ργ̂−1/C ≤ ∂ρp(ρ, µ) ≤ Cργ̌−1 for ρ ≤ 1, µ ∈ R,
(2.11)

and in µ by,
∂µp(ρ, µ) ≤ Cργ̂ for ρ ≥ 1, µ ∈ R,

∂µp(ρ, µ) ≤ Cργ̌ for ρ ≤ 1, µ ∈ R.
(2.12)

Notice that a simple pressure which satisfies these conditions is, p(ρ, µ) =

C(µ)ργ(µ) where 1/C ≤ C(µ) ≤ C and with two constants γ1 and γ2 such

that,

γ̌ < γ1 ≤ γ(µ) ≤ γ2 < γ̂.

In particular note that (2.4), (2.5), (2.8), and (2.11)-(2.12) are quite general

assumptions, while the strong conditions, (2.6) and (2.7), have the effect of

constraining the amount p(ρ, µ) can change with respect to µ.
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For the sake of clarity we define Ḣ1(R) as the space consisting of all

functions ρ for which, ∫
R
(∂xρ)2dx ≤ C.

This Chapter is dedicated to the proof of the following theorem.

Theorem 2.2.1. Assume a pressure p(ρ, µ) and viscosity ν(ρ, µ) satisfying

(2.5), (2.8), and (2.11)-(2.12) where the adiabatic limits γ̂ and γ̌ verify (2.6)-

(2.7), and take initial data (ρ0, u0, µ0) for which there exists positive constants

%(0) and %(0) such that

0 < %(0) ≤ρ0 ≤ %(0) <∞,

ρ0 ∈ Ḣ1(R), u0 ∈H1(R), µ0 ∈ H1(R),∫
R

E (ρ0,µ0)dx < +∞,

|∂xµ0| ≤ Cρ0,

where E is the internal energy as defined in (2.14). We additionally assume

the existence of constants R, S > 0 and ρ̃, µ̃ > 0 where ρ0 ≡ ρ̃ for |x| > R and

µ0 ≡ µ̃ for |x| > S. Then there exists a global strong solution to (2.1)-(2.3)

on R+ × R such that for every T > 0 we have

ρ ∈ L∞(0, T ; Ḣ1(R)), ∂tρ ∈ L2((0, T )× R),

u ∈ L∞(0, T ;H1(R)) ∩ L2(0, T ;H2(R)), ∂tu ∈ L2((0, T )× R),

µx ∈ L∞(0, T ;L∞(R)), ∂tµ ∈ L∞(0, T ;L2(R)).

Furthermore, there exist positive constants %(T ) and %(T ) depending only on

T , such that

0 < %(T ) ≤ ρ(t, x) ≤ %(T ) <∞, ∀(t, x) ∈ (0, T )× R.

Additionally, when ψ′′(p), ∂ρρp(ρ, µ), and ∂ρµp(ρ, µ) are each locally bounded

then this solution is unique in the class of weak solutions satisfying the entropy

inequalities of §3.
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It is worth remarking that our results are slightly stronger than those

presented in the statement of the theorem above. Namely, the conditions

ρ0 ≡ ρ̃ for |x| > R and µ0 ≡ µ̃ for |x| > S with respect to constants R and

S can be relaxed, such that simply choosing ρ0 and µ0 close to the reference

values ρ̃ and µ̃ is permissible as long as the internal energy E (ρ, µ) remains

integrable at t = 0.

We additionally use the existence of the short-time solution to the sys-

tem (2.1)-(2.3), which follows from Ref. [34]. That is, as we show explicitly in

§4, applying (2.8) and (2.11) to (2.5) provides that for every (ρ, µ) the viscosity

coefficient ν(ρ, µ) ≥ C, for a positive constant C. This leads to the following

proposition.

Proposition 2.2.2. (Solonnikov) For initial data (ρ0, u0, µ0) taken with re-

spect to the positive constants %(0) and %(0) satisfying

0 < %(0) ≤ρ0 ≤ %(0) <∞,

ρ0 ∈ Ḣ1(R), u0 ∈H1(R), µ0 ∈ H1(R),

and assuming that ν(ρ, µ) ≥ C for a positive constant C, then there exists a

Ts > 0 for each such that (2.1)-(2.3) has a unique solution (ρ, u, µ) on (0, Ts)

for each Tr < Ts satisfying

ρ ∈ L∞(0, Tr; Ḣ
1(R)), ∂tρ ∈ L2((0, Tr)× R),

u ∈ L2(0, Tr;H
2(R)), ∂tu ∈ L2((0, Tr)× R),

µx ∈ L∞(0, Tr;L
∞(R)), ∂tµ ∈ L∞((0, Tr);L

2(R));

and there exists two positive constants, %
r
> 0 and %r < ∞, such that %

r
≤

ρ(x, t) ≤ %r for all t ∈ (0, Ts).

The proof of Solonnikov’s proposition 2.2 as presented in Ref. [34] fol-

lows with the addition of equation (2.3) by applying Duhamel’s principle to
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the transport equation in µ given the regularity which we demonstrate in §4,

in much the same way Duhamel’s principle is applied to ρ in Ref. [34] for the

continuity equation. The rest of the proof then pushes through directly by

virtue of the calculation shown in §5 of this work.

2.3 Energy Inequalities

In this section we derive two inequalities in order to gain enough control

over (2.1)-(2.3) to prove the theorem. That is, from these inequalities we

obtain a priori estimates that hold for smooth solutions and then prove the

existence result using Solonnikov’s short-time solution. The first inequality we

show is the classical entropy inequality adapted to the context of a multifluid,

while the second is an additional energy inequality derived using a technique

discovered by D. Bresch and B. Desjardins that effectively fixes the form of

the viscosity coefficient ν(ρ, µ).

A simple calculation is required in order to obtain the classical en-

tropy inequality (in the sense of Ref. [126] and [36]). That is, multiplying the

momentum equation (2.2) by u and integrating we find,

d

dt

∫
R

{
ρ
u2

2
+ E (ρ, µ)

}
dx+

∫
R
ν(ρ, µ)|∂xu|2dx ≤ 0. (2.13)

Here E (ρ, µ) is the internal energy functional effectively tempered by a fixed

constant reference density ρ̃ <∞ and a fixed constant reference mass fraction

µ̃ ≤ C, given by

E (ρ, µ) = ρ

∫ ρ

ρ̃

{
p(s, µ)− p(ρ̃, µ)

s2

}
ds+ p(ρ̃, µ̃)− p(ρ̃, µ). (2.14)

Let us make this calculation precise. First we restrict to the first two
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terms of (2.2) to notice that,

∂t(ρu) + ∂x(ρu
2) = ρ∂tu+ ρu∂xu+ u (∂tρ+ ∂x(ρu)) ,

where subsequently multiplying through by a factor of u and integrating gives,∫
R

{
u2 (∂tρ+ ∂x(ρu)) +

1

2

(
ρ∂tu

2 + ρu∂xu
2
)}

dx.

This can be easily rewritten using (2.1), as∫
R

(
u∂t(ρu) + u∂x(ρu

2)
)
dx =

1

2

∫
R

{
∂t
(
ρu2
)

+ ∂x
(
ρu3
)}

dx.

Likewise the pressure term px from (2.2) is multiplied through by a

factor of u and integrated. In particular, the form this term takes in (2.13) is

derived from a pressure p(ρ, µ) that satisfies a conservation law (shown in §4)

for a tempered internal energy E (ρ, µ). To see this, first notice that for any

function of ρ and µ we have,∫
R
∂tE (ρ, µ)dx =

∫
R
∂ρE (ρ, µ)∂tρdx+

∫
R
∂µE (ρ, µ)∂tµdx

= −
∫

R
u∂µE (ρ, µ)∂xµdx−

∫
R
∂ρE (ρ, µ)∂x(ρu)dx

= −
∫

R
u∂µE (ρ, µ)∂xµdx−

∫
R
ρ∂ρE (ρ, µ)∂xudx

−
∫

R
u∂ρE (ρ, µ)∂xρdx.

But here, since ∂xE (ρ, µ) = ∂ρE ∂xρ+ ∂µE ∂xµ, we can write,∫
R
∂tE (ρ, µ)dx = −

∫
R
u∂µE (ρ, µ)∂xµdx−

∫
R
ρ∂ρE (ρ, µ)∂xudx

−
∫

R
u∂ρE (ρ, µ)∂xρdx

= −
∫

R
u∂xE (ρ, µ)dx−

∫
R
ρ∂ρE (ρ, µ)∂xudx

=

∫
R
∂xu
{

E (ρ, µ)− ρ∂ρE (ρ, µ)
}
dx,
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which gives, ∫
R
∂tE (ρ, µ)dx =

∫
R
u∂x

{
ρ∂ρE (ρ, µ)− E (ρ, µ)

}
dx. (2.15)

Using (2.14) we find

E (ρ, µ) = ρ∂ρE (ρ, µ) + p(ρ̃, µ̃)− p(ρ, µ), where E (ρ̃, µ̃) = 0, (2.16)

such that computing ρ∂ρE (ρ, µ)− E (ρ, µ) arrives with the desired equality,

d

dt

∫
R

E (ρ, µ)dx =

∫
R
u∂xp(ρ, µ)dx. (2.17)

This internal energy E over R arises in Ref. [55] for the single component

case, where there G(ρ, ρ′) is set as the potential energy density and treated in

a similar fashion. Note that as E (ρ, µ) is tempered with respect to a reference

density ρ̃ and a reference fractional mass µ̃, this is all that is needed to control

the sign on the internal energy E (ρ, µ), with the only qualification coming

from §3 which gives cases on the limits of integration.

It is further worth mentioning that the above terms comprise an entropy

S (ρ, u, µ) of the system (as well as the entropy term of inequality (2.13)),

where we write the integrable function,

S (ρ, u, µ) =
m2

2ρ
+ E (ρ, µ).

The final step in recovering (2.13) is to calculate the remaining diffu-

sion term, which follows directly upon integration by parts. That is, after

multiplying through by u and integrating by parts we see that

−
∫

R
u∂x
(
ν(ρ, µ)∂xu

)
dx =

∫
R
ν(ρ, µ)(∂xu)2dx

which leads to the result; namely (2.13).
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2.3.1 Additional Energy Inequality

The following lemma provides the second energy inequality that we use

in order to prove the theorem.

Lemma 2.3.1. For solutions of (2.1)-(2.3) we have

d

dt

∫
R

{ρ
2

∣∣u+ ρ−1∂xψ(p)
∣∣2 + E (ρ, µ)

}
dx+

∫
R
ρ−1ψ′(p)

(
∂xp(ρ, µ)

)2
dx = 0,

(2.18)

providing the following constraint on the viscosity ν(ρ, µ):

ν(ρ, µ) = ρ∂ρpψ
′(p). (2.19)

Proof. Take the continuity equation and the transport equation in µ and mul-

tiply through by derivatives of a function of the pressure ψ(p) such that,

∂ρψ(p)
{
∂tρ+ ∂x(ρu)

}
= 0,

∂µψ(p)
{
∂tµ+ u∂xµ

}
= 0,

where adding the components together gives,

∂tψ(p) + u∂xψ(p) + ρ∂ρψ(p)∂xu = 0.

A derivation in x provides that

∂t
(
∂xψ(p)

)
+ ∂x

(
u∂xψ(p)

)
+ ∂x

(
ρ∂ρψ(p)∂xu

)
= 0,

which we expand to

∂t
(
ρρ−1∂xψ(p)

)
+ ∂x

(
ρρ−1u∂xψ(p)

)
+ ∂x

(
ρ∂ρψ(p)∂xu

)
= 0,

such that adding it back to the momentum equation (2.2) and applying con-

dition (2.19) arrives with

∂t
(
ρ
{
u+ ρ−1∂xψ(p)

})
+ ∂x

(
ρu
{
u+ ρ−1∂xψ(p)

})
+ ∂xp(ρ, µ) = 0.
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Multiplying this by
(
u+ ρ−1∂xψ(p)

)
then gives,

1

2
∂t
{
ρ
∣∣u+ ρ−1∂xψ(p)

∣∣2}+
1

2
∂x
{
ρu
∣∣u+ ρ−1∂xψ(p)

∣∣2}
+
{
u+ ρ−1∂xψ(p)

}
∂xp(ρ, µ) = 0,

which when integrated becomes

d

dt

∫
R

{ρ
2

∣∣u+ ρ−1∂xψ(p)
∣∣2 + E (ρ, µ)

}
dx+

∫
R
ρ−1ψ′(p)

(
∂xp(ρ, µ)

)2
dx = 0,

completing the proof.

2.4 Establishing the Existence Theorem

In this section our aim is to apply the inequalities in §3 predicated on

the formulation in §2 to acquire the existence half of the theorem. However,

in order to do this we must first confirm that the energy inequalities satisfy

the appropriate bounds. Let us demonstrate this principle for both (2.13) and

(2.18) in the form of the following lemma.

Lemma 2.4.1. For any solution (ρ, u, µ) of (2.1)-(2.3) verifying,∫
R

{
ρ0
u2

0

2
+ E (ρ0, µ0)

}
dx < +∞ (2.20)

and∫
R

{ρ0

2

∣∣∣u0 +
∂xψ(p0)

ρ0

∣∣∣2 + E (ρ0, µ0)
}
dx < +∞, (2.21)

we have that

ess sup
[0,T ]

∫
R

{
ρ
u2

2
+ E (ρ, µ)

}
dx+

∫ T

0

∫
R
ν(ρ, µ)|∂xu|2dxdt ≤ C, (2.22)

and

ess sup
[0,T ]

∫
R

{ρ
2

∣∣∣u+
∂xψ(p)

ρ

∣∣∣2 + E (ρ, µ)
}
dx+

∫ T

0

∫
R

ψ′(p)

ρ
|∂xp|2dxdt ≤ C.

(2.23)
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Proof. It suffices if every term on the left side of both inequality (2.22) and

(2.23) can be shown to be nonnegative.

First notice that we clearly have that ρu2 ≥ 0 for any barotropic fluid

over R, since ρ is strictly nonnegative. To check that E (ρ, µ) ≥ 0 we simply

refer to the definition given in (2.16). Indeed
(
p(s,µ)−p(ρ̃,µ)

s2

)
≥ 0 when ρ ≥ ρ̃

and
(
p(s,µ)−p(ρ̃,µ)

s2

)
≤ 0 for ρ ≤ ρ̃, which implies∫ ρ

ρ̃

p(s, µ)− p(ρ̃, µ)

s2
ds ≥ 0.

Together with (2.14) this gives that E (ρ, µ) ≥ 0 .

Next we check the viscosity coefficient ν(ρ, µ). Here the positivity fol-

lows from (2.5), where again the pressure is increasing in ρ satisfying (2.4) and

the density is positive definite away from the vacuum solution (which we show

is forbidden due to proposition 2.4.2), so for a ψ′(p) satisfying (2.8) we see that

ψ′(p) ≥ 0. Similarly, the last term on the right in (2.23) follows away from

vacuum, where again we only rely upon the fact from §2 that ψ′(p) ≥ 0.

These results provide the estimates that we use for the remainder of the

Chapter. That is, it is well-known (for example see Theorem 7.2 in Ref. [60]

and the results in Ref. [35]) that the existence of a global strong solution to

the system (2.1)-(2.2) follows by regularity analysis in tandem with (2.13)

and (2.18). Below we present a similar approach for the case of a mixing

multicomponent fluid (2.1)-(2.3) using only what we have found above; namely,

that (2.13) and (2.18) provide the following a priori bounds:

‖
√
ν(ρ, µ)∂xu‖L2(0,T ;L2(R)) ≤ C,

‖√ρu‖L∞(0,T ;L2(R)) ≤ C,

‖E (ρ, µ)‖L∞(0,T ;L1(R)) ≤ C,

(2.24)
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along with,
‖(∂xψ(p)/

√
ρ)‖L∞(0,T ;L2(R)) ≤ C,

‖(ψ′(p)/ρ)1/2∂xp(ρ,µ)‖L2(0,T ;L2(R)) ≤ C.
(2.25)

We will use these inequalitites extensively for the remainder of the Chapter.

As a remark, if we denote the internal energy density e as being char-

acterized by the relations,

ρe = ρ

∫ ρ

ρ̃

∂e(s, µ)

∂ρ
ds with e(ρ̃, µ) = 0,

and ∂ρe(ρ, µ) = ρ−2p(ρ, µ)− ρ−2p(ρ̃, µ),

(2.26)

then e is closely related to the specific internal energy es, defined by

es(ρ) ≡
∫ ρ

1

p(s)

s2
ds,

which is provided for the single barotropic compressible fluid case in Ref. [118]

and [63]; but in the multifluid context, since the internal energy E is tempered

up to some constant reference density ρ̃, the usual form of the specific internal

energy inherits a tempering in ρ̃ as well, which is what is provided here by the

function e. We also note that the tempered internal energy E now satisfies

the following conservation form as mentioned in §3,

∂tE (ρ, µ) + ∂x(E (ρ, µ)u) +
{
ρ2∂ρe(ρ, µ) + p(ρ̃, µ)− p(ρ̃, µ̃)

}
∂xu = 0, (2.27)

where it is easy to confirm that upon integration this recovers (2.17).

2.4.1 Bounds on the Density

For the existence theorem we need to establish a bound for the density

in the space L∞(0, T ; Ḣ1(R)). To achieve this we first establish uniform bounds

on the density.
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Proposition 2.4.2. For every T > 0 there exist two distinct positive constants

% and % such that

% ≤ ρ(t, x) ≤ % ∀(t, x) ∈ [0, T ]× R. (2.28)

Showing this proposition requires the following three lemmas which

provide the groundwork for its subsequent proof.

Lemma 2.4.3. Let F ≥ 0 be a function defined on [0,+∞)×R where F (·, x)

is uniformly continuous with respect to x ∈ R and where there exists a δ > 0

with F (0, x) > δ for any x. Then there exists an ε > 0 such that for any

constant C̄ > 0 there exists a constant K > 0 so that for any nonnegative

function f verifying
∫

R F (f(x), x)dx ≤ C̄, and for any x0 ∈ R, there exists a

point x1 ∈ I = [x0 −K, x0 +K] such that f(x1) > ε.

Proof. For any fixed F there exists a C̃ such that for all y ≤ ε we have,

F (y, x) ≥ 1

2C̃

since F (0, x) > δ for any x and F is uniformly continuous in x. Let us fix

C̄ > 0 and define

K = 2C̄C̃. (2.29)

We show that this K verifies the desired properties. Here we utilize a proof by

contradiction in the spirit of Ref. [36]. Assume that we can find a nonnegative

function f verifying
∫

R F (f(x), x)dx ≤ C̄ and an x0 ∈ R with

ess sup
x∈I

f ≤ ε,

where I = [x0 −K, x0 +K]. Since F ≥ 0 this implies

C̄ ≥
∫

R
F (f(x), x)dx ≥

∫
I

F (f(x), x)dx ≥
∫
I

1

2C̃
dx,

which yields C̄ ≥ K/C̃ in contradiction to (2.29).
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Additionally we require the following technical lemma.

Lemma 2.4.4. Providing (2.8) then (2.14) yields,

ργ̂ + Cρ ≤ C + 1 for ρ ≤ 1,

ργ̌+
ρ

C
≤ C + CE (ρ, µ) for ρ ≥ 1.

Proof. Trivially, when ρ ≤ 1 we have that ργ̂ + Cρ ≤ C + 1. When ρ ≥ 1 we

use (2.8) to expand E (ρ, µ) where (2.14) gives that as ρ→∞ the ργ̌ dominates

such that scaling the constant correctly provides the result.

Now we are able to find uniform positive bounds % and % on the density

which inherently preclude the vacuum and concentration states.

Lemma 2.4.5. Assume that (2.6), (2.7) and (2.8)-(2.12) are satisfied and let

∂xξ(ρ) = 1{ρ≤1}∂xρ
−η + 1{ρ≥1}∂xρ

σ. (2.30)

Then there exists an η > 0 and σ > 0 such that for any K > 0 there exists a

CK with

‖∂xξ(ρ)‖L∞(0,T ;L1(I) ≤ CK (2.31)

for every x0 ∈ R and I = [x0 −K, x0 +K].

Proof. First recall that the pressure satisfies

∂xp(ρ, µ) = ∂ρp(ρ, µ)∂xρ+ ∂µp(ρ, µ)∂xµ.

Here we are concerned with two cases, namely when ρ ≤ 1 and when ρ ≥ 1.

For the case when ρ ≤ 1 we multiply through by ρ−1/2p(ρ, µ)−α where α is

given by (2.9), which yields

∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

=
∂xp(ρ, µ)
√
ρp(ρ, µ)α

− ∂µp(ρ, µ)∂xµ√
ρp(ρ, µ)α

. (2.32)
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Likewise for ρ ≥ 1 we multiply through by p(ρ, µ)−αρ−1/2 given α from (2.10)

such that
∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

=
∂xp(ρ, µ)
√
ρp(ρ, µ)α

− ∂µp(ρ, µ)∂xµ√
ρp(ρ, µ)α

. (2.33)

In order to demonstrate the lemma we will control the right hand side of both

(2.32) and (2.33) such that each is bounded in L∞(0, T ;L1
loc(R)).

Towards this, we first show that ρ−1∂xµ is bounded in L∞(0, T ;L∞(R)).

That is, take a derivation in x of (2.3) in order to write

∂t(ρρ
−1∂xµ) + ∂x(ρuρ

−1∂xµ) = 0, (2.34)

such that multiplying through by a function ϑ′(ρ−1∂xµ) = ϑ′ achieves

∂t(ρϑ(ρ−1∂xµ)) + ∂x(ρuϑ(ρ−1∂xµ)) = 0.

Take ϑ(y) = (|y| −M)+ for positive M ∈ R. Upon integration this implies∫ T

0

d

dt

∫
R
ρϑ(ρ−1∂xµ)dxdt = 0,

such that for an appropriate choice of initial condition, where ρ−1
0 ∂xµ0 ∈

[−M,M ], we find

ess sup
[0,T ]

∫
R
ρϑ(ρ−1∂xµ)dx = 0.

This implies that ρϑ(ρ−1∂xµ) = 0 almost everywhere for all (t, x) ∈ (0, T )×R,

and so we can conclude that the argument of ϑ takes values over the interval,

or more clearly that for ρ a.e. |ρ−1∂xµ| ≤ M . This is then enough to educe

the norm:

‖ρ−1∂xµ‖L∞(0,T ;L∞(R)) ≤M.

However, this is not yet enough to control the last term on the right

for the two cases. In (2.32) applying (2.8) and (2.12) further provides
√
ρ∂µp(ρ, µ)

p(ρ, µ)α
≤ C0ρ

γ̌−αγ̂+ 1
2 for ρ ≤ 1
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for a positive constant C0. Using (2.9) from above we have that γ̌ ≥ αγ̂−1/2,

and so the positivity of the exponent gives

C0ρ
γ̌−αγ̂+ 1

2 ≤ C for ρ ≤ 1,

which leads to, ∥∥∥∥1{ρ≤1}

√
ρ∂µp(ρ, µ)

p(ρ, µ)α

∥∥∥∥
L∞(0,T ;L∞(R))

≤ C. (2.35)

Similarly for (2.33) we apply (2.8) and (2.12) to see that,

√
ρ∂µp(ρ, µ)

p(ρ, µ)α
≤ C0ρ

γ̂−αγ̌+ 1
2 for ρ ≥ 1.

Notice that since (2.10) provides γ̌ ≥ γ̂−αγ̌+ 1/2, then applying lemma 2.4.4

implies

1{ρ≥1}

(√
ρ∂µp(ρ, µ)

p(ρ, µ)α

)
≤ C + CE (ρ, µ).

Integrating over I gives∫
I

∣∣∣∣1{ρ≥1}

√
ρ∂µp(ρ, µ)

p(ρ, µ)α

∣∣∣∣dx ≤ 2KC + C

∫
R

E (ρ, µ)dx,

such that applying (2.24) establishes∥∥∥∥1{ρ≥1}

√
ρ∂µp(ρ, µ)

p(ρ, µ)α

∥∥∥∥
L∞(0,T ;L1

loc(R))

≤ CK ,

for CK a constant depending only on K.

Now consider the ∂xp term in (2.32) where here again we treat the two

cases ρ ≤ 1 and ρ ≥ 1 separately. For the case ρ ≤ 1 notice that we have by

the bound on ψ′(p) in (2.8) that∣∣∣∣1{ρ≤1}
∂xp(ρ, µ)
√
ρp(ρ, µ)α

∣∣∣∣ = C|1{ρ≤1}ρ
−1/2∂xp(ρ, µ)1−α| ≤ C|1{ρ≤1}ρ

−1/2∂xψ(p)|.
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Upon integration (2.25) gives∫
R
|1{ρ≤1}ρ

−1/2∂xp(ρ, µ)1−α|2dx ≤ C

∫
R
|1{ρ≤1}ρ

−1/2∂xψ(p)|2dx

≤ C,

and so we obtain

‖1{ρ≤1}ρ
−1/2p(ρ, µ)−α∂xp(ρ, µ)‖L∞(0,T ;L2(R)) ≤ C.

Similarly for ρ ≥ 1 we apply (2.8), giving∣∣∣∣1{ρ≥1}
∂xp(ρ, µ)
√
ρp(ρ, µ)α

∣∣∣∣ = C|1{ρ≥1}ρ
−1/2∂xp(ρ, µ)1−α| ≤ C|1{ρ≥1}ρ

−1/2∂xψ(p)|,

such that integrating and utilizing (2.25) yields∫
R

∣∣∣∣1{ρ≥1}
∂xp(ρ, µ)
√
ρp(ρ, µ)α

∣∣∣∣dx ≤ C

∫
R
|1{ρ≥1}ρ

−1/2∂xψ(p)|dx

≤ C,

and so

‖1{ρ≥1}ρ
−1/2p(ρ, µ)−α∂xp(ρ, µ)‖L∞(0,T ;L1(R)) ≤ C.

Combining these results we have thus acquired the important bound

on the left sides of (2.32) and (2.33):

‖1{ρ≤1}ρ
−1/2p(ρ, µ)−α∂ρp(ρ, µ)∂xρ‖L∞(0,T ;L2

loc(R))

+ ‖1{ρ≥1}ρ
−1/2p(ρ, µ)−α∂ρp(ρ, µ)∂xρ‖L∞(0,T ;L1(I)) ≤ CK .

(2.36)

It remains to show that for all ρ we have bounds on some power of the

spatial derivative ρx. First notice that when ρ ≤ 1 applying (2.8) and (2.11)

to the left of (2.32) provides∣∣∣∣1{ρ≤1}
∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

∣∣∣∣ ≥ C|1{ρ≤1}ρ
γ̂−αγ̌−3/2∂xρ| = C|1{ρ≤1}ρ

γ̂−αγ̌−3/2||∂xρ|,
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such that upon squaring and integrating we find

C

∫
R
|1{ρ≤1}ρ

γ̂−αγ̌−3/2∂xρ|2dx ≤
∫

R

∣∣∣∣1{ρ≤1}
∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

∣∣∣∣2dx
≤ C.

This provides what we desire by way of the following equality:

‖1{ρ≤1}ρ
γ̂−αγ̌−3/2∂xρ‖L∞(0,T ;L2

loc(R)) = C‖1{ρ≤1}∂xρ
γ̂−αγ̌−1/2‖L∞loc(0,T ;L2(R))

≤ C.
(2.37)

Thus when applying the condition from (2.6) it follows that η satisfies

η = αγ̌ − γ̂ +
1

2
. (2.38)

Likewise when ρ ≥ 1 applying (2.8) and (2.11) provides∣∣∣∣1{ρ≥1}
∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

∣∣∣∣ ≥ C|1{ρ≥1}ρ
γ̌−αγ̂−3/2∂xρ| = C|1{ρ≥1}ρ

γ̌−αγ̂−3/2||∂xρ|,

such that integrating over I gives by (2.36) that

C

∫
I

|1{ρ≥1}ρ
γ̌−αγ̂−3/2∂xρ|dx ≤

∫
I

∣∣∣∣1{ρ≥1}
∂ρp(ρ, µ)∂xρ√
ρp(ρ, µ)α

∣∣∣∣dx
≤ CK .

Here this yields

‖1{ρ≥1}ρ
γ̌−αγ̂− 3

2∂xρ‖L∞(0,T ;L1(I)) = C‖1{ρ≥1}∂xρ
γ̌−αγ̂− 1

2‖L∞(0,T ;L1(I)) ≤ CK .

(2.39)

Thus using the condition from (2.7) establishes

σ = γ̌ − αγ̂ − 1

2
. (2.40)

In order to complete the proof all that remains is to add (2.37) and

(2.39) together and apply Minkowski’s inequality, which gives

‖∂xξ(ρ)‖L∞(0,T ;L1(I)) ≤ CK .

33



We are now able to show Proposition 2.4.2 by applying the preceding

results.

Proof of Proposition 2.4.2. For t fixed set

F (y, x) =

{
E (y, µ(t, x)) for y ≤ 1

E (1, µ(t, x)) for y ≥ 1

such that y = ρ. Next (2.14) together with (2.8) shows that F (y, x) is con-

tinuous in ρ uniformly with respect to x, and (2.24) assures that∫
R

F (ρ(t, x), x)dx ≤ C.

Then the hypothesis of lemma 2.4.3 is satisfied as long as there exists a δ > 0

such that F (0, x) > δ. But for ρ ≤ 1 we can apply (2.8) to the form of the

internal energy (2.14) to see that as ρ→ 0 we have E (ρ, µ) ≥ C. Likewise when

ρ = 1 we see that E (1, µ) ≥ C1 for C1 a constant. So we have for a positive

δ < inf{C,C1} that the hypothesis of lemma 2.4.3 is satisfied. Then for any

x ∈ R with x0 = x from lemma 2.4.3 there exists an x1 ∈ I = [x−K, x+K] such

that ρ(t, x1) > ε. Note that K does not depend on t since
∫

R F (ρ(t, x), x)dx

does not depend on time thanks to (2.24). Then the fundamental theorem

provides:

|1{ρ≤1}ρ
−η(x)| ≤ |ε−η|+

∫
I

|1{ρ≤1}∂xρ
−η|dx.

Since K does not depend on time, lemma 2.4.5 gives that the right hand side

is bounded uniformly in x and t.

For the upper bound, again fix t and now set

F (y, x) = E

(
1 + ρ̃

1 + y
, µ(t, x)

)
∀y ≥ 0
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such that y = 1/ρ. Again (2.14) and (2.8) provide that F (y, x) is continuous

in ρ uniformly with respect to x. Additionally we find that both F (1/ρ̃, x) =

E (ρ̃, µ) ≥ C and that F (0, x) > C1 by applying (2.8) to (2.14), which provides

an admissible δ. Now, upon defining a function $ = ρ(1 + ρ̃)/(ρ + 1), then

there exists a constant C > 0 such that

E ($,µ) ≤ CE (ρ, µ),

which can be shown using (2.14) and checking the formula for |ρ − ρ̃| ≤ ρ̃
2
,

ρ ≤ ρ̃
2

and ρ ≥ 3
2
ρ̃ thanks to (2.11). Then (2.24) is enough to deduce that∫

R
F (ρ(t, x)−1, x)dx ≤ C.

Hence for any x ∈ R we can use lemma 2.4.3 setting x0 = x such that there

exists an x1 ∈ [x −K, x + K] with ρ(t, x1) ≤ ε−1. Again notice that K does

not depend on t since (2.24) is uniform in time. Then by the fundamental

theorem and lemma 2.4.5 we obtain

|1{ρ≥1}ρ
σ(x)| ≤ |ε−σ|+

∫
I

|1{ρ≥1}∂xρ
σ|dx.

Again since K does not depend on time, lemma 2.4.5 gives the right side

bounded uniformly in x and t which completes the proof of proposition 2.4.2.

We proceed by showing the important corollary to this proposition.

Corollary 2.4.6. Assume that (2.6)-(2.8) and (2.11)-(2.12) are satisfied, then

ρ ∈ L∞(0, T ; Ḣ1(R)).
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Proof. Lemma 2.4.5 provides the appropriate framework. Thus we will show

the bound separately for the cases ρ ≤ 1 and ρ ≥ 1.

For ρ ≤ 1 applying (2.8), (2.11) and (2.12) we calculate

∂xρ
−η = ρ−η−1∂xρ

= ρ−η−1

(
∂xp(ρ, µ)− ∂µp(ρ, µ)∂xµ

∂ρp(ρ, µ)

)
≤ ρ−η−1

(
∂xp(ρ, µ)

Cργ̂−1

)
− Cρ−η−γ̂∂µp(ρ, µ)∂xµ

≤ Cρ−αγ̌−1/2∂xp(ρ, µ)− Cρ−η−γ̂+γ̌+1

(
∂xµ

ρ

)
.

(2.41)

Squaring both sides gives

(∂xρ)2 ≤ ρ2+2η

(
Cρ−αγ̌−1/2∂xp(ρ, µ)− Cρ−η−γ̂+γ̌+1

(
∂xµ

ρ

))2

.

Integrating, applying (2.8) and utilizing Hölder’s inequality yields,∫
R
1{ρ≤1}(∂xρ)2dx ≤ Č

∫
R
1{ρ≤1}

∣∣∣∣ ∂xp√
ρραγ̌

∣∣∣∣2dx− C̃(∫
R
1{ρ≤1}

∣∣∣∣ ∂xp√
ρραγ̌

∣∣∣∣2dx
×
∫

R
1{ρ≤1}

∣∣∣∣ργ̌(1−α)+ 1
2

(∂xµ
ρ

)∣∣∣∣2dx) 1
2

+ C

∫
R
1{ρ≤1}

∣∣∣∣ργ̌(1−α)+ 1
2

(∂xµ
ρ

)∣∣∣∣2dx
≤ Č0

∫
R
1{ρ≤1}

∣∣∣∣∂xψ(p)
√
ρ

∣∣∣∣2dx− C̃0

(∫
R
1{ρ≤1}

∣∣∣∣∂xψ(p)
√
ρ

∣∣∣∣2dx
× %̄γ̌(1−α)+ 1

2

∫
R
1{ρ≤1}|ρ−1∂xµ|2dx

) 1
2

+ C%γ̌(1−α)+ 1
2

∫
R
1{ρ≤1}|(ρ−1∂xµ)|2dx

≤ C,

which concludes the proof for ρ ≤ 1.

For the case ρ ≥ 1 we follow an almost identical calculation, except
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that now after applying (2.8), (2.11) and (2.12); (2.41) becomes

∂xρ
σ = ρσ−1∂xρ

= ρσ−1

(
∂xp(ρ, µ)− ∂µp(ρ, µ)∂xµ

∂ρp(ρ, µ)

)
≤ ρσ−1

(
Č∂xp(ρ, µ)

ργ̌−1

)
− Cρσ−γ̌∂µp(ρ, µ)∂xµ

≤ Čρ−αγ̂−1/2∂xp(ρ, µ)− Cρσ−γ̌+γ̂+1
(∂xµ
ρ

)
.

(2.42)

Squaring both sides now gives

(∂xρ)2 ≤ ρ2−2σ

(
Čρ−αγ̂−1/2∂xp(ρ, µ)− Cργ̂(1−α)+ 1

2

(∂xµ
ρ

))2

.

Again integrating and applying (2.8) with Hölder’s inequality establishes,∫
R
1{ρ≥1}(∂xρ)2dx ≤ Ĉ

∫
R
1{ρ≥1}

∣∣∣∣ ∂xp√
ρραγ̂

∣∣∣∣2dx− C̃(∫
R
1{ρ≥1}

∣∣∣∣ ∂xp√
ρραγ̂

∣∣∣∣2dx
×
∫

R
1{ρ≥1}

∣∣∣∣ργ̂(1−α)+ 1
2

(∂xµ
ρ

)∣∣∣∣2dx) 1
2

+ C

∫
R
1{ρ≥1}

∣∣∣∣ργ̂(1−α)+ 1
2

(∂xµ
ρ

)∣∣∣∣2dx
≤ Ĉ0

∫
R
1{ρ≥1}

∣∣∣∣∂xψ(p)
√
ρ

∣∣∣∣2dx− C̃0

(∫
R
1{ρ≥1}

∣∣∣∣∂xψ(p)
√
ρ

∣∣∣∣2dx
× %̄γ̂(1−α)+ 1

2

∫
R
1{ρ≥1}|ρ−1∂xµ|2dx

) 1
2

+ C%γ̂(1−α)+ 1
2

∫
R
1{ρ≥1}|(ρ−1∂xµ)|2dx

≤ C,

which due to Minkowski’s inequality completes the proof.

2.4.2 Bounds for the Velocity

It is now possible to find bounds on the velocity by applying the uniform

bounds achieved above.

Proposition 2.4.7. Assume that (2.5)-(2.8) and (2.11)-(2.12) are satisfied,

then

u ∈ L2(0, T ;H2(R)) and ∂tu ∈ L2(0, T ;L2(R)). (2.43)
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Proof. First notice that the second estimate in (2.24) in tandem with the

uniform bounds on the density gives

‖u‖L∞(0,T ;L2(R)) ≤ C. (2.44)

Also notice that the uniform bounds on ρ applied to (2.5) show that there

exists a constant C such that ν(ρ, µ)−1 ≤ C. That is, applying (2.8) and

(2.11) to (2.5) for ρ ≤ 1 gives ν(ρ, µ) ≥ Cργ̂−αγ̌ so that using the uniform

bounds on ρ provides

ν(ρ, µ)−1 ≤ Cραγ̌−γ̂ ≤ C%αγ̌−γ̂ ≤ C. (2.45)

For ρ ≥ 1 it follows in the same way that ν(ρ, µ) ≥ Cργ̌−αγ̂ provides

ν(ρ, µ)−1 ≤ Cραγ̂−γ̌ ≤ C%αγ̂−γ̌ ≤ C. (2.46)

Thus for all ρ we have ν(ρ, µ)−1 ≤ C, which when applied to (2.24) yields

‖u‖L2(0,T ;H1(R)) ≤ C. (2.47)

Further, observing the continuity equation with respect to (2.47) implies that

∂tρ is bounded in L2((0, T ) × R) as denoted in the theorem. We proceed by

controlling the following form of the momentum equation (after multiplication

through by ρ−1):

∂tu− ∂x
(
ρ−1ν(ρ, µ)∂xu

)
= −u∂xu− ρ−1∂xp(ρ, µ)− ν(ρ, µ)∂xu∂xρ

−1. (2.48)

We want to control the right side of (2.48) in such a way as to apply classical

regularity results for parabolic equations.

Consider first the second term on the right in (2.48). This term is

bounded in L∞(0, T ;L2(R)) as an immediate consequence of proposition 2.4.2,
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the corollary, and condition (2.8). This follows since (2.8) gives p(ρ, µ) ≤ Cργ̂

for ρ ≥ 1 and p(ρ, µ) ≤ Cργ̌ for ρ ≤ 1. Then we can expand the pressure term

as ργ̂−2∂xρ and ργ̌−2∂xρ, such that for ρ ≥ 1 the corollary and proposition

2.4.2 provide that∫
R
1{ρ≥1}|ρ−1∂xp(ρ, µ)|2dx ≤ C

(
ess sup
{x∈R:ρ≥1}

|ρ2γ̂−4|

)(∫
R
1{ρ≥1}|∂xρ|2dx

)
≤ C,

and likewise for ρ ≤ 1 the corollary and proposition 2.4.2 give∫
R
1{ρ≤1}|ρ−1∂xp(ρ, µ)|2dx ≤ C

(
ess sup
{x∈R:ρ≤1}

|ρ2γ̌−4|

)(∫
R
1{ρ≤1}|∂xρ|2dx

)
≤ C.

Minkowski’s inequality then provides the result.

For the third term on the right we again use the fact from above that

ν(ρ, µ)−1 ≤ C, and so because of the uniform bounds on ρ we acquire

|ν(ρ, µ)∂xu∂xρ
−1| ≤ C|∂xu∂xρ|.

Hence, due to results on parabolic equations (see Ref. [138]) we have reduced

the problem to finding for the third term on the right in (2.48) that ρxux is

bounded in L2(0, T ;L4/3(R)) and similarly for the first term on the right that

uux is in L2(0, T ;L4/3(R)). To get this, we adapt a subtle calculation from

Ref. [36] that relies on correctly weighting the norms in order to establish that

ux ∈ L2(0, T ;L∞(R)). That is, using Hölder’s inequality we can write:

‖uux‖L2(0,T ;L4/3(R)) + ‖ρxux‖L2(0,T ;L4/3(R))

≤
{
‖u‖L∞(0,T ;L2(R)) + ‖ρx‖L∞(0,T ;L2(R))

}
‖ux‖L2(0,T ;L4(R)).

(2.49)
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Now for some function f with constant a ∈ R we have (fa)x = afa−1fx

such that we may infer by Hölder’s inequality that

‖∂x(f 3/2)‖L1(R) ≤ C‖f 1/2‖L4(R)‖fx‖L4/3(R). (2.50)

Next we infer a bound in L8/3(R) given by

‖f 3/2‖L8/3(R) ≤ C‖f 3/2‖1/2

L4/3(R)
‖∂x(f 3/2)‖1/2

L1(R),

which follows since

‖∂x(f 3/2)‖1/2

L1(R) ≥ C‖f 3/2‖1/2
L∞(R).

Thus invoking (2.50) we can write

‖f‖3/2

L4(R) ≤ C‖f‖3/4

L2(R)‖fx‖
1/2

L4/3(R)
‖
√
f‖1/2

L4(R)

≤ C‖f‖L2(R)‖fx‖1/2

L4/3(R)
,

where both sides raised to the power n = 2/3 clearly implies that

‖f‖L4(R) ≤ C‖f‖2/3

L2(R)‖f‖
1/3

W 1,4/3 .

Hence, if we set ux = f then (2.49) leads to{
‖u‖L∞(0,T ;L2(R)) + ‖ρx‖L∞(0,T ;L2(R))

}
‖ux‖L2(0,T ;L4(R))

≤ C‖u‖L∞(0,T ;L2(R))‖ux‖2/3

L2(0,T ;L2(R))‖ux‖
1/3

L2(0,T ;W 1,4/3(R))

+ C‖ρx‖L∞(0,T ;L2(R))‖ux‖2/3

L2(0,T ;L2(R))‖ux‖
1/3

L2(0,T ;W 1,4/3(R))

≤ C‖ux‖1/3

L2(0,T ;W 1,4/3(R))
,

since u and ρx are given by (2.47) and the corollary. But then regularity results

(see theorem 4.2 in Chapter III of Ref. [138]) for equations of the form (2.48),
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given the bounds established above and that ν(ρ, µ) is a coefficient function

satisfying uniform parabolicity, imply that since

‖∂xu‖L2(0,T ;W 1,4/3(R)) ≤ C + C‖ux‖1/3

L2(0,T ;W 1,4/3(R))
,

we have

‖∂xu‖L2(0,T ;W 1,4/3(R)) ≤ C. (2.51)

Now, we want to show that

ux ∈ L2(0, T ;L∞(R)). (2.52)

Indeed for any x ∈ R and t ∈ [0, T ] if we set ς = ux from lemma 2.4.8 (which

is given following this proof) and notice that

‖ux(t, x)‖2 ≤ 2‖ux(t, ·)‖2
L2(R) + ‖uxx(t, ·)‖2

L4/3(R)

for any t ∈ [0, T ], then integrating in time gives (2.52).

It follows as a consequence that the entire right hand side of (2.48)

is bounded in L2(0, T ;L2(R)). Applying the classical regularity results for

parabolic equations then yields:

‖u‖L2(0,T ;H2(R)) ≤ C and ‖∂tu‖L2(0,T ;L2(R)) ≤ C.

Lemma 2.4.8. Let ς ∈ L2(R) with ∂xς ∈ L1
loc(R). Then for any x ∈ R

|ς(x)|2 ≤ 2‖ς‖2
L2(R) + 2

(∫
I

|∂xς|dz
)2

,

where I = [x, x+ 1].
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Proof. It follows by the fundamental theorem that

|ς(x)| ≤ |ς(y)|+
∫ y

x

|∂xς|dz ≤ |ς(y)|+
∫
I

|∂xς|dz,

for any y ∈ I. Squaring both sides and integrating over R in y yields:

|ς(x)|2 ≤ 2‖ς‖2
L2(R) + 2

(∫
I

|∂xς|dz
)2

.

2.4.3 Bounds on the Mass Fraction

All that remains in order to conclude the proof of the existence half of

the theorem is to establish the bounds on µ. However, this is now an easy

consequence of the bounds we have already established above.

Lemma 2.4.9. Given proposition 2.4.2 and 2.4.7 there exist constants such

that,

‖µx‖L∞(0,T ;L∞(R)) ≤ C and ‖∂tµ‖L∞(0,T ;L2(R)) ≤ C.

Proof. We have from lemma 2.4.5 that

‖ρ−1/2∂xµ‖L∞(0,T ;L∞(R)) ≤ C, (2.53)

and so thanks to the uniform bounds on the density from proposition 4.2, this

yields that ∂xµ is in L∞(0, T ;L∞(R)). Now using (2.44) and the above with

(2.3) we find that ∂tµ is in L∞(0, T ;L2(R)).

2.4.4 Proof of the Existence Half of the Theorem

We now apply the preceeding results in §4 in order to prove the existence

theorem.
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Proof of existence half of the theorem. In view of the a priori estimates that

we have now, the only difficulty that remains is to deal with the fact that ν

is not uniformly bounded by below with respect to ρ. This is needed to apply

the short-time existence result of Solonnikov (proposition 4.2.2). To solve this

problem let us fix any T > 0. Then we define an approximation to ν by,

ν̃(y, z) =

{
ν(y, z) if y ≥ %(T )

2

ν
(
%(T )

2
, z
)

if y ≤ %(T )

2

where %(T ) is defined by proposition 4.4.2. Now let (ρ̃, ũ, µ̃) be a strong solu-

tion of (2.1)-(2.3), where ν is replaced by ν̃; giving

∂tρ̃+ ∂x(ρ̃ũ) = 0,

∂t(ρ̃ũ) + ∂x(ρ̃ũ
2) + ∂xp(ρ̃,µ̃)− ∂x(ν̃(ρ̃, µ̃)∂xũ) = 0,

∂t(ρ̃µ̃) + ∂x(ρ̃ũµ̃) = 0.

By (2.5), (2.8), and (2.11) the approximate function ν̃ is bounded from below,

thus proposition 4.2.2 provides that such a solution exists for all t ∈ (0, Ts).

Consider T̃ ≤ T the biggest time such that

inf
x

(ρ̃(t, ·)) ≥
%(T )

2
.

Then on [0, T̃ ], it follows that ν̃ = ν. Now assume that T̃ < T . From

proposition 4.4.2, on [0, T̃ ]

inf
x
ρ̃(t, ·) ≥ %(T ) >

%(T )

2
,

which contradicts the fact that T̃ < T . Hence we have constructed the solution

of (2.1)-(2.3) up to time T , and this for any T > 0, which completes the

proof.
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2.5 Establishing the Uniqueness Theorem

Now we address the uniqueness half of the theorem. Thanks to Ref. [34]

this result follows fairly directly.

Theorem 2.5.1. ( The uniqueness half of theorem 2.1) Let ψ′′(p), ∂ρρp(ρ, µ)

and ∂ρµp(ρ, µ) be locally bounded. Then a solution of (2.1)-(2.3) verifying

proposition 2.4.2, proposition 2.4.7, and lemma 2.4.9 is uniquely determined.

Proof. Let (ρ1, u1, µ1) and (ρ2, u2, µ2) be two solutions to the system (2.1)-

(2.3), and define χ = µ1−µ2, τ = ρ1−ρ2, ζ = u1−u2, p` = p(ρ1, µ1)−p(ρ2, µ2)

and ν` = ν(ρ1, µ1)− ν(ρ2, µ2) such that from (2.1)-(2.3) we can write:

∂tτ + ∂x(ρ1u1 − ρ2u2) = 0,

ρ1∂tu1 − ρ2∂tu2 + ρ1u1∂xu1 − ρ2u2∂xu2 + ∂xp` − ∂x(ν1∂xu1 − ν2∂xu2) = 0,

∂tχ+ (u1∂xµ1 − u2∂xµ2) = 0.

By rearranging we get

∂tτ + ∂x(τu1 + ρ2ζ) = 0, (2.54)

ρ1(∂tζ + u1∂xζ + ζ∂xu2) + τ(∂tu2 + u2∂xu2)

+ ∂xp` − ∂x(ν`∂xu1)− ∂x(ν2∂xζ) = 0, (2.55)

∂tχ+ ζ∂xµ1 + u2∂xχ = 0. (2.56)

First let us consider equation (2.54). Here we multiply through by τ

and integrate in x. To begin with, note that the first term on the left satisfies∫
R
τ∂tτdx =

1

2

∫
R
∂tτ

2dx. (2.57)
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For the (τu1)x term we use proposition 2.4.7 as applied in (2.52) by setting

u = u1 to see that∣∣∣ ∫
R
τ(τu1)xdx

∣∣∣ ≤ 1

2
‖τ 2∂xu1‖L1(R) ≤

1

2
‖τ‖2

L2(R)‖∂xu1‖L∞(R) ≤ B1(t)‖τ‖2
L2(R).

(2.58)

For the (ρ2ζ)x term notice that we can write:∣∣∣ ∫
R
τ∂x(ρ2ζ)dx

∣∣∣ ≤ ∣∣∣ ∫
R
τρ2∂xζdx

∣∣∣+
∣∣∣ ∫

R
τζ∂xρ2dx

∣∣∣.
Applying proposition 2.4.2 and Cauchy’s inequality to the first term on the

right provides,∣∣∣ ∫
R
τρ2∂xζdx

∣∣∣ ≤ C

∫
R
|τ∂xζ|dx ≤ C‖τ‖L2(R)‖ζx‖L2(R)

≤ C2(4ε1)−1‖τ‖2
L2(R) + ε1‖ζx‖2

L2(R).

(2.59)

For the second term on the right Hölder’s inequality with the corollary implies

that∣∣∣ ∫
R
τζ∂xρ2dx

∣∣∣ ≤ (∫
R
|τ |2dx

)1/2(∫
R
|∂xρ2|2dx

)1/2(
ess sup

R
|ζ|
)

≤ C

(∫
R
|τ |2dx

)1/2(
ess sup

R
|ζ|
)
.

(2.60)

Now we utilize lemma 2.4.8 by setting ς = ζ. Since |ζ| ≤ |u1|+ |u2| the bounds

in (2.44) provide that ζ ∈ L∞(0, T ;L2(R)). Furthermore, proposition 2.4.7

gives that since |ζx|2 ≤ 2|∂xu1|2 + 2|∂xu2|2 we have ζx ∈ L2(0, T ;L2(R)). Thus

noticing that ‖ζ‖L1(I) ≤ ‖ζ‖L2(I) since |I| = 1 from lemma 2.4.8, it follows

that

|ζ(x)| ≤ ‖ζ‖L2(R) + ‖ζx‖L1(I) ≤ ‖ζ‖L2(R) + ‖ζx‖L2(R),

allowing us to deduce,

‖ζ‖L∞(R) ≤ ‖ζ‖L2(R) + ‖∂xζ‖L2(R).
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By Cauchy’s inequality this finally yields

C‖τ‖L2(R)‖ζ‖L∞(R)

≤ ε2‖ζx‖2
L2(R) +

{
C2

4ε2
+
C

2

}(
‖τ‖2

L2(R) + ‖ζ‖2
L2(R)

)
.

(2.61)

Thus combining (2.57), (2.58) and (2.61) allows us to write for (2.54):

1

2

d

dt

∫
R
τ 2dx−

{
ε1 + ε2

}∫
R
(∂xζ)2dx

≤
{
B1(t) +

C2

4ε1
+
C2

4ε2
+
C

2

}(
‖τ‖2

L2(R) + ‖ζ‖2
L2(R)

)
.

(2.62)

Next we want to multiply (2.55) through by ζ and integrate in R. For

the first two terms in the first part of (2.55) we find:∫
R
ρ1ζ(∂tζ + u1∂xζ)dx =

∫
R

ρ1

2
(∂tζ

2 + u1∂xζ
2)dx

=
1

2

d

dt

∫
R
ρ1ζ

2dx−
∫

R

ζ2

2
(∂tρ1 + ∂x(ρ1u1))dx

=
1

2

d

dt

∫
R
ρ1ζ

2dx.

(2.63)

For the ρ1ζ∂xu2 term in (2.55) we use the same calculation given in (2.58)

which is formulated in (2.52) by setting u = u2 such that,∣∣∣ ∫
R
ρ1ζ

2∂xu2dx
∣∣∣ ≤ C‖ζ‖2

L2(R)‖∂xu2‖L∞(R) ≤ B2(t)‖ζ‖2
L2(R). (2.64)

Now, for the τ(∂tu2 + u2∂xu2) part of (2.55) we utilize a calculation similar to

that employed for the term in (2.60). Here we simply substitute the ∂xρ2 term

from (2.60) with ω = ∂tu2 + u2∂xu2, noting that proposition 2.4.7 along with

(2.52) assure that ω is bounded in L2(0, T ;L2(R)). Thus we obtain

B(t)‖τ‖L2(R)‖ζ‖L∞(R) ≤ ε3‖ζx‖2
L2(R) + ε−1

3 B3(t)
(
‖τ‖2

L2(R) + ‖ζ‖2
L2(R)

)
,

(2.65)
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where here B3(t) = ε3B(t)/2 +B(t)2/4.

Next consider the pressure term p` in (2.55). Here set∫
R
ζ∂xp`dx = −

∫
R

{
p(ρ1, µ1)− p(ρ2, µ2)

}
∂xζdx.

The uniform bounds on ρ along with (2.11) and (2.12) give that |∂ρp(ρ, µ)| ≤ C

and |∂µp(ρ, µ)| ≤ C, and so

|p(ρ2, µ2)− p(ρ1, µ1)| ≤ C(|τ |+ |χ|).

Thus ∫
R
ζ∂xp`dx ≤ C

∫
R
(|τ |+ |χ|)∂xζdx,

which gives by Cauchy’s inequality,∫
R
ζ∂xp`dx ≤ 2ε4

∫
R
(∂xζ)2dx+

C2

4ε4

∫
R
|τ |2dx+

C2

4ε4

∫
R
|χ|2dx. (2.66)

Finally we consider the viscosity terms in (2.55). For the (ν`∂xu1)x

term

−
∫

R
ζ∂x(ν`∂xu1)dx =

∫
R
ν`∂xζ∂xu1dx.

Since ψ′′(p), ∂ρρp(ρ, µ) and ∂ρµp(ρ, µ) are locally bounded, then from (2.5) we

have ν` ≤ C(|τ |+ |χ|), which gives

−
∫

R
ζ∂x(ν`∂xu1)dx ≤ C

∫
R
(|τ |+ |χ|)∂xζ∂xu1dx,

and leads to,

−
∫

R
ζ(ν`∂xu1)xdx ≤ 2ε5

∫
R
ζ2
xdx+

C2

4ε5

∫
R
|∂xu1|2τ 2dx+

C2

4ε5

∫
R
|∂xu1|2χ2dx.

Next we again use the fact that ∂xu1 is bounded in L2(0, T ;L∞(R)) by (2.52).

It subsequently follows that,

−‖ζ(ν`∂xu1)x‖L1(R) ≤ 2ε5‖∂xζ‖2
L2(R) +

B4(t)

2ε5
(‖τ‖2

L2(R) + ‖χ‖2
L2(R)). (2.67)
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For the (ν2ζx)x term we simply multiply through by ζ and integrate, yielding

−
∫

R
ζ∂x(ν2∂xζ)dx =

∫
R
ν2(∂xζ)2dx ≥ C

∫
R
(∂xζ)2dx (2.68)

when using that ν2 ≥ C.

Hence combining (2.63)-(2.68) we have:

1

2

d

dt

∫
R
ρ1ζ

2dx+ (C − ε3 − 2ε4 − 2ε5)

∫
R
|∂xζ|2dx

≤
{
B2(t) +

B3(t)

ε3
+
B4(t)

4ε5
+
C2

4ε4

}(
‖τ‖2

L2(R) + ‖ζ‖2
L2(R)

)
.

(2.69)

All that is left is to find a compatible form of equation (2.56). Here we

multiply through by χ and integrate in R such that the first term gives∫
R
χ∂tχdx =

1

2

d

dt

∫
R
χ2dx. (2.70)

The second term in (2.56) is treated in a similar way as (2.60) and (2.65),

where here we have∣∣∣ ∫
R
χζ∂xµ1dx

∣∣∣ ≤ (∫
R
|χ|2dx

)1/2(∫
R
|ζ|2dx

)1/2(
ess sup

R
|∂xµ1|

)
≤ C

(∫
R
|χ|2dx

)1/2(∫
R
|ζ|2
)1/2

.

(2.71)

Thus we obtain,

C‖χ‖L2(R)‖ζ‖L2(R) ≤
C

2

(
‖χ‖2

L2(R) + ‖ζ‖2
L2(R)

)
. (2.72)

For the last term in (2.56) we use (2.52) with u = u2 to see∣∣∣ ∫
R
χu2∂xχdx

∣∣∣ ≤ C‖χ‖2
L2(R)‖∂xu2‖L∞(R) ≤ B5(t)‖χ‖2

L2(R). (2.73)

Thus putting (2.70), (2.72) and (2.73) together yields,

1

2

d

dt

∫
R
χ2dx ≤

{
C/2 +B5(t)

}(
‖χ‖2

L2(R) + ‖ζ‖2
L2(R)

)
. (2.74)
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Finally, combining (2.62), (2.68) and (2.74) along with defining,

C = C − ε1 + ε2+ε3 + 2ε4 + 2ε5,

B1(t) = B1(t) + C2(4ε1)−1 + C2(4ε2)−1 + C/2,

B2(t) = B2(t) +B3(t)(ε3)−1 + C2(4ε4)−1 +B4(2ε5)−1,

B3(t) = B5(t) + C/2,

A (t) = B1(t)+B2(t) + B3(t)

X (t) = (τ 2+ρ1ζ
2 + χ2),

yields:

1

2

d

dt

∫
R

X (t)dx+ C

∫
R
|∂xζ|2dx ≤ A (t)

(
‖χ‖2

L2(R) + ‖ζ‖2
L2(R) + ‖τ‖2

L2(R)

)
.

Since proposition 2.4.2, proposition 2.4.7 and lemma 2.4.9 confirm by above

that A (t) ∈ L2(0, T ), and as C is positive, then at t = 0 since∫
R

X (t0)dx =

∫
R
τ 2

0 + ρ1|t=oζ
2
0 + χ2

0dx = 0,

then Gronwall’s lemma gives that
∫

R X (t)dx ≡ 0 over [0, T ], which establishes

that τ , ζ, and χ are each zero.
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Chapter 3

Numerical Solutions to Generalized

Compressible Multicomponent Flows

3.1 Introduction

Much work has been done in the study of the numerics of multicompo-

nent flows. An example of an early yet comprehensive study of computational

multiphase mechanics was given by Harlow and Amsden in Ref. [96], where

they developed an implicit finite differencing technique for extremely general-

ized multicomponent settings of both compressible and incompressible flows,

including phenomena ranging from bubble formation and cavitation effects, to

the formation of atmospheric precipitation and mixing jets. Subsequent and

related work in multicomponent flows followed with, for example, the work

of J. Dukowicz in Ref. [97] for particle-fluid models of incompressible sprays,

an approach extended by G. Faeth in [98, 99] to combustion flows and by

D. Youngs in Ref. [100] to interfacial turbulent type flows.

Owing to some of these pioneering works, recent work has demonstrated

a resurgence of interest in multicomponent flows, approaches and numerical

techniques [139–158]. The importance of fluid-flows comprised of more than

one phase, specie or component is represented by a vast array of applications

that range across a number of fields. For example, multicomponent flows are

essential for any flow demonstrating even rudimentary chemistry; hence, for all

(nontrivial) “chemical fluids” [45, 46]. Likewise biological flows often require
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phase separations, in order to resolve membrane dynamics and interfacial be-

haviors in cells and cell organelles [2] and medical applications desire estimates

in local componentwise variations in blood serosity, which effect the viscosity

and flow parameters involved with pulsatile hemodynamics [76, 159]. Likewise

we find numerous examples of multicomponent flow applications in the atmo-

spheric [88, 89] and geophysical [90, 91] sciences; as well as in acoustics [24, 94]

and astrophysics [21, 95], just to mention a few.

Here we present a new multicomponent numerical scheme based on

a mathematically well-posed [39] compressible barotropic system with func-

tional viscosity depending on both the density ρ and the mass fraction µi of

each fluid component. It is well-known, both experimentally and theoretically,

that viscosity has a functional relationship to the density and specie type (for

examples see the NIST thermophysical properties server or [12]). In addition,

these types of mathematical models (with functional transport coefficients) are

well understood from the point of view of continuum dynamics, having been

extensively studied by Málek, Rajagopal et al. in Ref. [106, 108, 109, 160, 161]

and [107]. It is further seen in Ref. [39] that the analytic model used in this

work a priori satisfies two essential entropy inequalities, much like the shallow

water equations [126], which serve as important tools for numerical analy-

sis and implementation. Mathematically, the existence and regularity of the

strong solutions owes enormously to Ref. [35, 48, 60, 65, 66, 68, 70, 82, 114, 116,

119, 122, 130, 132, 134, 135, 137].

In this Chapter we implement a discontinuous Galerkin (DG) finite el-

ement method, employing piecewise polynomial approximations which do not

enforce or require any type of continuity between the interfaces of “neighbor-

ing” elements. This particular implementation is primarily motivated by the
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works of Cockburn, Shu et al. (see Ref. [162–166]) and Feistauer, Doleǰśı et

al. (see Ref. [105, 167–172]). We implement a generalized formulation that

is designed to accommodate an arbitrary choice of inviscid, viscous, and sup-

plementary numerical fluxes. We use explicit time discretization methods as

described in Ref. [162], which necessitate a conditional stability requirement;

namely the time discretization must satisfy the CFL condition. Up to the

CFL stability condition we find our method to be very robust and to deal well

with arbitrary numbers of fluid components of arbitrary type — up to the

additional assumption that a barotropic pressure law is applicable. On the

domain boundary data we again strive to generalize our setting. We show two

different implementations of boundary conditions, which demonstrate different

solvency with respect to interior solutions, initial conditions and phenomenol-

gically relevant contexts. In both cases arbitrary Robin type BCs may be

set.

In §3.2 we give the general governing system of equations, the math-

ematical regularity, and the discrete formulation of the problem. In §3.3 we

demonstrate a general way of dealing with boundary conditions by way of

the method of characteristics, or alternatively, by way of setting arbitrary L∞

data on the boundary. We provide an explicit formulation of the characteristic

technique and show the generalized behavior of these types of “characteristic”

boundary conditions, while subsequently discussing a number of alternative

approaches. In §3.4 we implement two test cases with exact solutions, which

are restrictions placed on the multifluid barotropic governing equations, and

show that they are exact up to the possible exception of the boundary data.

In §3.5 we show an example of a bifluid solution using the forward Euler

method. We then show the difference between boundary conditions by way
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of weak entropy solutions versus that of “characteristic” boundary solutions.

The next section, §3.6, is used to generalize the setting to n-fluid components

and k-th order Runge-Kutta schemes, where the example of an n = 5 fluid

is shown explicitly. Then in §3.7 we analyse the energy consistency of the

modelisation with respect to two entropy inequalities derived in Ref. [39]; one

the classical entropy S and the second a closely related entropy S̃ discovered

by Bresch and Desjardins (see Ref. [18, 37, 61, 126, 127, 135]), where it turns

out that the numerical scheme from §3.2 can be arbitrarily scaled (by means

of the CFL condition) to satisfy both energy relations. Finally in §3.8 we

extend the results to include Fick’s diffusion law, where we inspect the exotic

physical setting of a pressure wave traveling through a gas comprised partially

of polyynes, and discuss some applications.

3.2 The Generalized n-fluid

We consider a compressible barotropic n-fluid system governed by the

following system of equations:

∂tρ+ ∂x(ρu) = 0, (3.1)

∂t(ρu) + ∂x(ρu
2) + ∂xp− ∂x(ν∂xu) = 0, (3.2)

∂t(ρµi) + ∂x(ρuµi) = 0, (3.3)

with initial conditions,

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, (ρµi)|t=0 = ρi,0.

The multicomponent barotropic pressure p = p(ρµ1, . . . , ρµn) is chosen to

satisfy,

p =
n∑
i=1

(ρµi)
γi , (3.4)
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where
∑n

i=1 µi = 1. The mass conservation (3.1), momentum conservation

(3.2), species conservation (3.3), and barotropic equation of state (3.4) describe

the flow of a barotropic compressible viscous fluid defined for (t, x) ∈ R+×R.

Here the density is given as ρ, the velocity as u, the momentum by m, and the

mass fraction of each component (chemical specie, phase element, etc.) of the

fluid is given by µi, respectively, where γi > 1 corresponds to the emperically

determined adiabatic exponent uniquely characterizing each of the n species.

Furthermore, adopting the notation throughout this chapter that ρi = ρµi,

the form of the viscosity functional ν = ν(ρ1, . . . , ρn) is fixed to satisfy

ν = ψ′(p)
n∑
i=1

ρi∂ρip, (3.5)

for ψ′(p) = Cp−α given α ∈ (0, 1) and C > 0 as emperically determined

constants (see Ref. [106, 108, 109, 160]) and §7).

The mathematical well-posedness of such a system is given by the fol-

lowing theorem, which was proven in Ref. [39]:

Theorem 3.2.1. Given (3.4) and (3.5) satisfying the conditions in Ref. [39]

with initial data (ρ0, u0, µ0) satisfying

0 < %(0) ≤ρ0 ≤ %(0) <∞,

ρ0 ∈ Ḣ1(R), u0 ∈H1(R), µ0 ∈ H1(R),∫
Ω

E (ρ0,µ0)dx < +∞,

|∂xµ0| ≤ Cρ0,

with %(0), %(0) positive constants and E0 the internal energy as in Ref. [39],

there exists a global strong solution to (3.1)-(3.3) on R+ × R such that for
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every T > 0 we have

ρ ∈ L∞(0, T ; Ḣ1(R)), ∂tρ ∈ L2((0, T )× R),

u ∈ L∞(0, T ;H1(R)) ∩ L2(0, T ;H2(R)), ∂tu ∈ L2((0, T )× R),

µx ∈ L∞(0, T ;L∞(R)), ∂tµ ∈ L∞(0, T ;L2(R)).

Furthermore, there exist positive constants %(T ) and %(T ) depending only on

T , such that

0 < %(T ) ≤ ρ(t, x) ≤ %(T ) <∞, ∀(t, x) ∈ (0, T )× R.

Additionally, when ψ′′(p), ∂ρρp(ρ, µ), and ∂ρµp(ρ, µ) are each locally bounded

then this solution is unique.

Using this result, notice that for an n-fluid written with respect to

conservation variables, the state vector U can be written as the transpose of

the 1×m row vector

U = (ρ, ρu, ρ1, . . . ρn)T ,

where m = n+ 2 characterizes the degrees of freedom of our chosen system of

equations. Note however that we make this choice of a state vector for the sake

of flexibility of representation and implementation (see for example §8), where

the strict degrees of freedom of the system (3.1)-(3.3), due to the multiplicity

of (3.1) in the conservation form of (3.3), is just n+1. Nevertheless, consistent

with our choice of an (n + 2) × 1 state vector U , we obtain that the m × 1

inviscid flux vector f satisfies

f(U) = (ρu, ρu2 + p, ρ1u, . . . , ρnu)T ,

while the m× 1 viscous flux g is given by

g(U ,Ux) = (0, νux, 0, . . . , 0)T ,
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such that in this notation (3.1)-(3.3) can be expressed as

U t + fx = gx, (3.6)

where the notation (·)ι corresponds to component-wise derivations with respect

to the variable ι.

The Jacobian matrix of the inviscid flux JUf(U) = Γ(U) can be writ-

ten as the m×m matrix:

Γ(U) =


0 1 0 · · · 0
−u2 2u ∂ρ1p · · · ∂ρnp
−uµ1 µ1

...
... uIn

−uµn µn

 , (3.7)

where In is the n× n identity matrix. An important feature of the barotropic

pressure law (3.4) is that it is not a homogeneous function in ρi, and thus the

Jacobian Γ is not formulated to satisfy ΓU = f . This contrasts, for example,

with the compressible Navier-Stokes equations when using the monofluid form

of the ideal gas law p = Rρϑ (see Ref. [105, 173]). It should be noted that some

numerical fluxes and schemes are designed or derived by specifically exploiting

this homogeneity with respect to the Jacobian matrix of the flux function (for

example, see the Vijayasundaram flux as used in Ref. [105, 167]). Nevertheless,

our numerical fluxes will be defined independently of the homogeneity property

of the corresponding map, where Γ simply satisfies fx = ΓUx.

For the viscous flux g we define the m×m matrix,

K (U) = ν

 0 0 0
−u
ρ

1
ρ

0

0 0 0

 , (3.8)

56



where here and below the 0’s are zero matrices of the appropriate sizes. Clearly

then (3.6) satisfies

U t + ΓUx − (K Ux)x = 0. (3.9)

Finally, in order to posit a consistent system of equations, we introduce the

function Σ such that we are concerned with solving the coupled system:

U t + ΓUx − (K Σ)x = 0

Σ−Ux = 0.
(3.10)

Consider the following discretization scheme motivated by Ref. [105,

174] (and illustrated in the one dimensional case in Figure 3.1). Take an open

Ω ⊂ R with boundary ∂Ω = Γ, given T > 0 such that QT = ((0, T ) × Ω) for

Ω̂ the closure of Ω. Let Th denote the partition of the closure Ω, such that

taking Ω̂ = [a, b] provides the partition

a = x0 < x1 . . . < xne = b

comprised of elements Gi = (xi−1, xi) ∈ Th such that Th = {G1,G2, . . . ,Gne}.

The mesh diameter h is given by h = supG∈Th
(xi − xi−1) such that a discrete

approximation to Ω is given by the set Ωh = ∪iGi \ {a, b}. Each element of

the partition has a boundary set given by ∂Gi = {xi−1, xi}, where elements

sharing a boundary point ∂Gi ∩ ∂Gj 6= ∅ are characterized as neighbors and

generate the set Kij = ∂Gi ∩ ∂Gj of interfaces between neighboring elements.

The boundary ∂Ω = {a, b} is characterized in the mesh as ∂Ω = {x0, xne}

and indexed by elements Bj ∈ ∂Ω such that Ω̂ = Th ∪ Kij ∪ ∂Ω. Now for

I ⊂ Z+ = {1, 2, . . .} define the indexing set r(i) = {j ∈ I : Gj is a neighbor of

Gi}, and for IB ⊂ Z− = {−1,−2, . . .} define s(i) = {j ∈ IB : Gi contains Bj}.

Then for Si = r(i)∪ s(i), we have ∂Gi = ∪j∈S(i)Kij and ∂Gi ∩ ∂Ω = ∪j∈s(i)Kij.
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Figure 3.1: The discretization of Ω, distinguishing nodes, elements, and neigh-
bors with the boundary ∂Ω = {a, b}.

We define the broken Sobolev space over the partition Th as

W k,2(Ωh,Th) = {v : v|Gi ∈ W k,2(Gi) ∀Gi ∈ Th}.

Further, approximate solutions to (3.1)-(3.3) will exist in the space of discon-

tinuous piecewise polynomial functions over Ω restricted to Th, given as

Sdh(Ωh,Th) = {v : v|Gi ∈Pd(Gi) ∀Gi ∈ Th}

for Pd(Gi) the space of degree ≤ d polynomials on Gi.

Choosing a degree d set of polynomial basis functions N` ∈Pd(Gi) for

` = 0, . . . , d we can denote the state vector at the time t over Ωh, by

Uh(t, x) =
d∑
`=0

U i
`(t

n)N i
`(x), ∀x ∈ Gi,

where the N i
` ’s are the finite element shape functions, and the U i

`’s correspond

to the nodal unknowns. Likewise the test functions ϕh,ϑh ∈ W 2,2(Ω,Th) are

characterized by

ϕh(x) =
d∑
`=0

ϕi`N
i
`(x) and ϑh(x) =

d∑
`=0

ϑi`N
i
`(x) ∀x ∈ Gi,

for ϕi` and ϑi` the nodal values of the test function in each Gi.
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Letting U be a classical solution to (3.10) and multiplying through by

test functions ϕh and ϑh and integrating elementwise by parts yields:

d

dt

∫
Gi

U ·ϕhdx+

∫
Gi

(f ·ϕh)xdx−
∫

Gi

f ·ϕhxdx−
∫

Gi

gx ·ϕhdx = 0,∫
Gi

Σ · ϑhdx−
∫

Gi

(U · ϑh)xdx+

∫
Gi

U · ϑhxdx = 0.

(3.11)

Let ϕ|Kij
and ϕ|Kji

denote the values of ϕ on Kij considered from the

interior and the exterior of Gi, respectivel. It should be noted that for Kij ∈ Γ,

the restricted functions ϕh|Kji are determined up to a choice of boundary

condition, which we will discuss in more detail in §3. Then we approximate

the first term of (3.11) by,

d

dt

∫
Gi

Uh ·ϕhdx ≈
d

dt

∫
Gi

U ·ϕhdx, (3.12)

the second term in (3.11) by the inviscid numerical flux Φi,

Φ̃i(Uh|Kij
,Uh|Kji

,ϕh) =
∑
j∈S(i)

∫
Kij

Φ(Uh|Kij
,Uh|Kji

, nij) ·ϕh|Kij
dK

≈
∫

Kij

fh · nijϕh|Kij
dK,

(3.13)

for nij the unit outward pointing normal; and the third term on the left in

(3.11) by,

Θi(Uh,ϕh) =

∫
Gi

fh · (ϕh)xdx ≈ −
∫

Gi

f · (ϕh)xdx. (3.14)

The viscous term in (3.11) integrates by parts to give:∫
Gi

gx ·ϕhdx =

∫
Gi

(g ·ϕh)xdx−
∫

Gi

g ·ϕhxdx

=

∫
Gi

(K Σ ·ϕh)xdx−
∫

Gi

K Σ ·ϕhxdx.
(3.15)
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For the first term on the right in (3.15) we approximate using a generalized

viscous flux Ĝ (see Ref. [175] for a review of choices in the DG framework).

We write here for the general viscous flux

Gi(Σh,Uh,ϕh) =

∫
Kij

Ĝ (Σh|Kij
,Σh|Kji

,Uh|Kij
,Uh|Kji

, nij) ·ϕh|Kij
dK

≈
∫

Kij

gh · nijϕh|Kij
dK,

(3.16)

while the second term is approximated by:

Ni(Σh,Uh,ϕh) =

∫
Gi

gh · (ϕh)xdx ≈
∫

Gi

g ·ϕhxdx. (3.17)

Finally for the second equation in (3.10) we expand it such that the

approximate solution satisfies:

Qi(Û ,Σh,Uh,ϑh,ϑ
h
x) =

∫
Gi

Σh · ϑhdx+

∫
Gi

Uh · ϑhxdx

−
∑
j∈S(i)

∫
Kij

Û(Uh|Kij
,Uh|Kji

,ϑh|Kij
)dK,

(3.18)

where,

Ui(Uh,ϑh) =
∑
j∈S(i)

∫
Kij

Û(Uh|Kij
,Uh|Kji

,ϑh|Kij
)dK

≈
∫

Kij

U · nijϑh|Kij
dK

given that Û is the generalized flux term associated with the discontinuous

Galerkin method determined up to a congeries of options (please see Ref. [175]

for a unified analysis), and using the approximate relations:∫
Gi

Σh · ϑhdx ≈
∫

Gi

Σ · ϑhdx, and

∫
Gi

Uh · ϑhxdx ≈
∫

Gi

U · ϑhxdx.
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Combining (3.13), (3.14), (3.16), (3.17) and (3.18) and setting,

X =
∑

Gi∈Th

Xi,

given the inner product

(anh, bh)ΩG
=
∑

Gi∈Th

∫
Gi

anh · bhdx,

we define an approximate solution to (3.11) as functions Uh and Σh for all

t ∈ (0, T ) satisfying:

1) Uh ∈ C1([0, T ];Sdh), Σh ∈ Sdh,

2)
d

dt
(Uh,ϕh)ΩG

+ Φ̃(Uh,ϕh)−Θ(Uh,ϕh)

− G (Σh,Uh,ϕh) + N (Σh,Uh,ϕh) = 0,

3) Q(Û ,Σh,Uh,ϑh,ϑ
h
x) = 0,

4) Uh(0) = U 0.

(3.19)

We find below that up to a (possibly arbitrary) choice of boundary data, these

solutions are quite well-behaved, extremely robust for arbitrary choice of n

fluids (we show n = 1, 2 and 5 here, and have tested up to n = 11 elsewhere)

and readily extended to more complicated systems (e.g. §8).

3.3 Towards a Generalized Boundary Treatment

Specifying arbitrary boundary data with respect to our approximate

solution (3.19) is a delicate issue which requires a nuanced understanding of

barotropic solutions and the mathematical techniques used to pose them. That

is, we wish to determine the nature of an arbitrary boundary state U |∂Ω in a

way which is well-posed with respect to the system (3.1)-(3.3); which is to say,

in such a way that the uniqueness of the solution is maintained.
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However, practically speaking, recovering boundary data of an arbi-

trary nature on ∂Ω poses well-established difficulties with respect to the a

priori estimates established in Ref. [39], which serve as the cornerstone to the

existence and uniqueness result stated in Theorem 2.1. That is, recovering the

a priori estimates on the solution is reduced, in the first step, to recovering

two entropy inequlities (see §3.7 for explicit forms) which serve as positive

definite functionals over (0, T ) × Ω. However, when explicit boundary data

is given, these inequalities acquire the addition of the following two unsigned

boundary components, respectively (see Ref. [39] for the explicit calculation):∫
Ω

(ρu3)xdx and

∫
Ω

(ρu(u+ ρ−1ψx)
2)xdx,

having the consequence of rendering a formulation which spans any type of

boundary data difficult to establish. Instead we offer a number of pragmatic

approximate approaches that generalize the solution up to some important

restrictions, and then discuss some alternative approaches that are aimed at

certain specialized types of settings. First we review some known results.

It has been shown by Strikwerda [176], Gustaf’sson and Sundstrom

[177] that incompletely parabolic systems, such as the shallow water equa-

tions and the full Navier-Stokes equations, may be well-posed with respect

to a broad set of initial-boundary data. These works additionally demon-

strate the appropriate number of boundary conditions expected on incom-

pletely parabolic systems, which differ from completely hyperbolic systems

such as Euler’s equations. As the barotropic system (3.1)-(3.2) maintains

a formal equivalence to the viscous shallow water equations (see for exam-

ple Ref. [36, 126]), we might expect (3.1)-(3.2) to behave as an incompletely

parabolic system due to Ref. [177]. However, the dependencies of the p and
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ν on the mass fractions make showing this nontrivial and requires a careful

analysis of either incompletely parabolic systems [176], or hyperbolic-parabolic

systems [178].

The implementation of both incompletely parabolic and hyperbolic sys-

tems often rely upon the so-called “characteristic treatment.” In these systems

we use characteristic directions to extrapolate values of the system variables

on the boundary, while the others become constrained by a set of characteristic

relations (see Ref. [179] and Ref. [180] for the hyperbolic regime). These types

of treatments have been extended to treat the full Navier-Stokes equations

[181, 182], the viscous shallow water equations [183], and multifluid systems

[184].

We want to consider what we will refer to here and below as “char-

acteristic” type boundary solutions, which we view as a reduced hyperbolic

system (as presented in Ref. [105, 177]). That is, let q = U be a characteristic

variable such that upon linearizing (3.6) on the boundary we arrive with:

∂q

∂t
+ Γ(qnh)

∂q

∂x
− gx(qnh,xqnh) = 0. (3.20)

The initial conditions are given by

qh(0, x1) = qnh, for x ∈ (−∞, 0), (3.21)

while the boundary data satisfies

qh(t, 0) = qnb , for t ∈ (0,∞). (3.22)

Since Γ is diagonalizable we have that Γhcj = ςjcj, where cj are the eigen-

vectors of Γ associated to eigenvalues ςj (see §3.4 for an example), which are

used to formulate the solution in the form

q(x1, t) =
m∑
j=1

λj(x1, t)cj, (3.23)
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where the initial and boundary data, respectively, satisfy

qnh =
m∑
j=1

αjcj, and qnb =
m∑
j=1

βjcj. (3.24)

Now, the diffusion term gx is chosen with respect to the viscous ansatz

ζj, such that the following relation holds:

νunxx$jcj = ζjcj − νnxunx$jcj on ∂Ω, (3.25)

where e2 =
∑

j $jcj with e2 = (0, 1, 0, . . . , 0). This notation should not be

misleading here, where all we have written is the viscous flux in (3.16) in the

characteristic basis restricted to the boundary element.

It then follows (from Ref. [105] chapter 3, for example) that (3.20) can

be written as j initial-boundary value scalar problems:

∂λj
∂t

+ ςj
∂λj
∂x
− ζj = 0 in (0,∞)× (−∞, 0),

λj(x1, 0) = αj, for x1 ∈ (−∞, 0),

λj(0, t) = βj for t ∈ (0,∞).

(3.26)

The scalar problems (3.26) may be solved via the method of characteristics,

from which we obtain the solution,

λj(x1, t) =

{
αj(t− x1/ςj) + tζj, for t− x1/ςj ≥ 0,

βj(x1 − tςj) + x1ζj/ςj, for x1 − tςj > 0,
(3.27)

which provides an explicit form to (3.23). Plugging this state vector q back into

the viscous and inviscid fluxes we are able to prescribe consistent boundary

conditions. Here, by “consistent” we mean in the sense of the solution being

linearized around the current interior state values such that perturbations

around those values break up into small amplitude waves in the characteristic
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Table 3.1: Choice of boundary conditions

Boundary type Restrictions Free Fixed

Subsonic inlet β2, . . . , βm, α1

u · n > −c u · n < 0 µ1 + · · ·+ µn = 1, ρ > 0

Supersonic inlet and the appropriate β1, . . . , βm, none

u · n ≤ −c u · n < 0 supplimentary

Subsonic outlet conditions associated β2 α1, α3,

u · n < c u · n > 0 with a choice of . . . , αm

Supersonic outlet boundary data, none α1,

u · n ≥ c u · n > 0 including: . . . , αm

Membrane wall ρ, u, µi, p, ν,m, ρµi, etc. β2 α1, α3,

u · n = 0 u · n = 0 · · · , αm

directions provided by the eigenbasis. The amplitudes of the incoming waves

(negative eigendirections) form the physical boundary conditions and can be

chosen, while the outgoing waves propagate to form the numerical boundary

conditions, which are determined from the interior state.

It turns out that for (3.1)-(3.5) we can reduce this method to that of

the essential choices listed in Table 3.1. This corresponds with what we know

of hyperbolic systems as shown in Ref. [105] and Ref. [179], with respect to

the number of free and fixed conditions on the boundaries. That is, the αj’s

are determined below the characteristic line t = x1/ςj, which has the effect of

reducing the degrees of freedom on the inlet and outlet states for eigenvalues

which satisfy ςj ≥ 0; and otherwise the βj’s determined the free states of the

system.
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As an example consider the subsonic outlet condition u · n < c. Then

at x = 0 (see appendix A for the full formulation) we solve for the αj’s and

βj’s via,

(α1 − tζ1, β2, α3 − tζ3, · · · , αn − tζn)T = V −1U (3.28)

where we show V and its inverse for Γ in appendix A. From this we find that

α1 = ρ/2− tζ1 while α` = tζ` for ` = 3, . . . , n, and consequently solving (3.24)

is immediate. Once the fixed components are determined, all that remains is

characterizing the nature of the desired boundary, and then solving for the

βj’s to fix the desired condition, upon which we simply plug q back into the

appropriately chosen inviscid flux on ∂Ω. For example, we may consider the

dynamic viscosity condition νb = V prescribed on ∂Ω which must satisfy

C
∑n

i=1 γiρ
γi
i = V pα, thus reducing to prescription upon ρ and the µi’s. In

this case it is interesting to note that since ν is a function of the primitive

variables ρ and µi, the form of the viscous ansatz ζj in no way precludes a

choice of ν on ∂Ω.

In addition to employing these “characteristic” solutions, we notice

that the form of (3.20) satisfies the weak entropy solutions of Ref. [162, 185]

and Ref. [186]) for hyperbolic systems, since the ansatz ζ can be viewed as a

source term in this context. These solutions provide even greater flexibility to

our choice of boundary conditions. However, as we show in §3.4, even though

these two types of solutions are both consistent, they do not display equivalent

numerical behavior.

Nevertheless these two choices of boundary data, the “characteristic”

and weak entropy solutions, are not ideal since (3.1)-(3.3) is not a hyperbolic

system, and thus only represent approximate solutions on the boundary up

to a choice of linearization. These restrictions however do not exhaust our
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options for solving (3.1)-(3.3) on the boundary. For example, we may alter-

natively consider the route of positing boundary data by a simple extension

of the results of Zlotnik (see Ref. [187]) to see that the barotropic system is

parabolic in the sense of Petrovskii upon addition of the “quasihydrodynamic”

or “quasigasdynamic” auxilliary function w (see Ref. [22, 188]) on ∂Ω:

w = ω
(
uux + ρ−1∂ρpρx − F

)
on ∂Ω,

for a mass force function F and ω = ν/pS, where S is the Schmidt number.

In the quasihydrodynamic barotropic monofluid treatment, w is viewed as a

stabilization parameter with respect to the usual Navier-Stokes equations, and

ω is weighted in such a manner as to scale like the atomic mean free path, in

the sense of the kinetics theory (see Ref. [27, 188]), where (3.1) becomes

ρt + (ρu)x = (ρw)x.

Using this approximation we easily recover the initial-boundary problem of

Ref. [176] with the additional conditions provided in Proposition 3 of Ref. [187].

That is equations (3.1)-(3.2) now directly satisfy Proposition 3 of Ref. [187]

with the help of Ref. [39], then applying this to (3.1)-(3.3) and using the formu-

lation of Ref. [176] immediately yields the result. Alternatively we may adapt

w to include a parameter dependent on µx in the multicomponent setting,

where

w = ω
(
uux + ρ−1px − F

)
on ∂Ω,

corresponding to a nontrivial species-dependent diffusion velocity (see Ref. [46]

appendix C.2), in which case a careful treatment is required (e.g. set φ′ =

ν∂µp/ρp to find the parabolic component in the advection form ∂tµi+u∂xµi =

w∂xµi to satisfy φ∂xxµi in the leading symbol) to confirm that the system

obeys a Petrovskii parabolicity condition.
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However it should be additionally cautioned that the quasigasdynamic

condition may be strongly nonideal for some physically relevant systems, being

more dissipative than the traditional compressible Navier-Stokes system. On

the other hand, it is interesting to cite that in the so-called quasi-compressible

regime of Ref. [189] a similar dissipative type component emerges in the mass

conservation law. Here the velocity component of the system is decomposed

via extensive phenomenological arguments (see Ref. [189]) into a mass ve-

locity um and the usual volume velocity u, satisfying the constitutive law

u − um = K(log ρ)x with K a phenomenological coefficient, and 3.1 conse-

quently becomes

ρt + (ρu)x = (Kρx)x,

a parabolic equation. However, in this regime again, it is unclear how to deal

with the hyperbolic equation (3.3).

More generally, there exists a large back catalogue of results on com-

pressible barotropic systems with varying initial-boundary data; some of which

utilizing fairly exotic conditions on the boundary. For example, for barotropic

inflow problems we can refer to both Ref. [190] and Ref. [191], where in both

cases results from Ref. [39] are required and additional extensions are needed

to move into the multiphase regime. Likewise solutions exist for free bound-

ary barotropic problems [129], surface tension type boundaries [122], Navier

boundary type conditions [192], and various Dirichlet type problems near vac-

uum states [60, 193, 194]; however, again, all of these results are only strictly

satisfied for monofluidic systems, and thus require subtle analysis in order to

extend them to the full multifluid regime. In many cases however, such as in

Ref. [187], the extension is relatively straightforward.
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3.4 Numerical Test Cases

We inspect two analytic test cases to verify the accuracy of the numer-

ical method presented in §3.2 and §3.3. In both cases we solve a monofluid

restriction of (3.1)-(3.3) from the bifluid case (n = 2), with µ1 = 1 and µ2 = 0

in N = 1 spatial dimension.

Now we can easily define the three vectors U = (ρ, ρu, ρ1, ρ2)T , f(U) =

(ρu, ρu2 + p, ρ1u, ρ2u)T and g(U ,Ux) = (0, νux, 0)T such that (3.1)-(3.3) are

expressed as

U t + fx = gx, (3.29)

whereby setting n = 2 in (3.7) and using (3.8) it then follows that

U t + ΓUx = (K Ux)x. (3.30)

We can thus write a weak form of (3.1)-(3.3) in the same way as (3.11).

To solve the system we must first specify the inviscid flux Φ. We test

for two choices here. First we implement the local Lax-Friedrich’s flux ΦlLF

which satisfies∫
Kij

ΦlLF ·ϕhdK =
1

2

∫
Kij

(f(Uh)|Kij
+ f(Uh)|Kji

) · nijϕh|Kij
dK

− 1

2

∫
Kij

(Specr(Γ))((Uh)|Kij
− (Uh)Kji

) · nijϕh|Kij
dK,

for nij the outward unit normal and Specr(Γ) the spectral radius of Γ. Sum-

ming over each of the elements of the mesh this term may be written as

2Φ̃lLF (Uh,ϕh) =
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(f(Uh)|Kij
+ f(Uh)|Kji

) · nijϕh|Kij
dK

−
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(Specr(Γ))((Uh)|Kij
− (Uh)Kji

) · nijϕh|Kij
dK.

(3.31)
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As our second choice of inviscid flux we implement a standard approx-

imate Riemann solver, with flux ΦR satisfying:∫
Kij

ΦR ·ϕhdK =
1

2

∫
Kij

(f(Uh)|Kij
+ (f(Uh)|Kji

) · nijϕh|Kij
dK

− 1

2

∫
Kij

(V ({Uh}|Λ({Uh})|V −1({Uh}) · nijϕh|Kij
dK,

where V and V −1 are found from the eigendecomposition given in appendix

A, and Λ({Uh}) is given by the diagonal matrix of eigenvalues diag(ςi) — as

also enumerated in appendix A — such that peicewise averages are taken; e.g.

ς1({Uh}) = {uh}+ (γ1{(ρµ1)h/ρh}{ρµi}+ . . .+ γn{(ρµn)h/ρh}{(ρµn)h})1/2 ,

where the average is given by

{Uh} =
1

2

(
Uh|Kij

+Uh|Kji

)
.

Summing over the mesh we find

2Φ̃R(Uh,ϕh) =
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(f(Uh)|Kij
+ (f(Uh)|Kji

) · nijϕh|Kij
dK

−
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(V ({Uh}|Λ({Uh})|V −1({Uh}) · nijϕh|Kij
dK.

(3.32)

Next we specify the viscous flux G . Here we use a formulation similar

to that presented in Ref. [195], but we adapt it to include the functional

dependencies present in the viscosity. We choose∫
Kij

Ĝb · nijϕhdK =
1

2

∫
Kij

((K Σh)|Kij
+ (K Σh)|Kji

) · nijϕh|Kij
dK,

which summed over elements gives:

Gb(Σh,Uh,ϕh) =
1

2

∑
Gi∈Th

∑
j∈S(i)

∫
Kij

(K Σh)|Kij
+ (K Σh)|Kji

) · nijϕh|Kij
dK.

(3.33)
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For the numerical flux Û we use the Bassi-Rebay form, as shown in

Ref. [195] and Ref. [175], which gives∫
Kij

ÛBR(Uh,ϑh)dK =
1

2

∫
Kij

((Uh)|Kij
+ (Uh)|Kji

) · nijϑh|Kij
dK,

so that over elements we find

UBR(Uh,ϑh) =
1

2

∑
Gi∈Th

∑
j∈S(i)

∫
Kij

((Uh)|Kij
+ (Uh)|Kji

) · nijϑh|Kij
dK. (3.34)

Now we discretize in time, denoting a partition of [0,T] by

0 = t0 < t1 . . . < tT = T,

for a timestep given as ∆tn = tn+1 − tn, and implement the forward Euler

scheme:
∂Uh

∂t
≈ U

n+1
h −Un

h

∆tn
,

along with a slope limiting scheme in the conservation variables (ρ, ρu), where

van Leer’s MUSCL scheme (as shown in Ref. [196] and Ref. [197]) has been

adopted.

Now we solve explicitly for (3.19). In particular, we show an explicit

scheme using the Riemann flux, which is formulated to read: for every n ≥ 0

find Un+1
h such that

1) Un
h ∈ Sdh, Σn

h ∈ Sdh,

2)

(
Un+1
h −Un

h

∆tn
,ϕh

)
ΩG

+ Φ̃R(Un
h,ϕh)−Θ(Un

h,ϕh)

− Gb(Σ
n
h,U

n
h,ϕh) + N (Σn

h,U
n
h,ϕh) = 0,

3) Q(ÛRB,Σ
n
h,U

n
h,ϑh,ϑ

h
x) = 0,

4) Uh
0 = Uh(0).

(3.35)
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Figure 3.2: A plot of the solutions ρs = ρRvL − ρlLFO and us = uRvL − ρlLFO
minus the analytic steady state solutions ρa = 1 and ua = 1.

We inspect the first of two numerical test cases. First consider the

monofluid steady state case of (3.1)-(3.3), by setting the initial data to ρ0 =

µ−1
1,0 = u0 = γi = 1 and µ2,0 = 0. Clearly here the pressure reduces to unity

p0 = 1 and the viscosity to a constant ν0 = C0. Next we set the periodic

boundary condition

Un(a, t) = Un(b, t).

The exact solution shows constant solutions in the primitive variables.

Figure (3.2) shows an implementation of 3.35 to this system, comparing

the solutions using the approximate Riemann Flux with the van Leer MUSCL

scheme (denoted by URvL) versus the local Lax-Friedrich’s flux with the Osher

MUSCL scheme (denoted U lLFO). It is evident that the scheme yields the

expected behavior, showing no fluctuation about the steady state in all four

of the primitive variables ρ, u and µi.

For the second of our test cases, we consider the monofluidic restriction

of (3.1)-(3.3) given by taking µ1,0 = 1, µ2,0 = 0 and γi = 1 with the additional
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Figure 3.3: The top two graphs show the solution to (3.36) in terms of the local
Lax-Friedrich’s flux and the van Leer limiter, denoted by us and ρs versus the
exact solution ua = tanx and ρa = (tanx)−1. The bottom two graphs show
the solution to (3.36) in terms of the linear Riemann flux and the Osher limiter,
denoted ur and ρr, again versus the exact solution.

relations:

p = ρ = u−1, and ν = ρ.

Solving this system immediately yields

ρ−1 + ρ− ρ∂xρ−1 = −C,
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for C ∈ R, which leads to the ordinary differential equation

ux = u2 + 1− Cu. (3.36)

Setting C = 0 the noting that solution is independent of time, we solve the

ODE yielding: u = tanx. Setting the initial data to

ρ0 = (tanx)−1, m0 = 1, and (ρµ1)0 = ρ0,

with the Dirichlet boundary data provided in the weak entropy sense of §3.3

via,

ρb = 1/ub, mb = 1 and (ρµ1)b = ρb,

we inspect the solution over the domain [a, b], with a = 0.5 and b = 0.7.

Here we compare the exact solution to the solution obtained using the Lax-

Friedrich’s flux with the van Leer monotonicity scheme (denoted ρs in 3.3) to

the Riemann flux with the Osher scheme (denoted ρr in (3.3)).

From inspection of Figure 3.3, it is clear that the relative error over fifty

timesteps is three orders of magnitude smaller than the resolution of the mesh.

Here we take a = 0.5 and b = 0.7 where h = 2 × 10−4. The relative error is

zero across the solution at the first timestep, as expected, and remains nearly

constant in the interior of the domain in both cases, while the weak entropy

implementation displays fluctuations in time of the order of the interior error.

These boundary fluctuations are neither monotonic nor generally increasing,

but show complicated temporal perturbations at the weak entropy boundary

points and are seen to weakly propagate into the interior as a function of the

timestep. Neither of the formulations, U s or U r, show significantly better

error behavior, though both are well within working precision of the exact

solution given in Theorem 1, up to the weak entropy boundary data.
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3.5 Example: 2-fluid with chemical inlet

Let us show a simple application of the system outlined in §3.2 and

§3.3 evaluated over two distinct species. Consider the bifluid system,

∂tρ+ ∂x(ρu) = 0, (3.37)

∂t(ρu) + ∂x(ρu
2) + ∂xp− ∂x(ν∂xu) = 0, (3.38)

∂t(ρµi) + ∂x(ρuµi) = 0, (3.39)

with initial conditions:

ρ|t=0 = ρ0 > 0, m|t=0 = m0 and µt=0 = µ0.

The pressure is given by p = ργ1

1 +ργ2

2 and the viscosity by ν = ψ′(γ1ρ
γ1

1 +γ2ρ
γ2

2 )

for ψ′ = Cp−α and α ∈ (0, 1) with C > 0.

Now as in §3.4 we easily recover the form

U t + ΓUx = (K Ux)x, (3.40)

which integrates to (3.11). Again we solve for our system in a form equiv-

alent to (3.19). We employ the local Lax-Friedrich’s inviscid flux ΦlLF , the

Bassi-Rebay numerical flux ÛRB, and the usual viscous flux Ĝb such that the

formulation of the problem reads: for every n ≥ 0 find Un+1
h such that

1) Un
h ∈ Sdh, Σn

h ∈ Sdh,

2)

(
Un+1
h −Un

h

∆tn
,ϕh

)
ΩG

+ Φ̃lLF (Un
h,ϕh)−Θ(Un

h,ϕh)

− Gb(Σ
n
h,U

n
h,ϕh) + N (Σn

h,U
n
h,ϕh) = 0,

3) Q(ÛRB,Σ
n
h,U

n
h,ϑh,ϑ

h
x) = 0,

4) Uh(0) = Uh
0 .

(3.41)
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Figure 3.4: The left plot shows miscible species at t = 12 given the “character-
istic” chemical inlet conditions from (3.42) with C = 0.9 and on the boundary
a = 0, with transmissive conditions on b = xne (see Figure 3.1). The right plot
shows the same solution using the weak entropy formulation. Here we have a
miscible solution of methanol and water at ϑ = 500K and initial µ1 = µ2 = 0.5,
while both solutions use Φ̃lLF and the van Leer limiter.

All that remains is determining the boundary states Un
|∂Ω

in the char-

acteristic sense of §3.3. Let us take a subsonic inlet u ·n < 0 on the boundary.

Now, suppose we want a chemical inlet such that chemical specie one, µ1,

is characterized by an influx condition µ1,b = C on {a} and a transmissive

condition on {b}. For n = 2 we can easily write (3.28) and solve for α1 as

in §3.3 which yields that α1 = ρ/2 − tζ1. In order to maintain consistency of

the equations, we must also enforce both that µ2,b = 1 − C and that ρ > 0.

To meet these conditions requires us to solve for β2, β3 and β4. A standard

calculation using (3.24) yields that for any ε > 0 where ξ = ∂ρ1p − ∂ρ2p, the

consistent choice of parameters obeying µ1,b = C is given by:

β2 = −ρ/2− β3 + ε, β3 = β4ξ and β4 = ε(µ1 − C )/c2. (3.42)

The behavior of such a “chemical inlet” is shown in Figure 3.4. Here it

76



follows that ε may be chosen to weight ρb, and can be chosen as any smooth

strictly positive function, for example. By comparison the weak entropy so-

lutions discussed in §3.3 to (3.37)-(3.39) are also well-posed for an arbitrary

collection of L∞((0, T ) × ∂Ω) boundary data. So, in contrast to using the

“characteristic” solutions to find a consistent set of boundary data, we may

simply assign µ1,b = C , µ2,b = 1 − C , ρb = ε and ub = u0 to obtain a similar

solution. Comparing the behavior of µ1,w in Figure 3.4 to µ1,c yields Figures

3.5 and 3.6. Notice that the two boundary solutions do not yield the same

numerical result. In particular, the weak entropy µ1 grows more rapidly at the

boundary; while the dynamically coupled “characteristic” solution adapts to

the influx of specie/density by producing a velocity outflow, which effectively

Figure 3.5: Here we show the difference between specie one of the weak entropy
µ1,w versus “characteristic” µ1,c solutions, where ξ = µ1,w − µ1,c.
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Figure 3.6: Here we have the complementary difference between species two of
the weak entropy µ2,w and “characteristic” µ2,c solutions, where η = µ2,w−µ2,c

reduces the “chemical influx” as a function of time.

In practice it is often physically pertinent to ascribe more boundary

data than the free β’s can consistently control. For example, a closely re-

lated case to the above is for a chemical inlet where ub ≡ 0 represents a fixed

semipermeable membrane. In cases such as these, where only one character-

istic direction is free, weak entropy solutions are essential in order to even

characterize such a chemical inlet. Heuristically we say that “characteristic”

solutions demonstrate a relatively weaker forcing on ∂Ω, while weak entropy so-

lutions have greater flexibility of representation by way of establishing stronger

forcing on ∂Ω.
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3.6 Example: k-th order in time n-fluid

We wish to generalize the example in §3.5 to n-fluid components and

a k-th order in time Runge-Kutta time discretization. Let us start with an

n = 5 system, which then can be easily generalized. Consider

∂tρ+ ∂x(ρu) = 0, (3.43)

∂t(ρu) + ∂x(ρu
2) + ∂xp− ∂x(ν∂xu) = 0, (3.44)

∂t(ρµi) + ∂x(ρuµi) = 0, (3.45)

with initial conditions,

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, and (ρµi)|t=0 = ρi,0,

given the pressure

p = ργ1

1 + ργ2

2 + ργ3

3 + ργ4

4 + ργ5

5 , (3.46)

and viscosity

ν = ψ′(ρ1∂ρ1p+ ρ2∂ρ2p+ ρ3∂ρ3p+ ρ4∂ρ4p+ ρ5∂ρ5p). (3.47)

We explicitly take the three vectors:

U = (ρ, ρu, ρ1, ρ2, ρ3, ρ4, ρ5)T ,

f(U) = (ρu, ρu2 + p, ρ1u, ρ2u, ρ3u, ρ4u, ρ5u)T ,

g(U ,Ux) = (0, νux, 0, 0, 0, 0, 0, 0)T ,

such that again we arrive with

U t + ΓUx − (K Ux)x = 0, (3.48)

which is easily posed in the form of (3.19).
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Figure 3.7: Here we show the first and last timesteps of the mass fractions at
ϑ = 293K using periodic boundary conditions with Runge-Kutta order k = 2.
Initial conditions set ρ = 5+20e−(x−10)2/8+20e−(x−30)2/8 and u = sin(6πx/xne),
with µ1 = 0.07 + 0.3e−(x−27.5)2/12, µ2 = 0.1 + 0.3e−(x−10.5)2/8, µ3 = 0.06 +
0.3e−(x−22.5)2/8, µ4 = 0.05 + 0.3e−(x−30.5)2/10 and solvent µ5 = 1−

∑4
n=1 µi.

Again we employ the local Lax-Friedrich’s flux (3.31) and the Bassi-

Rebay numerical flux (3.34), but now we generalize to a Runge-Kutta time

discretization. That is, notice that we can rewrite (3.19) as a system of ordi-

nary differential equations,

d

dt
Uh = Lh(Uh).

We solve this system using an explicit Runge-Kutta method (for ex-

ample, see Ref. [162] and Ref. [198]). That is, set the value of the current

timestep to U 0
h, and decompose this timestep into k substeps such that for

i = 1, . . . , k we have the intermediate solutions

U i
h =

i−1∑
l=0

cilU
l
h + dil∆t

nLh(U
l
h),

where the c’s and d’s are given in Table 3.2. Then setting Un+1
h = U k

h for each
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Figure 3.8: Here we show the time evolution over the entire solution space of
the same problem from Figure 3.7.

n ≥ 0 we arrive with:

1) Un
h ∈ Sdh, Σn

h ∈ Sdh,

2)
(
U i
h,ϕh

)
ΩG
−

i−1∑
l=0

{(
cilU

l
h,ϕh

)
ΩG

+ dil∆t
n

[
Φ̃lLF (U l

h,ϕh)−Θ(U l
h,ϕh)

− Gb(Σ
l
h,U

l
h,ϕh) + N (Σl

h,U
l
h,ϕh)

]}
= 0, for i = 1, . . . , k,

3) Q(ÛRB,Σ
l
h,U

l
h,ϑh,ϑ

h
x) = 0, for i = 0, . . . , k − 1,

4) Uh(0) = Uh
0 .

(3.49)

This method follows for any n-fluid of the form (3.1)-(3.5) of Runge-

Kutta order k.
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Table 3.2: Runge-Kutta k-th order in time
Parameter k=2 k=3

cil

(
1 0

1/2 1/2

)  1 0 0
3/4 1/4 0
1/3 0 2/3



dil

(
1 0
0 1/2

) 1 0 0
0 1/4 0
0 0 2/3



The behavior of this system is shown in Figure 3.7, where we have set

the simple periodic boundary condition,

Un(a, t) = Un(b, t).

It is worth noting that the composition of this mixture does not tend towards

homogeneous equilibrium, since there is both no inter-specie diffusion (see

§3.8) and the species are not “chemically miscible” (in that they do not mix

in all proportions). Nevertheless there is significant mixing from the state of

the initial conditions, and it can be seen that the fluid is more homogenized,

relatively speaking, at timestep t = 10 that it was in the initial state. Most

importantly, this scheme now immediately extends to an arbitrary n-fluid.

3.7 Energy Consistency of Scheme

In Ref. [39] it is shown that any solution for which Theorem 2.1 holds

should satisfy two closely related entropy inequalities. The first, a classical

integral inequality taking the form

1

2

d

dt

∫
R

{
ρu2 + 2E

}
dx+

∫
R
ν|ux|2dx ≤ 0, (3.50)
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and the second owing to Bresch and Desjardins (see Ref. [18, 37, 61, 126, 127,

135]), as

1

2

d

dt

∫
R

{
ρ|u+ ρ−1ψx|2 + 2E

}
dx+

∫
R
ρ−1ψ′|px|2dx ≤ 0, (3.51)

where the internal energy E = E (ρ1, . . . , ρn) is specified as:

E =
n∑
i=1

ργii
γi − 1

.

Entropy consistent numerical schemes are often formulated in the lit-

erature in order to explicitly enforce entropy inequalities such as (3.50) and

(3.51) over all of QT (viz. Ref. [173, 199–201]). For example enforcing (3.50) is

done by utilizing a change of variables of the conservation variable form of the

state vector U , into the so-called entropy variable form W , which is achieved

by writing the entropy functional H = ρu2/2 + E and then setting the state

vector as the partial with respect to the conservation variables W = HU . The

difficulty of implementation of these energy schemes, which are inherently im-

plicit methods, underscores the importance of conserving energy consistency

of the solution, and further serves as motivation for testing how our explicit

scheme behaves with respect to (3.50) and (3.51).

Here we inspect the entropy consistency from three perspectives. First,

from the point of view of the global strong solution and Ref. [39] we do not

necessarily expect local energy consistency with some arbitrary free boundary

inlet condition for an arbitrary uniform timestep ∆t, as locally this perturbs

the magnitude and behavior of the entropy, which is a global property of the

strong solution. However, we do expect energy conservation given periodic

or transmissive boundary conditions, which are able to recover in some basic

sense the global behavior of the solution. From the numerical perspective,
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Figure 3.9: Here we plot the integral forms ST and S̃T for C = 1 and α = 0.9,
where

∫
Ω

H0dx and
∫

Ω
H̃0dx are represented by the first timestep. The spatial

mesh is chosen with ne = 100 with ∆t = 0.01.

we expect our solution (3.19) to obey entropy consistency regardless of the

boundary data up to a restriction of the CFL stability condition, which for

inviscid flows scale as C̃1h/SpecrΓ ≥ ∆t and for the complementary viscous

flows like C̃2h
2/max(ν, 1) ≥ ∆t, where the CFL constants are characterized

by C̃1, C̃2 ∈ (0, 1). Finally, from the purely phenomenological perspective

we expect the entropy to be satisfied in both the sense of the solution of

Ref. [39] as well as the ∆t restriction provided by the CFL scaling, but to in

addition demonstrate behavior which is phenomenologically consistent with

the modeling regime (ie. the C in ν(t, x) should be chosen to reflect the

physical viscosities of mixtures on time scales that are numerically tractable).
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Here we use the n = 5 fluid scheme from §3.5 (shown in Figure 3.7) as a

test case for these issues where again the periodic boundary conditions are

employed.

For our numerical scheme (3.19) the two inequalities (3.50) and (3.51)

are adapted in the following way. The prescribed initial conditions are eval-

uated as H0 and H̃0 = 1
2
ρ0|u0 + ρ−1

0 ∂xψ0|2 + E0, such that we evaluate the

spacetime integrated functionals:

ST =

∫
Ω

HTdx+

∫ T

0

∫
Ω

ν|ux|2dxdt ≤
∫

Ω

H0dx, (3.52)

and

S̃T =

∫
Ω

H̃Tdx+

∫ T

0

∫
Ω

ρ−1ψ′|px|2dxdt ≤
∫

Ω

H̃0dx. (3.53)

We show the results of this calculation for an arbitrarily chosen set of param-

eters in Figure 3.9. As is clear from the graph, both (3.52) and (3.53) are

satisfied. In fact we confirm that (3.19) satisfies (3.52) and (3.53) whenever

the viscous CFL condition is satisfied, up to the choice of a constant. It is

interesting to note that both of these inequalities are satisfied for an arbitrary

choice of α and C in the numerical setting. This confirms that the mathemat-

ical result from Ref. [39] is substantially more restrictive than the numerical

one, where in Ref. [39] the choice of α is bounded above and below by the

limits of the adiabatic constants γi, such that given γ̌ < γi < γ̂ for all i, it was

shown that
γ̌−1(γ̂ − 1/2) < α ≤ γ̂−1(γ̌ + 1/2)

γ̂−1(γ̌ − 1/2) > α ≥ γ̌−1(γ̂ + 1/2)− 1.
(3.54)

It is further worth mentioning that the behavior of the entropy is phe-

nomenologically consistent with the behavior of the fluid mixtures. That is,

we may estimate the magnitude of C in ν by a weighted average C ≈
∑n

i µiηi
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Figure 3.10: Here we compare the viscosity ν, density ρ and pressure p of
the periodic 5-fluid from §3.6 with α = 0.9, C = 0.5, 150 meshpoints and
∆t = .006.

with ηi each of the components respective constant viscosity coefficient as

approximated at constant temperature ϑ. In SI units (Pa · s) this leads to ex-

tremely tractable CFL conditions for most liquid and gas mixtures (certainly

all aqueous ones). However using C ≈
∑n

i µiηi is unnecessary, and certainly

not always well justified (e.g. supercritical solutions as in Ref. [202, 203], or

more general formulations found in Ref. [30]), in which case the C coefficient

may be appropriately, and relatively easily, rescaled.

The functional behavior of the viscosity is a relatively unique property

of our system (3.1)-(3.3), which is to say that commonly compressible Navier-
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Stokes systems utilize constant viscosity coefficients (eg. see Ref. [105] chapter

4) and thus the energy consistency and the CFL condition is not dynamically

coupled to the solution components. However, for our system, since the vis-

cosity is a function of time, the CFL condition must update to reflect the local

viscosity magnitude at each timestep. We show this functional relationship in

Figure 3.10, where a comparison plot between the visocosity ν, the density ρ

and the pressure p of the system is given.

3.8 Fick’s Diffusion with Acoustic BCs

Although Theorem 2.1 only applies to systems of the form (3.1)-(3.3),

the particular numerical scheme outlined in §3.2 can be easily extended to

more complicated systems; and indeed can be extended with similar numerical

behaviors. As an example let us consider the 5-fluid,

∂tρ+ ∂x(ρu) = 0, (3.55)

∂t(ρu) + ∂x(ρu
2) + ∂xp− ∂x(ν∂xu) = 0, (3.56)

∂t(ρµi) + ∂x(ρuµi)− ∂x(Di∂xµi) = 0, (3.57)

with initial conditions:

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, and (ρµi)|t=0 = ρi,0,

given (3.46), (3.47) and Di the diffusivity constants of each respective species.

Here the system is equivalent to that in §3.6, except we have added the Fick’s

diffusion law term to the advection equation in µ. Thus the state vector and

inviscid flux remain unchanged, while the vector g becomes

g(U ,Ux) = (0, νux,D1µx, . . . ,Dnµn)T , (3.58)
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such that the corresponding visous flux matrix yields:

K (U) =
1

ρ



0 0 0 . . . . . . 0
−νu ν 0 . . . . . . 0
−D1µ1 0 D1 0 . . . 0

−D2µ2
... 0 D2

. . .
...

...
...

...
. . . . . . 0

−Dnµn 0 0 . . . 0 Dn


. (3.59)

We set an acoustic inlet condition, which is equivalent to identifying

the sound pressure on ∂Ω. We set corresponding weak entropy conditions on

∂Ω. That is, consider a classical solution to the acoustic wave equation at a

boundary located at the origin such that the total pressure on the boundary

satisfies pb = p0 + A0 sin(ωt) for a driving amplitude A0 and an ambient ref-

erence pressure p0 =
∑n

i (ρ0µi,0)γi , where ω is the angular frequency of the

acoustic wave; or, similarly we may consider the total solution from the point

of a view of a solution to the Helmholtz equation at any x in Ω corresponding

to a fixed radiating acoustic source. Since in the barotropic case the total

pressure satisfies pb =
∑n

i ρ
γi
i , we use the MATLAB R© (2008a, The Math-

Works, Natick, MA., USA) fzero/fsolve function to solve for roots in ρb of the

following equation:

f(ρb) =
n∑
i

(ρbµi,b)
γi − (p0 + A0 sin(ωt)). (3.60)

For the weak entropy solutions, to restrict to the pressure front inlet, we

set the initial wall boundary condition u0 ·n = 0, where in addition the µi’s are

simply chosen from their initial concentrations on ∂Ω. We allow antisymmetric

inlets on ∂Ω = {a, b} leading to the formation of supernodes within the fluid

domain. The solution is plotted in Figure 3.11.
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Figure 3.11: A weak entropy solution to an oscillating pressure front propa-
gating through a 5-component low density (∼ 100 molecules per cm) gas at
ϑ = 20K. The chemical constituents are comprised of species found in dark
interstellar molecular clouds, where representative fractional abundances are
adopted and the solution space is appropriately scaled; with corresponding ini-
tial conditions: H2 ∼ 80%, He ∼ 19.9%, and trace CO, H (atomic hydrogen),
and HC3N (cyanoacetylene).

By comparison we solve the “characteristic” boundary solution pre-

sented in §3.3. In order to solve this system we must dynamically switch

between the five regimes listed in Table 3.1, since the pressure oscillation pulls

the velocity between transonic inlet and outlet conditions. That is, the values

of the conservation variables on the boundary must satisfy a system of lin-

ear equations. The nature of this system depends on the number of free and

fixed conservation variables in the particular type of characteristic boundary
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Figure 3.12: A “characteristic” solution to the same oscillating pressure front
presented in 3.11.

condition as detailed in Table 3.1. There are four basic types of calculations

corresponding to 0, 1, m − 1 and m fixed αi. We take a single row from the

augmented matrix [V −1 |α+ ∆tnζ] for each αi appearing in Table 3.1, while

those corresponding to each βi are replaced by a single row from [Im |U b] con-

taining the type of prescribed data on the boundary, where U b is formed from

the appropriate number of prescribed primitive variables. Further notice that

(3.25) no longer makes sense, but is replaced by the vector ζ with respect to

(3.58)-(3.59):

ζ = V −1g on ∂Ω. (3.61)

For example, in the case of the subsonic acoustic outlet the second row would
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be replaced by [1 0 · · · 0 | ρb], consequently ensuring that any solution is as-

signed that particular density, whereas in the case of a chemical inlet we might

use [0 0 1 0 · · · 0 |µ1,b] instead to prescribe the mass fraction of the first fluid.

Further note that since allowing complete freedom with respect to fluid pro-

portions can lead to a violation of
∑n

i=1 µi = 1, one of the rows corresponding

to ρµi is replaced by [1 0 −1 · · ·−1 | 0] which serves to enforce that requirement.

The solution to the resulting combined system of m equations then pro-

vides the values of the conservation variables consistent with both the choices

on the boundary as well as the propagated values from the interior; from the

one extreme of a supersonic inlet where the boundary values can be chosen

subject only to the physical consistency conditions
∑n

i=1 µi = 1 and ρ > 0,

through the two mixed subsonic cases, to the other extreme of a supersonic

outlet where all the values are propagated from the interior. As the velocity

and the speed of sound near the boundary changes with time, the type of linear

system that needs to be solved changes as one switches between the different

regimes of inlet and outlet.

It can be confirmed by inspection of Figure 3.12 and 3.13 that the

“characteristic” solution initially demonstrates significantly sharper profiles

that decay more quickly in time than the analogous profiles in the weak entropy

solution. By contrast, the difference between the “characteristic” and weak

entropy solutions for the chemical inlet shown in §3.5 are extremely small, and

qualitatively indistinguishable. However, in the present case, with pressures

and velocities fluctuating rapidly and doing so with large relative magnitudes,

the difference between the two regimes is relatively extreme. From Figure 3.13

we can further see that the “characteristic” solution has steeper nodal peaks

with greater amplitudes than the weak entropy solution. It is not clear a priori
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Figure 3.13: Here we plot the relative difference between the weak entropy
pressure pw and the “characteristic” pressure pc.

which solution is more phenomenologically sound.

Here we have solved (3.55)-(3.57) using a formulation which is meant

to weakly mimic some of the conditions found in interstellar media. The

solution is shown in Figure 3.11, where it is notable that the traveling sound

field pb dynamically responds to the changing speed of sound c throughout

the medium – which scales like the root of the local change in pressure up to

the local species concentration. The initial conditions were estimated using

Ref. [204], the diffusivities were estimated with the help of Ref. [205–207], and

motivation for propagating pressure waves can be found in Ref. [208].
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Chapter 4

Quantum Hydrodynamics with Chemical

Applications

4.1 Introduction

Quantum hydrodynamics (QHD) has engendered substantial activity

in the field of theoretical chemical dynamics, where one may refer to Wyatt

et al. [20] for a comprehensive introductory overview of the numerous recent

results emerging from this blossoming field.

The basic idea emerging from quantum chemistry in the context of

QHD is to employ the time-dependent Schrödinger equation (TDSE) to solve

for the dynamical properties (probability densities, “particle” velocities, etc.)

of chemical systems. In the same spirit in which the de Broglie-Bohm inter-

pretation (see Ref. [40, 41, 209]) of quantum mechanics may be used to recover

“trajectories” of individual fluid elements along the characteristics of motion

of the solution, the QHD equations of Madelung and Bohm are derived as

formally equivalent to the TDSE and thus comprise an alternative route to

solutions which generate quantum trajectories that follow particles along their

respective paths (see Ref. [20] and Ref. [42] for a comprehensive overview).

These solutions hold particular significance, where, in the context of

the QHD formulation, it is possible to resolve the chemical dynamics of a

vast number of reaction mechanisms known to have pathways dominated by

quantum tunneling regimes. Some of these systems include proton transfer

93



Figure 4.1: Here we have the intramolecular rearrangement of the aryl radi-
cal 2, 4, 6-tri-tert-butylephenyl to 3, 5-di-tert-butylneophyl (see Ref. [210] for
details).

reactions (for example see figure 4.1), conformational inversions, biologically

important redox reactions in enzymatic catalysis reactions (see figure 4.2), and

proton-coupled electron transfer reactions (refer to Ref. [211] and Ref. [212]).

It is not yet clear if these types of methods may also have application at higher

energies, for example in the halo nuclei tunneling occurring in fusion reactions

(as seen, for example, in Ref. [213]).

Substantial research has been done in quantum hydrodynamics to find

the best and fastest computational methodology for solving this system of

equations. In the standard methodology presented using the quantum trajec-

tory method (QTM), for example, solutions to the QHD equations are found

by transforming the system of equations, which is generally posited in the Eu-

lerian fixed coordinate framework (see Ref. [42, 214–216]), into the same set of

equations in the Lagrangian coordinate framework, which effectively follows

solutions along particle trajectories; or along so-called “Bohmian trajectories.”

The transformation from the Eulerian to the Lagrangian frame leads to a set of

coupled equations which solve for two unknowns: the quantum action S(t, ~r)

and the probability density or quantum amplitude
√
%(t, ~r) = R(t, ~r) along the

trajectories ~r(t,x) (e.g. see Ref. [20] box 1.2). The obvious advantage of the

Lagrangian framework is reduced computational times, since solutions are only
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Figure 4.2: Here we show an enzymatic catalysis – an aromatic amine dehy-
drogenase (AADH) with a tryptophan tryptophyl quinone (TTQ) prosthetic
group catalyzing the oxidative deamination of tryptamine with an electron
transfer to an arsenate reductase enzyme (see Ref. [210] and Ref. [212] for
details, PDB codes: 1nwp (azurin), 2agy (AADH)).

computed along a set of chosen trajectories; while clearly the disadvantage is

the possibility of obscuring structure hidden within the continuum of the full

solution, which may only emerge properly in convergent numerical schemes,

and also the increased complications of transposing into more complicated set-

tings: such as with functional or time dependencies on the potential term V ,

or including dissipative or rotational vector fields.

95



In addition, the numerical solutions to the above mentioned Lagrangian

formulations have demonstrated characteristic behaviors which introduce cer-

tain technical difficulties at the level of formal analysis. First, the system of

equations are stiff, which is to say, solutions to the system may locally or

globally vary rapidly enough to become numerical unstable without reducing

numerically to extremely small timesteps. Furthermore, there exists the so-

called “node problem,” which is characterized by singularity formation (see

Ref. [20] for characterization of node types) along particle trajectories. An-

other issue which arises is obtaining unique solutions, since there is not a

unique choice of trajectories in the Lagrangian formulation (see for example

§4.6 and appendix A). And finally, boundary data is often treated without

regard to the (often substantial) numerical residuals introduced in the weak

entropy case, or taking into account consistency between the TDSE and the

QHD system of equations (see for example Ref. [174] and §4.3).

We introduce an alternative formulation to the standard solutions de-

scribed above in % and S and tracked with respect to the Lagrangian coor-

dinate frame which is motivated by work of Gardner, Cockburn, et al. (see

Ref. [215, 217, 218]). Instead, we keep the system in its conservation form

(instead of in a primitive variable form) in the Eulerian coordinate system

(see Ref. [214]), and solve for the density % = %(t,x) and the particle velocity

v = v(t,x) (instead of the quantum action S). We show that these solutions

may be used to easily recover the variables S and ψ in a single step; and may

with little difficulty be transformed into their Lagrangian coordinate frame

counterpart solutions %(t, ~r),v(t, ~r), S(t, ~r) and ψ(t, ~r), using the conservation

equation (continuity equation), or by solving for pathlines in the sense of clas-

sical mechanics, or by any number of alternative so-called “offset methods.”
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Additionally, our solutions demonstrate a type of resolution invariance, which

is to say that the behavior of our solutions are qualitatively equivalent at vary-

ing spatial resolutions, and compare favorably with solutions to the formally

equivalent TDSE. As a consequence, our conservation-based formulation is

computationally competitive with Lagrangian formulations, up to a type of

“formal accuracy” in the trajectory solutions.

Our solutions, as the Lagrangian formulated solutions mentioned above,

still demonstrate a stiff behavior. However, also as the Lagrangian solutions

above, and similarly to the classical CFL condition in fluid mechanics, we

consider this a prohibitive but not insurmountable computational difficulty.

On the other hand, our solutions to the conservation form of QHD do not

demonstrate the node problem (at least on Gaussian wavepackets) as expected,

as the only type of node our formulation exhibits is for % ≡ 0, which never

occurs if we add a numerical ambient density %A to the initial density ρ|t=0. The

solution is stable when the ambient density is set to ∼ 11 orders of magnitude

smaller than maxΩ(%) over a computational domain Ω. We maintain that the

addition of %A to the initial density does not significantly change the numerical

solution of the system of partial differential equations, while introducing the

substantial benefit of significantly improving its stability. Again, this behavior

compares favorably with solutions to the TDSE, which also do not demonstrate

the node problem. On the other hand, computing solutions in the Lagrangian

frame still offers substantial computational efficiency when compared to those

in the Eulerian frame; due simply to relative density of solutions.

We begin in §4.2 by presenting the governing equations, then rescaling

these equations in time for substantial improvement of numerical tractabil-

ity. Next we present the details of a computationally well-posed finite element
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discretization scheme leading to our approximate (numerical) solution. The

scheme is based on a discontinuous Galerkin method for the QHD conservation

laws and a mixed finite element method for the Bohmian quantum potential,

which is inspired by Ref. [219]. In §4.3 we briefly derive the basic equations,

and discuss the rather strong dependence on the formal and numerical equiv-

alencies in the boundary data. In §4.4 we derive an analytic test case which

allows us to find the relative error in the discontinuous Galerkin mixed method,

which shows that our formulation is near to numerically exact everywhere but

at the boundaries (which is expected). We proceed in §4.5 by testing the

standard case of a hydrogen atom tunneling through an Eckart potential bar-

rier, compare these results to a finite difference scheme for the TDSE, and

then show how to use the continuity equation to recover the Lagrangian, or

Bohmian, trajectories. Next, in §4.6, we show how to compute pathlines, re-

cover the variables ρ,u, ψ and S in both the Eulerian and Lagrangian frames,

and compare the way in which these solutions relate to each other.

4.2 Conservation Formulation of Quantum Hydrody-
namics

Consider the following system of equations for (s, x) ∈ Ts × Ω, moti-

vated by Ref. [20], where we have transformed the solution space from the

usual Lagrangian coordinate frame into the conservation form of the Eulerian

coordinate frame:

∂s%+∇x · (%v) = 0, (4.1)

∂s(%mv) +∇x · Π + %∇xV = 0, (4.2)
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with initial conditions

%s=0 = %0, and vs=0 = v0

where % = %(s,x) is the probability density corresponding to conservation

equation (4.1), and v = v(s,x) is the volume velocity corresponding to the

momentum density %p = %mv in equation (4.2), where the mass m is constant.

Here V corresponds to the potential surface, where in keeping with the usual

formulation in chemical applications in one dimension V may be generally

thought of as a model potential (e.g. an Eckart, Lennard-Jones or electrostatic

potential).

The quantum stress Π is given to obey,

Π = %mv ⊗ v + %−1

{
~2

4m
(∇x%)2

}
− ~2

4m
∇2
x%,

or alternatively

m−1Π = %v ⊗ v − %~2

4m2
∇2
x log %,

with the Bohmian quantum potential given as Q =
(

~2

2m
∆x
√
%
)
/
√
% (note that

this term is only defined up to a sign convention, see for example Ref. [42, 220]

versus Ref. [20]), such that the nonlinear dispersion relation is given by,

%~2

2m
∇x

(
∆x
√
%

√
%

)
=

~2

4m
∇ · (%∇2

x log %), (4.3)

yielding the alternative form of (4.2):

∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ + %∇xV = 0. (4.4)

Let us rescale (4.1) and (4.4) by setting s =
√
mt and solving for a

rescaled solution u and ρ in the time variable t, such that our new variables
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satisfy u(t, x) =
√
mv(
√
mt, x) and ρ(t, x) = %(

√
mt, x) such that (4.1) and

(4.4) for (t, x) ∈ T × Ω become:

∂tρ+∇x · (ρu) = 0, (4.5)

∂t(ρu) +∇x · (ρu⊗ u)− ρ∇xQ + ρ∇xV = 0. (4.6)

We solve (4.5)-(4.6) using a mixed discontinuous Galerkin finite element

method. We define the state vector

U = (ρ, ρu)T ,

the inviscid flux vector

f = (ρu, ρu⊗ u)T ,

and the source vector

S = (0, ρ∇x(V − Q))T .

Then we can rewrite (4.1)-(4.2) as

U t + fx + S = 0. (4.7)

Consider the following discretization scheme motivated by [105, 174]

(and illustrated in the one dimensional case in Figure 3.1). Take an open

Ω ⊂ R with boundary ∂Ω = Γ, given T > 0 such that QT = ((0, T ) × Ω) for

Ω̂ the closure of Ω. Let Th denote the partition of the closure Ω, such that

taking Ω̂ = [a, b] provides the partition

a = x0 < x1 . . . < xne = b

comprised of elements Gi = (xi−1, xi) ∈ Th such that Th = {G1,G2, . . . ,Gne}.

The mesh diameter h is given by h = supG∈Th
(xi − xi−1) such that a discrete
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approximation to Ω is given by the set Ωh = ∪iGi \ {a, b}. Each element of

the partition has a boundary set given by ∂Gi = {xi−1, xi}, where elements

sharing a boundary point ∂Gi ∩ ∂Gj 6= ∅ are characterized as neighbors and

generate the set Kij = ∂Gi ∩ ∂Gj of interfaces between neighboring elements.

The boundary ∂Ω = {a, b} is characterized in the mesh as ∂Ω = {x0, xne}
and indexed by elements Bj ∈ ∂Ω such that Ω̂ = Th ∪ Kij ∪ ∂Ω. Now for

I ⊂ Z+ = {1, 2, . . .} define the indexing set r(i) = {j ∈ I : Gj is a neighbor of

Gi}, and for IB ⊂ Z− = {−1,−2, . . .} define s(i) = {j ∈ IB : Gi contains Bj}.
Then for Si = r(i)∪ s(i), we have ∂Gi = ∪j∈S(i)Kij and ∂Gi ∩ ∂Ω = ∪j∈s(i)Kij.

We define the broken Sobolev space over the partition Th as

W k,2(Ωh,Th) = {v : v|Gi ∈ W k,2(Gi) ∀Gi ∈ Th}.

Further, approximate solutions to (4.1)-(4.2) will exist in the space of discon-

tinuous piecewise polynomial functions over Ω restricted to Th, given as

Sdh(Ωh,Th) = {v : v|Gi ∈Pd(Gi) ∀Gi ∈ Th}

for Pd(Gi) the space of degree ≤ d polynomials on Gi.

Choosing a set of degree d polynomial basis functions N` ∈Pd(Gi) for

` = 0, . . . , d we can denote the state vector at the time t over Ωh, by

Uh(t, x) =
d∑
`=0

U i
`(t)N

i
`(x), ∀x ∈ Gi, (4.8)

where theN i
` ’s are the finite element shape functions in the DG setting, and the

U i
`’s correspond to the nodal unknowns. We characterize the finite dimensional

test functions

ϕh ∈ W 2,2(Ωh,Th), by ϕh(x) =
d∑
`=0

ϕi`N
i
`(x)
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where ϕi` are the nodal values of the test functions in each Gi.

Assuming that the source term S is sufficiently smooth, we let U be

a classical solution to (4.7) and multiply through by ϕh and integrating such

that:

d

dt

∫
Gi

U ·ϕhdx+

∫
Gi

fx ·ϕhdx = −
∫

Gi

S ·ϕhdx. (4.9)

Integrating (4.9) by parts gives

d

dt

∫
Gi

Uh·ϕhdx+

∫
Gi

(f ·ϕh)xdx−
∫

Gi

f ·ϕhxdx = −
∫

Gi

S ·ϕhdx. (4.10)

Let ϕ|Kij
and ϕ|Kji

denote the values of ϕ on Kij considered from the

interior and the exterior of Gi, respectively. It should be noted that for Kij ∈ Γ,

the restricted functions ϕh|Kji are determined up to a choice of boundary

condition, which we will discuss in more detail in §3. We approximate the first

term in (4.10) by,

d

dt

∫
Gi

Uh ·ϕhdx ≈
d

dt

∫
Gi

U ·ϕhdx, (4.11)

the second term using an inviscid numerical flux Φi, by

Φ̃i(Uh|Kij
,Uh|Kji

,ϕh) =
∑
j∈S(i)

∫
Kij

Φ(Uh|Kij
,Uh|Kji

, nij) ·ϕh|Kij
dK

≈
∫

Kij

N∑
l=1

(fh)l · (nij)lϕh|Kij
dK,

(4.12)

for nij the unit outward pointing normal and where l is the dimension, and

the third term on the left in (4.10) by:

Θi(Uh,ϕh) = −
∫

Gi

fh · (ϕh)xdx ≈ −
∫

Gi

f · (ϕh)xdx. (4.13)
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Using (4.11)-(4.13), taking the convention that

X =
∑

Gi∈Th

Xi,

and setting the inner product

(ah, bh)ΩG
=
∑

Gi∈Th

∫
Gi

ah · bhdx,

we define an approximate solution to (4.9)-(4.17) as Uh for all t ∈ (0, T )

satisfying:

Discontinuous Galerkin Method for the QHD Conservation Laws

1) Uh ∈ C0([0, T ];Sdh),

2)
d

dt
(Uh,ϕh)ΩG

+ Φ̃(Uh,ϕh) + Θ(Uh,ϕh) + (Sh, ϕh)ΩG
= 0,

3) Uh(0) = U 0.
(4.14)

To compute the source term S, we approximate the Bohmian quantum

potential using a mixed finite element method. In particular, we know that at

each time t, the quantum potential Q satisfies the equations:

Q =
~2

2m

∇x · q√
ρ

and q = ∇x
√
ρ. (4.15)

Let ϑ ∈ L2(Ω) and ς ∈ H(div,Ω). Then multiplying (4.15) by ϑ and ς,

respectively, and integrating by parts over Ω results in:∫
Ω

Qϑdx =

∫
Ω

~2

2m

∇x · q√
ρ
ϑdx, (4.16)∫

Ω

q · ςdx = −
∫

Ω

√
ρ∇xςdx+

∫
Γ

√
ρς · ndΓ. (4.17)
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Choosing finite dimensional subspaces L h ⊂ L2(Ω) and H h ⊂ H(div,Ω),

a mixed finite element method for the Bohmian quantum potential is then: find

Qh : [0, T ]×Ω→ R, qh : [0, T ]×Ω→ R3 such that for all t ∈ [0, T ], Qh(t) ∈ L h

and qh ∈H h satisfy:

Mixed Method for the Bohmian Quantum Potential

1) (Qh, ϑh)Ω =
~2

m

(
∇x · qh√

ρh
, ϑh

)
Ω

,

2) (qh, ςh)Ω = −(
√
ρh,∇xςh)Ω + (

√
ρh, ςhn)Γ.

(4.18)

Since we wish S ∈ L2(Ω), we choose L h to be a continuous finite element

space, and we choose H h to be an H(div)-conforming space (e.g. Raviart-

Thomas elements [221], such that in one dimension, Raviart-Thomas elements

collapse to be standard continuous finite elements). Equations (4.14) and

(4.18) define our mixed/discontinuous Galerkin method in semi-discrete form.

Computationally, we must also discretize time, as shown in §4 and §5.

It is worth noting that in the Lagrangian formulation the primitive

variables (ρ,u) are accompanied by the quantum action S and the quantum

wave function ψ. We will explicitly derive these terms in section §5 from the

solution (4.14). It is also worth noting that a pure discontinuous Galerkin

method was implemented as an alternative approach to the MDG method

solution shown in (4.14). This treatment used a dispersive flux formulation

as shown in [222]. We found that this formulation depended nonlinearly on

the sign of the advective flux term, leading in the naive implementation to the

formation of soliton/compacton type behavior; solutions which are well-known

in the ‘formally’ equivalent formulation of Korteweg fluids (see [43, 223–225])
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– up to turbulence effects etc., as explained in §3 – which model diffuse fluid

interfaces as well as having phenomenological interpretation in the context

of the nonlinear Schrödinger equation (see [226]) and the Gross-Pitaevskii

equation (see [227, 228]) given nearly identical initial conditions to the ones

we use in §5. However, in the context of chemical dynamics it is not clear that

these types of solutions carry physical significance, and so we have isolated

our analysis to the MDG method formulation presented in (4.14).

4.3 Boundary Treatment

A recurring difficulty in constructing numerical methods for initial-

boundary value systems of partial differential equations for physical systems is

the issue of how to prescribe mathematically consistent boundary conditions

which accommodate dynamic (physical) boundary data. It turns out that this

issue is a cause of both numerical and mathematical difficulties in establishing

the formal equivalencies between the TDSE and the QHD system of equations.

We show this behavior explicitly in an example in §5, but let us first examine

the mathematical source of this difficulty.

Recall that the system presented in (4.1)-(4.2) is derived explicitly from

the TDSE. That is, we have set ψ = ReiS/~, and want to expand the solution

of the Schrödinger equation in one unknown and one equation in ψ = ψ(t, x)

into a system of partial differential equations in the unknowns R = R(t, x)

and S = S(t, x). To make this a well-posed system we of course need a system

of two equations, where both unknowns must be assigned distinct boundary

conditions. First take the following form of the Schrödinger equation:(
−∆x +

2m

~2
V

)
ψ =

2mi

~
∂tψ, (4.19)
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and plug in ψ = ReiS/~ such that expanding gives for the time derivative,

2mi

~
∂tψ =

2mi

~
∂

∂t

(
ReiS/~

)
=

2mi

~
eiS/~∂tR−

2m

~2
ReiS/~∂tS,

(4.20)

and for the spatial component

∆xψ = ∆x(Re
iS/~) = ∇x · ∇x(Re

iS/~)

= ∇x ·
(
eiS/~∇xR +

i

~
ReiS/~∇xS

)
= eiS/~

(
∆xR +

2i

~
∇xS∇xR−

R

~2
(∇xS)2 +

i

~
R∆xS

)
.

(4.21)

Putting (4.20) and (4.21) back into (4.19) and canceling a factor of eiS/~

we obtain:

R
2m

~2
V = ∆xR +

2i

~
∇xS∇xR−

R

~2
(∇xS)2 +

i

~
R∆xS +

2mi

~
∂tR−

2m

~2
R∂tS,

(4.22)

Now, collecting the imaginary parts of (4.22),

−2mi

~
∂tR−

2i

~
∇xS∇xR−

i

~
R∆xS = 0,

and multiplying through by ~2/2m provides:

−∂tR−
1

m
∇xR∇xS −

1

2m
R∆xS = 0.

Additionally multiplying through by −2mR gives,

m∂tR
2 +∇xR

2∇xS +R2∆xS = 0,

where applying the product rule yields the conservation form:

m∂tR
2 +∇x · (R2∇xS) = 0. (4.23)
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Clearly setting R =
√
% and using the Madelung relation v = 1

m
∇xS for m a

constant m ∈ R leads to the usual conservation of mass equation:

∂t%+∇x · (%v) = 0. (4.24)

Similarly putting together the real parts of (4.22) gives:

2mR

~2
∂tS −∆xR +

R

~2
(∇xS)2 +

2m

~2
RV = 0,

such that upon multiplication through by ~2/2m2R we have:

1

m
∂tS −

~2

2m2R
∆xR +

1

2m2
(∇xS)2 +

1

m
V = 0.

Taking a derivation in x then yields

1

m
∂t∇xS −∇x

(
~2

2m2R
∆xR

)
+∇x ·

(
1

2m2
(∇xS)2

)
+

1

m
∇xV = 0.

Now again we substitute the important Madelung relation v = 1
m
∇xS giving

the form:

∂tv +
1

2
∇x(v · v)− ~2

2m2
∇x(R

−1∆xR) +
1

m
∇xV = 0. (4.25)

The Madelung relation, v = 1
m
∇xS, is of course equivalent to setting v to

be an irrotational field, since for any field S, ∇x × ∇xS = 0. Thus for an

irrotational vector field v, using that ∇x(v · v) = 2((v · ∇x)v + v ×∇x × v),

we may rewrite (4.25) as,

∂tv + (v · ∇x)v −
~2

2m2
∇x(R

−1∆xR) +
1

m
∇xV = 0,

so that multiplying by %m yields,

%∂tmv + (%mv · ∇x)v − %
~2

2m
∇x(R

−1∆xR) + %∇xV = 0.
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Combining this equation with (4.24) yields:

∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ + %∇xV = 0, (4.26)

for Q the Bohmian quantum potential given as Q =
(

~2

2m
∆x
√
%
)
/
√
%. It is

important to see that the formal equivalence between 4.19 and 4.26 is entirely

dependent on Madelung’s irrotational condition, which makes turbulent ef-

fects, for example, vanish. In the alternative derivation of the QHD regime,

using moment expansions (see for example [20, 42]) this restriction is not nec-

essary.

Thus we have arrived at our system of quantum hydrodynamic equa-

tions:
∂t%+∇x · (%v) = 0,

∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ + %∇xV = 0,
(4.27)

requiring initial conditions

ρ|t=0 = ρ0 and u|t=0 = u0,

and numerically requiring explicit boundary conditions ρb and ub on an irro-

tational vector field v. Additionally, and as an important aside, the formal

equivalence we have derived is constructed without mention of boundary con-

ditions, which is satisfied over (0, T ) × R3, but on a discrete domain Ω ⊂ R3

is a bit over optimistic, and as we will see below, does not in general hold.

That is, the TDSE code (see §5) sets the initial data ψi,b on the bound-

ary as a time-independent condition, so the boundary value ψb ≡ ψb = ψi,b is

enforced for all t ∈ [0, T ). Since ψi,b must be decomposed into Ri,b and Si,b

to make sense for the QHD formulation (4.27), these give Dirichlet conditions

which can be implemented, but are unstable in the QHD regime, since Ri,b
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exponentially decays on the boundary and as a consequence is not numerically

invertible; as it must be in the QHD formulation. These may however be ap-

proximated by setting ρi,b = ρA, the ambient density, and ui,b = − 1
m

∫
Gb
∇Sdx

for Gb the boundary element.

However, these BCs still are not well-posed in the QHD regime for the

following reason. First we compute the entropy inequality for the rescaled

version of (4.27) shown in (4.5) and (4.6). We may compute the important

classical/quantum entropy satisfying for non-boundary terms that:

d

dt

∫
Ω

(
ρ
|v|2

2
+

~2(∇x
√
ρ)2

4m
+ ρV

)
dx ≤ 0. (4.28)

We arrive at this system by multiplying the momentum equation from

(4.27) by v and integrating in space (e.g. the domain is some Ω ⊆ R3), such

that rearranging we find∫
Ω

v∂t(ρv) + v∇x · (ρv ⊗ v)dx−
∫

Ω

ρv∇xQdx+

∫
Ω

ρv∇xV dx = 0. (4.29)

The product rule allows us to expand the first term on the LHS as:∫
Ω

|v|2(∂tρ+∇x · (ρv)) + ρv∂tv + ρ|v|2∇x · v dx,

where |v|2 = v · v. Using the mass conservation equation twice from (4.27)

and applying the divergence theorem we find that,∫
Ω

v (∂t(ρv) +∇ · (ρv ⊗ v)) dx =
d

dt

∫
Ω

ρ
|v|2

2
dx+

1

2

∫
Ω

∇x · (ρv3)dx. (4.30)

Next, using the dispersion relation from the Bohm quantum potential the third
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term on the left yields:∫
Ω

ρv∇xQ =
~2

2m

∫
Ω

ρv∇x

(
∆x
√
ρ

√
ρ

)
dx

= − ~2

2m

∫
Ω

1
√
ρ
∇x · (ρv)∆x

√
ρdx+

~2

2m

∫
Ω

∇x · (
√
ρv∆x

√
ρ) dx

=
~2

2m

∫
Ω

{
∇x

(
1
√
ρ
∇x · (ρv)

)
∇x
√
ρ+∇x · (

√
ρv∆x

√
ρ)

}
dx

− ~2

2m

∫
Ω

∇x

(
1
√
ρ
∇x · (ρv)∇x

√
ρ

)
dx

=
~2

2m

∫
Ω

∇x
√
ρ ∂t∇x

√
ρdx+ boundary terms.

(4.31)

Finally the source term V = V (x) upon integrating by parts gives∫
Ω

ρv · ∇xV dx = −
∫

Ω

V∇x · (ρv)dx+

∫
Ω

∇x · (V ρu)dx

=
d

dt

∫
Ω

ρV dx+

∫
Ω

∇x · (V ρv)dx.

(4.32)

Then we have recovered (4.28) as an equality up to the boundary terms

in (4.30), (4.31) and (4.32). To recover the mathematical well-posedness of the

system these boundary terms must either vanish or be bounded and positive

(or negative) definite. One such choice of boundary data is, for example,

vb ≡ 0. Another is the pair of conditions ∇x
√
ρb ≡ 0 and Vb ≡ 0 for all

t ∈ [0, T ), and so forth.

The first set of boundary data, with vb ≡ 0, may be set with ρb ≡ ρA.

Since the action behaves as a phase, this seems a reasonable approximation,

since it effectively assumes that up to a constant of integration that the phase

is constant over boundary elements ∇Sb ≡ 0. These conditions are then

mathematically consistent with the system of equations (4.27), but have the
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physical effect of generating “inlet/outlet” boundary layers, caused by the

value of ρb.

Perhaps a more natural boundary condition is given by setting,

Un
h|Kji

= Un
h|Kij

,

where Un
h is the numerical solution at timestep tn, as explained in detail in

§4, and Kij ∈ ∂Ω. This boundary type is a first order approximation to

a transmissive or radiative condition that treats the boundary like a “ghost

cell,” and allows density and momentum to leave the domain as though falling

into vacuum, while allowing no density or momentum to enter. This condition

approximates to the first order, the effect of “not setting boundary conditions

at all,” and thus not badly perturbing the system (4.27) away from its natural

behavior, nor generating reflecting behavior, which in some contexts – such

as a chemical reaction occurring in a solvent bath – are difficult to physically

interpret.

4.4 A Numerical Test Case

We wish to test the accuracy of our MDG method formulation by solv-

ing an analytic test solution. In order to do this we choose a numerical flux

for (4.14) and restrict to spatial dimension l = 1. For the inviscid flux Φ we

implement the local Lax-Friedrich’s flux ΦlLF satisfying∫
Kij

ΦlLF ·ϕhdK =
1

2

∫
Kij

(f(Uh)|Kij
+ f(Uh)|Kji

) · nijϕh|Kij
dK

− 1

2

∫
Kij

(Specr(Γ0))((Uh)|Kij
− (Uh)|Kji

) · nijϕh|Kij
dK,

for nij the outward unit normal and Specr(Γ0) the spectral radius of Γ0; the

Jacobian matrix of the inviscid flux JUf(U) = Γ0(U) which may be repre-
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Figure 4.3: Here we show the relative error introduced by the weak entropy
boundary conditions for a = 0 and both b = 10 and b = 50. The boundary
data (the graphs on the right) show only the relative error on element b of ∂Ω
for b = 10 and b = 50, respectively.

sented by the following 2× 2 matrix,

Γ0(U) =

(
0 1
−u2 2u

)
. (4.33)

Summing over the elements of the mesh this term satisfies:

2Φ̃lLF (Uh,ϕh) =
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(f(Uh)|Kij
+ f(Uh)|Kji

) · nijϕh|Kij
dK

−
∑

Gi∈Th

∑
j∈S(i)

∫
Kij

(Specr(Γ0))((Uh)|Kij
− (Uh)|Kji

) · nijϕh|Kij
dK.

(4.34)

Next we discretize in time. That is, we denote a partition of [0,T] by

0 = t0 < t1 . . . < tT = T,
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for a timestep given as ∆tn = tn+1 − tn., and let Un
h denote the solution at

timestep tn. Thus we implement the following forward Euler scheme:

∂Uh

∂t
≈ U

n+1
h −Un

h

∆tn
,

which, along with the implementation of a slope limiter in the conservation

variables (ρ, ρu) given by van Leer’s MUSCL scheme (as shown in [196] and

[197]), allows us to explicitly solve (4.14). That is, we define an approximate

solution as Un
h for all tn such that n = 0, . . . , T satisfying:

1) Un
h ∈ Sdh, Qn

h ∈ Lh and qnh ∈Hh,

2)

(
Un+1
h −Un

h

∆tn
,ϕh

)
ΩG

+ Φ̃(Un
h,ϕh) + Θ(Un

h,ϕh) + (Snh, ϕh)ΩG
= 0,

3) (Qn
h, ϑh)Ω =

~2

m

(
∇x · qnh√

ρnh
, ϑh

)
Ω

,

4) (qnh, ςh)Ω = −
(√

ρnh,∇xςh
)

Ω
+
(√

ρnh, ςhn
)

Γ
,

5) Uh
0 = Uh(0).

(4.35)

The above formulation lends itself naturally to a staggered scheme. First,

given Un
h one solves step 3 and 4 for Qn

h and qnh, which provides Snh, allowing

us to solve for Un+1
h in step 2.

Now we construct an appropriate test case. Consider the dimension

N = 1 case and let u ≡ 0 on Ω for (4.5)-(4.6), such that ∂sρ = 0. Up to a

choice of boundary conditions, upon integration we have for (4.6) that

Q = C − V,

such that choosing a C ≡ V we find the following second order ordinary

differential equation:

ρ′′ − ρ−1(ρ′)2 = 0,
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whose solution is ρ = ex. We solve for the approximate solution of (4.14) using

the above scheme, with initial conditions ρ0 = ex, u = 0, V = C and m = 1836

the mass of a proton in Hartree atomic units (au). The boundaries are set

to the weak entropy boundary condition formulation as presented in [162,

185, 186] and [174]. We graph the relative error of our approximate solution

ρh to the exact numerical representation ρa in Figure (4.3). We see that

the two solutions are numerically exact in the interior of the domain, and

error accumulates in the boundary ∂Ω, as expected due to the weak entropy

boundary conditions. We note that the error on the boundary may be reduced

by increasing the absolute size of the interval [a, b].

4.5 Tunneling in TDSE and QHD

We proceed by testing a relatively standard example in quantum chem-

istry, given by a propagating Gaussian packet in the direction of a model Eckart

potential barrier. We solve the following one dimensional system:

∂tρ+ ∂x(ρu) = 0, (4.36)

∂t(ρu) + ∂x(ρu
2)− ρ∂xQ + ρ∂xV = 0. (4.37)

with initial conditions

ρ0 = ρA +

(
1√
2πµ

)
e
−(x−x0)2

2µ and u0 = (αV0)1/2 , (4.38)

where the Eckart potential is given by

V (x) = V0 sech2

(
1

2
(x− x1)

)
. (4.39)

As is conventional in quantum hydrodynamics, the mass is set to ap-

proximate the hydrogen (proton) mass m ∼ 2000 au (in Hartree atomic units),
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Table 4.1: Runge-Kutta k-th order in time
Parameter k=2 k=3

cil

(
1 0

1/2 1/2

)  1 0 0
3/4 1/4 0
1/3 0 2/3



dil

(
1 0
0 1/2

) 1 0 0
0 1/4 0
0 0 2/3



ρA ∼ 10−10 is a numerical background density for division, x0 centers the Gaus-

sian packet, x1 centers the potential, µ is the variance of the distribution, α

is a constant α ∈ R and V0 is the barrier height (which we may vary, so some

constant V0 ∈ R). In the quantum regime (when classical barrier transmission

is not present), the initial velocity u0 is often chosen to satisfy the following

condition on the initial kinetic energy K0 = 1
2
u2

0 = 1
4
V0.

The background ambient value ρA is required in order to satisfied the

mathematical and numerical well-posedness of the system such that the behav-

ior of the system is not perturbed away from its proper character by compound-

ing residual behavior, as shown in §3. Furthermore, from a phenomenological

point of view, this value is nonrestrictive and physically easily justified – for

example, for a chemical reaction occurring in a solvent bath, or, similarly, any

process occurring away from vacuum.

The discretization proceeds as in section §4.2 and §4.4, where we adopt

the local Lax-Friedrich’s inviscid flux with van Leer’s MUSCL slope limiting

scheme. Next we implement an explicit Runge-Kutta time discretization (see

Ref. [162, 198] and Ref. [3]). That is, we recast (4.14) as the following system
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Figure 4.4: The top graphs compare solutions to the TDSE and QHD system
in the so-called “eyeball norm,” using the forward Euler scheme. The bottom
solution shows the nontrivial formal difference. Here x refers to the x-th
meshpoint.
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of ordinary differential equations,

d

dt
Uh = Lh(Uh).

We achieve this by setting the value of the current timestep to U 0
h, and de-

composing this timestep into k substeps such that for i = 1, . . . , k we have the

intermediate solutions

U i
h =

i−1∑
l=0

cilU
l
h + dil∆t

nLh(U
l
h),

where the c’s and d’s are given in Table 4.1. Then setting Un+1
h = U k

h we

recover a solution such that:

1) Un
h ∈ Sdh, Qn

h ∈ Lh and qnh ∈Hh,

2)
(
U i
h,ϕh

)
ΩG
−

i−1∑
l=0

{(
cilU

l
h,ϕh

)
ΩG

+ dil∆t
n
[
Φ̃(U l

h,ϕh)

+ Θ(U l
h,ϕh) + (Slh, ϕh)ΩG

]}
= 0, for i = 1, . . . , k,

3) (Qi
h, ϑh)Ω =

~2

m

(
∇x · qih√

ρih
, ϑh

)
Ω

, for i = 0, . . . , k − 1,

4)
(
qih, ςh

)
Ω

=

(√
ρih, ςhn

)
Γ

−
(√

ρih,∇xςh

)
Ω

, for i = 0, . . . , k − 1,

5) Uh
0 = Uh(0).

(4.40)

Now we solve the resultant system using for our initial data (4.38)-

(4.39) explicitly that µ = 0.16, α = 2, x0 = 3 and x1 = 6, such that,

ρ0 = 10−10 +

(
1√
2πµ

)
e
−(x−3)2

0.32 and u0 = (2V0)1/2 ,
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Figure 4.5: We show the diffusive noise profile min(ρQHD, 10−3) in the QHD
solution, and the difference min(ρTDSE, 10−3)−min(ρQHD, 10−3). Here x refers
to the x-th meshpoint.

with potential:

V (x) = V0 sech2

(
1

2
(x− 6)

)
.

It is worth noting that we have thus chosen a kinetic energy which is in the

context of a mixed classical-quantum regime; which is just to say that some

classical trajectories trasmit over the barrier, in addition to those that tunnel

quantum mechanically. For boundary data we use the approximate well-posed

Dirichlet conditions discussed in §3:

ρb = ρA = 10−10 and ub = 0.

We compare our solution to a finite difference scheme for the TDSE provided

by Prof. Robert E. Wyatt [20] in order to test the accuracy of our formulation.

The TDSE has equivalent initial settings, while the boundary conditions are

given naturally via ψb = ψi,b as discussed in §3.

In Figure 4.4 these two solutions are compared. Is is clear that the

two solutions have the same qualitative behavior. However they do show

fundamentally different quantitative behaviors. Analysis has shown that the
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Figure 4.6: We show the absolute difference between the QHD solution using
the approximate boundary data from Figure 4.4 denoted ρψ with the trans-
missive boundary formulation from (4.44) denoted ρT . Here x refers to the
x-th meshpoint.

two most prevalent sources of error between these two solutions are diffusion

and boundary oscillations. The boundary oscillations clearly occur due to

the approximations discussed in §3. The diffusion, on the other hand, is a

signature of the slope limiter in the QHD formulation and is shown in greater

detail in Figure 4.5. Here we confirm that the MUSCL slope limiting scheme

is adding a type of “artificial diffusion” to the QHD solutions. We have found

that choosing a less restrictive slope limiter, such as the flux limiter of Osher

presented in [229], does stably reduce the diffusion in our solutions.

We may now recover trajectories, or characteristics, of the solution by

using the fact that (4.5) is satisfied at every time step (note that we show the

alternative method of integrating velocity “pathlines” in §6). We may think of
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Figure 4.7: We solve the accumulated density trajectories from (4.42) using
the transmissive solutions from ρT in Figure 4.6.

this equation as a kind of “conservation of density” here, and thus we simply

employ Reynold’s transport theorem (RTT):

∂

∂t

∫
Ω̃(t)

ρdx+

∫
Γ̃(t)

ρurel · ndx = 0, (4.41)

where urel is the relative velocity of the fluid with respect to the moving

boundary Γ̃(t). First consider the case when u(a) ≈ 0 such that we may choose

Ω̃(t) = (a, y(t)) where y(t) is the moving boundary treated as an unknown. By

assumption and construction, urel(a) = 0, whereas for a trajectory we require

urel(y) = 0. Then integrating (4.41) in t we find∫ y(t)

a

ρdx =

∫ y(0)

a

ρdx. (4.42)

Let us define for each trajectory y(t) with y(0) = y0 the “locally accumulated

mass” M by:

M(y0, t) =

∫ y(t)

a

ρ(x, t)dx.

Approximating each trajectory then directly follows from the equationM(y0, t) =

M(y0, 0).

To continue let us denote Mi(t) = M(xi, t), where xi is the i-th mesh-

point. To compute y(t), we compare M(y0, t) to the increasing sequence
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{Mi(t)}i=0...N and find j such that Mj−1(t) ≤ M(y0, t) < Mj(t), which gives

us that y(t) ∈ [xj−1, xj). Then to find y(t) recall that we have from (4.8) an

expansion

ρh(t, x) =
d∑
l=0

cl(t)N
j
l (x), for x ∈ (xj−1, xj)

where the cl = cl(t) are constants for every fixed t and the shape functions

N j
l (x) in our implementation are translated versions of polynomials {Pl}dl=0

on [−1, 1]. That is using fj : [xj−1, xj] 7→ [−1, 1] where

fj(x) = 2

(
x− xj−1

xj − xj−1

)
− 1,

we find, N j
l (x) = Pl(fj(x)). Then solving for y(t), formulated via

M(y0, t) = Mj−1(t) +

∫ y(t)

xj−1

ρh(x, t)dx = Mj−1(t) +

∫ y(t)

xj−1

d∑
l=0

clPl(fj(x))dx,

can be recast by a change of variables, as solving for X in

M(y0, t) = Mj−1(t) +

(
2

xj − xj−1

)∫ X

−1

d∑
l=0

clPl(z)dz, (4.43)

after substituting z = fj(x). But that just corresponds by the change of

variables, to

X = 2

(
y(t)− xj−1

xj − xj−1

)
− 1.

Then a solution to X exists by the intermediate value theorem, and since the

integrand is positive it is uniquely determined as the only solution on [−1, 1]

to the polynomial equation of degree d + 1 arising from (4.43). We my then,

for example, in the piecewise linear case (i.e. d = 1) use the quadratic formula

to recover X and hence the position of y(t) within Gj.
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Figure 4.8: Here we show mass conservation in the QHD regime given trans-
missive boundaries, where bf =

∫
[0,T )

∫
∂Ω
ρdxdt is the boundary flux.

Similarly, we also work in the other direction, with the balance of the

mass in [y(t), xj] such that the analogous integral equation becomes:∫ 1

Y

d∑
l=0

clPl(z)dz,

which provides for a consistency check on the accumulated density in either

direction. Consequently we have that the sequence {y(t)}t=1,...,T provides a

numerical approximation to the position of a particle initially at y0 when t = 0

at our given set of later times.

This formulation holds as long as our hypothesis, u(a) ≈ 0, is satisfied.

However, we can immediately extend this result to include the case u(a) 6= 0.

That is, after integrating in t we note that (4.41) becomes:∫ y(t)

a

ρdx =

∫ y(0)

a

ρdx+

∫ t

0

ρu(a)dt.
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This gives us an alternative equation to find y(t), where we must only add∫ t
0
ρu(a)dt to the accumulated density M at every t. We further note that this

basic framework may also be adapted to higher dimensions (see [230]).

Now, we again solve our system with (4.42) using for (4.38)-(4.39) that

µ = 0.16, α = 2, x0 = 3, x1 = 6, however now we introduce the transmissive

boundary condition:

Un
h|Kji

= Un
h|Kij

, (4.44)

as discussed in §3. In Figure 4.6 it is clear that the behavior between the

solutions with transmissive and approximate solutions is quite distinct, and

that boundaries are, so to speak, felt in the interior solution even before sig-

nificant density has reached ∂Ω. We use the transmissive boundary conditions

to construct the accumulated mass trajectories derived above, as they seem to

represent more physically cogent boundaries. The results are shown in Figure

4.7, where the the “Gaussian centered trajectories” are simply the trajectories

containing the majority of the initial density; that is, those trajectories whose

initial positions are ±1 au from the center of ρ0.

We further show that the MDG method is a conservative scheme. That

is, in Figure 4.8 we show that the density is effectively (numerically) normalized

to one on the domain, when taking into account the boundary flux. That is, we

see linear error growth at machine precision over 10,000 timesteps. Another

feature of the solution which is attractive in the sense of practical applica-

tions, is that the spatial invariance demonstrated by the solutions. In Figure

4.9 we show the this feature, where the same calculation from Figure 4.4 is

graphed, where there 400 meshpoints and 10,000 timesteps were used in order

to compare with the TDSE. However, as is clear from Figure 4.9, with only

25 meshpoints the solution provides the same qualitative answer. This is an
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Figure 4.9: Here we show the remarkable spatial invariance of the solution.
These represent the same solution as that given in Figure 4.4, except the left
graph is with 25 meshpoints and 100 timesteps, and the right at 50 meshpoints
and 200 timesteps.

important feature in chemical applications where computations must scale in

3N dimensions, for N the number of atoms in the molecular system of interest

(see for example [231]).

4.6 Recovering ψ and S in both frames

Now that we have solutions in the Eulerian and Lagrangian coordinate

frames as given in §4 we may recover the important variables ψ and S in either

frame. First we note that we may alternatively recover the trajectories using

the solution U from §4 to solve the initial value problem:

d~r

dt
= u(t, ~r) with ~r|t=0 = ~r0. (4.45)

We recover these ~r by direct integration, and compare them to those computed

via (4.42) (see figure 4.10), where we refer to the ~r trajectories computed in

(4.45) as the “velocity pathlines.”

The trajectories computed using the velocity field (4.45) are shown in
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Figure 4.10: We graph the quantum trajectories using (4.45) to solve for ~r,
which can be compared with the accumulated mass trajectories shown in Fig-
ure 4.7.

Figure 4.10 and show qualitatively similar behavior to the trajectories com-

puted using the accumulated mass formulation in (4.42). There is no neces-

sarily unique way of arriving at the trajectories one chooses to represent the

solution in the Lagrangian frame. For example, one may utilize a method

which weights the solutions between (4.42) and (4.45). That is, we may com-

pute the trajectory positions via (4.45) and then offset these by a weighted

average of the density conservation in (4.42). We provide details on particular

alternative in appendix A and show an example case.

Figure 4.11: The Eulerian solution ρ(t, x) and the corresponding Lagrangian
solution ρ(t, ~r) for the same initial condition settings as in figure 4.7 using the
conservation form of the trajectories (4.42)..
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Figure 4.12: A graph of the Eulerian solution S(t, x) and the corresponding
Lagrangian solution S(t, ~r) for the same initial condition settings as in figure
4.11 using the conservation form of the trajectories (4.42).

It is now possible to solve for a number of derived variables in either

the Lagrangian or Eulerian frames in order to recover the phase information

of the quantum wave-packet associated to each characteristic pathline. First

we recover the trajectory-wise solutions ρ(s, ~r) and u(s, ~r), and then compute

the variables:

∇xS =
√
mu and ψ =

√
ρeiS/~, (4.46)

where S(s, ~r) is the quantum action and ψ(s, ~r) is the quantum wavefunction.

Recall that R(s, ~r) =
√
ρ(s, ~r) as shown in §3, such that using v for the velocity

from §2 we recover from (4.46) the more familiar formulation:

∇xS = mv and ψ = ReiS/~. (4.47)

It is important to note that up to a constant of integration, S and ψ

are completely determined by the solution (4.14). Also, (4.47) is satisfied in

both reference frames, so we now have the following solutions:

ρ(s, x), ρ(s, ~r),v(s, x),v(s, ~r), ψ(s, x), ψ(s, ~r), S(s, x), and S(s, ~r). (4.48)

These solutions are graphed in figures 4.11–4.12, where it is interesting to

note that the two frames draw out different aspects of the solution. While the
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Lagrangian frame tracks individual “particle” trajectories across the function

profiles, it misses some of the nuance in the continuous structure of the surface;

which is naturally recovered by the Eulerian frame solution. Furthermore, as

lower resolution, we find that the conservation based trajectories from (4.42)

are more well-behaved than the velocity based trajectories from (4.45).
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Chapter 5

Chemical Reactor Models

5.1 Introduction

The study of chemical reactors span many decades of research and a

large number of fields of study. Reactors that model complicated dynam-

ics adjoined to chemical kinetics are not only of fundamental importance in

applications in chemistry and chemical engineering [30, 45, 184], but also in

mechanical and aerospace engineering [232], atmospheric and oceanic sciences

[233], astronomy and plasma physics [234, 235], and generally in any number

of biologically related fields [236]. That is, the prevalence of reactive chemical

systems in each of these fields, makes the ability to model evolutionary systems

with functional local pressures, velocities, densities, etc., essential for under-

standing the way in which many experimental and industrial systems evolve

as a function of space and time. In fact, one can generally state that any

time-evolving state involving thermodynamic functions with reaction kinetics

must, at some level of sophistication, model chemical reactors.

The relative ubiquity of chemical reactor models in dynamic contexts

has been somewhat hampered by the mathematical and technical difficulties

that arise at the level of modélisation. A good review of approaches related to

reactor systems from the point of view of physical chemistry can be found in

Ref. [30]. Though the theoretical foundations of the field are quite dense (see

for example [30, 237]), the implementational studies of these systems both nu-
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merically and in comparison to experimental systems remain relatively sparse.

One of the reasons for this, is that reaction-diffusion systems that display com-

plicated chemical kinetics do not satisfy a strict mass conservation property,

due to the fact that the components of the flow field have different molecular

weights. That is to say, up to the limiting reagent of the reaction, the conserva-

tion of atoms in the system does not, strictly speaking, lead to a conservation

of mass in the system (though the continuity equation is still satisfied) (see

[45]). In addition, the reaction kinetics often occur on substantially differ-

ent time-scales than the transport dynamics (e.g. such as in a wind-blown

spreading flame [238]).

Because of these complicating features that emerge in reactor systems,

robust compressible flow models are often required which introduce sophis-

ticated and state-of-the-art applied mathematical and numerical models (see

Ref. [47, 66, 69, 134, 184]). Generally, the goal in these fields is to model accu-

rately, consistently, stably and efficiently, reaction dynamics of systems which

can accommodate “as much” chemistry and physics as possible.

In this spirit, we introduce a generalized approach to modeling chemi-

cal reactors, or reaction-diffusion systems. Our models are largely inspired by

Ref. [30, 46, 237, 239, 240]. We find for our explicit examples, that the present

approach satisfies the above mentioned conditions, in that they are remark-

ably stable, accurate, and consistent. The fact that we use the discontinuous

Galerkin finite element method additionally makes them – up to paralleliza-

tion – quite efficient. We obtain the stability in the reaction dynamics by

using a novel approach to modeling the reaction parameter; which makes use

of solving an ordinary differential equation locally in time for a reaction of

arbitrary order. The accuracy follows from the analysis given on the viscous
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and inviscid fluxes in chapter 3, and the consistency follows from the fact that

our system is mathematically well-posed (up to a source term) as presented in

chapter 2.

In §5.2 we present, in some sense, the simplest possible case of a sta-

tionary reactor. We present the general solution to these types of problems,

and then show explicitly how one may implement this for a given reaction.

In §5.3 we expand upon this formalism to include general compressible flow

reactors, where we use for simplicity a barotropic pressure law (leading to an

isentropic reactive flow equation). Here again we show how to implement this

system for a set of examples. Finally, in §5.4 we show how to implement the

solutions from §5.2 and §5.3 in higher dimensions.

5.2 Basic Stationary Chemical Reactors

Consider the stationary reaction-diffusion system comprised of i =

1, . . . , n species in one spatial dimension:

∂tαi − ∂x(Di(α)∂xαi) = Ai(α),

Ai(α) = (ξi − ηi)

(
kf

n∏
i=1

αηii − kb
n∏
i=1

αξii

)
,

(5.1)

with initial conditions

αi(t = 0) = αi,0.

Here αi is the concentration of the i-th chemical constituent, the Di are the

interspecies diffusion coefficients, and ηi and ξi are the stoichiometric coeffi-

cients.

We use the discontinuous Galerkin method here (see Chapter 3 for

notation). We thus multiply by a DG test function ϕh locally over elements
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Gi and integrate in space, such that

d

dt

∫
Gi

ϕhαidx−
∫

Gi

ϕh∂x(Di(α)∂xαi)dx =

∫
Gi

ϕhAi(α)dx. (5.2)

The first and second term on the left comprise the usual parabolic system from

chapter 2.

Here we solve the reactions by exact integration, which serves as a

replacement for the approximate forward Euler step for this piece. That is,

we solve (5.1) in two steps, first we analytically solve the ODE for the parts

containing the i-th component of α. That is, for the i-th component αi let the

terms of Ai(α) which contain factors of αi — which is either in the reactant

or product well — be denoted by Åi(α), and the remaining terms be denoted

by Ãi(α), such that:

Ai(α) = Åi(α) + Ãi(α), where
∂Ãi

∂αi
= 0.

Then we define α̌i as the solution to the following ODE,

∂tα̌i = Åi(α), (5.3)

and using explicit integration find the rate of change locally in time, which

upon plugging back into Ai(α) is used to solve:

∂tαi − ∂x(Dij(α)∂xαi) = Ai(α), (5.4)

using the usual DG methodology.

Now we are ready to solve (5.4). Let the αi’s be classical solutions

to (5.1). Multiplying by test functions ϕh and ϑh, and integrating in x then

yields:

d

dt

∫
Gi

ϕhαidx−
∫

Gi

ϕh∂x(Di(α)∂xαi)dx =

∫
Gi

ϕAi(α)dx,∫
Gi

σiϑhdx−
∫

Gi

(αi,hϑh)xdx+

∫
Gi

αi,hϑ
h
xdx = 0.

(5.5)
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Index Species Viscosity/Pa · s Mass Diffusion/cm2 · s−1

α1 MMH ∼ 1.0× 10−4 ∼ 5.9× 10−6 (1)

α2 CH2N2H2 ∼ 9.0× 10−5 ∼ 5.0× 10−6

α3 NO2 ∼ 14.9× 10−6 (2) ∼ 9.0× 10−2 (3)

α4 HNO2 ∼ 2.0× 10−5 ∼ 1.2× 10−2 (4)

Table 5.1: All approximate values given at STP. (1) was measured via
chronoamperometry as shown in Ref. [241]. (2) was measured using oscil-
lating disc viscometry in Ref. [242]. (3) was determine via the single com-
ponent Chapman-Enskog experimental fits in Ref. [243]. (4) was calculated
using diffusion denuders in Ref. [244]. The remaining approximate coefficients
are adapted using relative magnitude arguments from simple collisional theory
[12] (viz. ν ∝ m and D ∝ σ−1).

Replacing the viscous term from chapter 2 with the mass diffusion term on

the right in (5.5), we may define an approximate solution to (5.5) as functions

αi,h and σh for all t ∈ (0, T ) satisfying:

1) αi,h ∈ C1([0, T ];Sdh), σh ∈ Sdh,

2)
d

dt
(αi,h, ϕh)ΩG

− G (σh, αi,h, ϕh) + N (σh, αi,h, ϕh)

= (Ai 6=k(αh), ϕh)ΩG
+ (Ak(αh), ϕh)ΩG

,

3) Q(α̂, σh, αi,h, ϑh, ϑ
h
x) = 0,

4) αi,h(0) = αi,0.

(5.6)

This solution follows for all reactions schemes of arbitrary order which sat-

isfy the law of mass action (5.1), whether or not the reactions in Ai(α) are

elementary.

Let us make this explicit. First consider the second order hypergolic
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ignition reaction,

α1 + α3 
 α2 + α4,

of monomethylhydrazine α1 = MMH = CH3N2H3 with nitrogen dioxide α3 =

NO2, given exhaust radical α2 = CH3N2H2 and nitrous acid α4 = HONO,

MMH + NO2

f
GGGGBFGGGG

b
CH3NNH2 + HONO, (5.7)

with forward reaction rate (see Ref. [245]):

f = kf = 2.2× 1011e−5900/Rϑcm3(mol · s)−1,

where ϑ is the temperature at which the reaction occurs and R is the ideal

gas constant in cal ·K−1mol−1. It follows then for α1, α2, α3 and α4, that (5.3)

becomes:

∂t[MMH] = −f [MMH][NO2], ∂t[CH3N2H2] = −b[CH3N2H2][HONO],

∂t[NO2] = −f [NO2][MMH], ∂t[HONO] = −b[HONO][CH3N2H2].
(5.8)

Since a hypergolic ignition is far from equilibrium b = kb is effectively zero in

the back reaction, and it will thus be neglected.

Now we discretize in time, denoting a partition of [0,T] by

0 = t0 < t1 . . . < tT = T,

for a timestep given as ∆tn = tn+1 − tn. Solving the ordinary differential

equations from (5.8) via integration over discrete timesteps then yields the

two equations:
[MMH(tn+1)] = [MMH(tn)]e−kf∆t[NO2],

[NO2(tn+1)] = [NO2(tn)]e−kf∆t[MMH].

However, for ignition reactions, thermal explosions and detonations, which are

characterized by shock front propagation and inhomogeneous catalytic expan-

sion, a mass transfer correction hm ∈ R may be added to the rate constant kf
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(see Ref. [46]), since if such a term is not added, the timestep ∆t needed to

resolve the solution in bulk concentrations scales inversely with the Arrhenius

factor ∆t ∼ k−1
f , which makes solving in units of cubic centimeters and grams

untenable over semiclassical timescales.

This correction-based formulation yields in general that

Ai(α) = (ξi − ηi)

(
{kf + hm}

n∏
i=1

αηii − kb
n∏
i=1

αξii

)
, (5.9)

which provides in our context that,

[MMH(tn+1)] = [MMH(tn)]e−{kf+hm}∆t[NO2],

[NO2(tn+1)] = [NO2(tn)]e−{kf+hm}∆t[MMH],

which is the new values of α1 and α3 at timestep tn+1. Thus to find the rate of

change of α1 and α3 at timestep tn+1 requires us to calculate the difference in

the concentration from the previous timestep, which is to say generally that

for i = 1, 3 and î = 3, 1 its complementary reagent,

αn+1
i =

(
αni e

−{kf+hm}∆tαn
î − αni

)
,

or more explicitly, that we solve for

[MMH(tn+1)] = [MMH(tn)]
(
e−{kf+hm}∆t[NO2] − 1

)
,

[NO2(tn+1)] = [NO2(tn)]
(
e−{kf+hm}∆t[MMH] − 1

)
.

(5.10)

Generally, in a catalytic expansion of the local volume element, which

occurs in an ignition reaction such as (5.7), the mass transport correction

hm is needed to account for the substantial impact of thermal conduction and

diffusion, both of which have a functional dependency on the local temperature

gradient of the flow field. In §5.3 we will require such a term in order to model
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Figure 5.1: We show the hypergolic ignition reaction from 5.7, where initial

conditions are given by α1,0 = 0.49 exp
(
− (x−60)2

800

)
, α2,0 = 1 × 10−5, α3,0 =

0.49 exp
(
− (x−40)2

800

)
and α4,0 = 1 × 10−5, where transmissive boundaries are

used.

high pressure shockwaves. Here, on the other hand, we may simply convert

to units of meters and kilograms which allows for stable solutions in µs, and

thus set hm ≡ 0 for each of our following graphs.

Now we incorporate this analytic correction (i.e. the local solution to

(5.10)) into our discontinuous Galerkin scheme. That is, our approximate
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solution is formulated to verify: for every n ≥ 0 find αn+1
i,h such that:

1) αi,h ∈ Sdh, σh ∈ Sdh,

2)

(
αn+1
i,h − αni,h

∆t
, ϕh

)
ΩG

+ N (σnh , α
n
i,h, ϕh)− G (σnh , α

n
i,h, ϕh)

=
(
Ãi(α

n
h), ϕh

)
ΩG

+
1

∆t

(
αni,he

−{kf+hm}∆tαn
î,h − αni,h, ϕh

)
ΩG

,

3) Q(α̂, σnh , α
n
i,h, ϑh, ϑ

h
x) = 0,

4) αhi,0 = αi,h(0).
(5.11)

It remains to set the mass diffusion coefficients. The most straight-

forward way of choosing these Di, is by setting them equal to experimentally

determined constants, in which case one may make the additional assumption

of pure diffusion, where interspecies diffusion is neglected. In this case the Di

reduces to a vector of positive constants, Di ∈ R+. The diffusion coefficients

generally occur on a timescale which is significantly slower than the reaction

kinetics, in which case their effects are relatively negligible on the dynamics

of the stationay solver. Setting the transmissive boundary conditions

Un
h|Kji

= Un
h|Kij

, (5.12)

we solve (5.11) for (5.7), and show a graph of the solution in Figure (5.1) using

the diffusion constants from Table 5.2, where the initial conditions are given

in the figure caption.

However, the diffusion constants may obey complicated dynamics, in

which case functional dependencies may be established, such that, for example

Dij = Dij(α, ϑ) for ϑ the temperature at which the reaction occurs (thus

constant in the isothermal approximation). These may be determined in a

number of different ways, including empirically, using basic collisional theory
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Figure 5.2: The top graphs compare solutions to α3 with respect to the con-
stant vector Di (on the top left), and the Chapman-Enskog matrix Dij (on
the top right). The bottom left is a difference map between these two solu-
tions, and the bottom right shows the noise occurring near both the reagent
interfaces and near the (weak entropy) boundary of the domain, ∂Ω.

arguments, or more complicated functional relationships, such as the Stokes-

Einstein relation or applying the fluctuation dissipation theory. In any case,

the coefficients Di are the row sums over the matrices Dij, which is just to say

that

Di =
n∑
j=1

Dij.

Let us present functional forms for the mass diffusion, as discussed and
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derived in Ref. [30, 31] that arrise from the Chapman-Enskog theory of gases.

That is, recall that the mass fraction of the j-th component µj may be written

as µj/
∑

i µi, such that with respect to the specific volume ρ−1 the total molar

concentration of the mixture ñ is given in terms of the specific molecular weight

of each component Mi, which yields:

ñ =
n∑
i

ñi =
n∑
i

µi/Mi, (5.13)

providing a formula for the molar fraction of the j-th component of the mix-

ture, xj = ñj/ñ. Then we use the following multicomponent form:

Dij =

(
1

Mj

∑
k

xkMk

)
Kji −Kii

|K|
, (5.14)

where the cofactor matrices are given by:

Kji = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 . . . K1,i−1 K1,i+1 . . . K1,n
...

...
...

...
Kj−1,1 . . . Kj−1,i−1 Kj−1,i+1 . . . Kj−1,n

Kj+1,1 . . . Kj+1,i−1 Kj+1,i+1 . . . Kj+1,n
...

...
...

...
Kn,1 . . . Kn,i−1 Kn,i+1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.15)

with entries satisfying,

Kij =
xi

[Dij]
+
Mj

Mi

∑
k 6=i

xk
[Dik]

if i 6= j, and zero when i = j,

such that the binary mixtures are set componentwise via,

[Dij] = CDijp
−1
√
ϑ3(Mi +Mj)/2MiMj

with empirical binary constants CDij , which may be found semi-explicitly in

terms of the reduced temperature of the mixture T ∗12, a measure of the first
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order deviation from the idealized rigid sphere model Ω
(1,1)
1,2 , and the cross

section radius σ1,2, such that:

CDij =

(
0.0026280

σ2
1,2Ω

(1,1)
1,2 T ∗12

)
.

Further note that 5.14 can be written using the classical adjoint matrix in

order to save significant computational time, so that we obtain the functional

scalar valued diffusion mixture:

Dij =

(
1

Mj

∑
k

xkMk

)
(K−1)ij − (K−1)ii, (5.16)

where (K−1)ij represents the ij-th entry of the full rank inverse matrix K−1.

We now compare solutions from setting the constant vector Di, with

those obtained from using the Chapman-Enskog treatment giving each com-

ponent Dij separately. Again using the transmissive boundary conditions we

solve (5.11) using both these mass diffusion treatments. Graphs of the differ-

ences are plotted in Figure 5.2. As can be readily observed, the Chapman-

Enskog treatment leads to diffuse stability at the interface between reagent

crossings, which is to say that the mixing greatly reduces the effective diffu-

sivity at the point where the concentrated reagents cross. This is due to the

fact that the Chapman-Enskog theory effectively “mixes,” or averages in a

weighted sense, the componentwise diffusivities where they overlap, while the

constant treatment effectively sums them.
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5.3 Basic Flow Reactors

When the reactions occur along a compressible flow reactor, then in

one dimension the system of equations in (5.1), become:

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) + ∂xp− ∂x(ν(ρ, µ)∂xu) = 0,

∂t(ρµi) + ∂x(ρµiu)− ∂x(Di(ρ, µ)∂xµi) = Ai(ρµ),

Ai(ρµ) = (ξi − ηi)

(
kf

n∏
i=1

(ρµi)
ηi − kb

n∏
i=1

(ρµi)
ξi

)
,

(5.17)

with initial conditions,

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, (ρµi)|t=0 = ρi,0.

The barotropic pressure p = p(ρµ1, . . . , ρµn) is chosen to satisfy,

p =
n∑
i=1

(ρµi)
γi , (5.18)

where
∑n

i=1 µi = 1, and using ρi = ρµi, the form of the viscosity functional

ν = ν(ρ1, . . . , ρn) is fixed to satisfy

ν = ψ′(p)
n∑
i=1

ρi∂ρip, (5.19)

for ψ′(p) = Cp−α given α ∈ (0, 1) and C > 0 as empirically determined

constants.

As shown in equation (3.10) in chapter 2, we can express our system as

U t + ΓUx − (K Ux)x = S,

Σ−Ux = 0,
(5.20)
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where U and Γ remain unchanged, while the dissipative flux matrix K is now

characterized by

K =
1

ρ



0 0 . . . . . . . . . 0
−νu ν . . . . . . . . . 0
−D1µ1 0 D1 0 . . . 0

−D2µ2
... 0 D2

. . .
...

...
...

...
. . . . . . 0

−Dnµn 0 0 . . . 0 Dn


, (5.21)

and the source term S is given by

S = (0, 0,A1(α), . . . ,An(α))T ,

such that it splits in the same way as the Ai’s, which is just to say that

S = S̊ + S̃.

Then recasting (5.6) in the setting of §5.2, we can define an approximate

solution to the weak form of (5.20) as functions Uh and Σh for all t ∈ (0, T )

satisfying:

1) Uh ∈ C1([0, T ];Sdh), Σh ∈ Sdh,

2)
d

dt
(Uh,ϕh)ΩG

+ Φ̃(Uh,ϕh)−Θ(Uh,ϕh)

− G (Σh,Uh,ϕh) + N (Σh,Uh,ϕh) = (Sh, ϕh)ΩG
,

3) Q(Û ,Σh,Uh,ϑh,ϑ
h
x) = 0,

4) Uh(0) = U 0.

(5.22)

We may now use this to solve for the hypergolic flow reaction (5.7),

such that upon discretizing in time and applying of the local Lax-Freidrich’s
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flux, a solution is obtained such that: for every n ≥ 0 find Un+1
h such that

1) Un
h ∈ Sdh, Σn

h ∈ Sdh,

2)

(
Un+1
h −Un

h

∆tn
,ϕh

)
ΩG

+ Φ̃lLF (Un
h,ϕh)−Θ(Un

h,ϕh)

− Gb(Σ
n
h,U

n
h,ϕh) + N (Σn

h,U
n
h,ϕh) =

(
S̊
n

h + S̃
n

h,ϕh

)
ΩG

,

3) Q(ÛRB,Σ
n
h,U

n
h,ϑh,ϑ

h
x) = 0,

4) Uh
0 = Uh(0).

(5.23)

Now we can solve (5.23) up to a choice of initial-boundary data. Con-

sider the initial conditions from Figure 5.1 on the mass fractions µi for i =

1, . . . , 4, with

ρ = 200, 000 kg/Vol,

corresponding to an approximate initial pressure of ∼ 6 MPa or ∼ 60 atm,

and given the initial velocity

u0 = 5× 10−5 sin

(
2πx

50

)
m/µs,

where the viscosity coefficient C is the average

C =
1

4

4∑
i=1

(νapprox,i),

from Table 5.2, and again we choose the vector of constants Di as in Figure

5.1. Here, and in the rest of this section, we set the mass transfer correction

(as discussed above) to hm ≈ −0.9kf in order to rescale solutions in µs.

Next, we use weak entropy boundary conditions, as discussed in chapter

2, and set the transmissive conditions,

ρnh|Kji
= ρnh|Kij

and µnh,i|Kji
= µnh,i|Kij

,
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Figure 5.3: The top left graph shows the depletion of the nitrous dioxide, the
compound with the largest heat capacity index as approximated by the ideal
gas assumption. Hence, the speed of sound is highest in the region of highest
NO2 concentration, as seen in the top right graph. The bottom graph shows
that the velocity field u (color) breaks through the speed of sound (light grey)
in the region containing MMH, causing a shock front to propagate through
the solution.
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with velocity inlets corresponding to:

unh(x = 0) = 0.5 m/µs and unh(x = 100) = −0.5 m/µs.

The specific heat capacities are approximated using Cv = fR/2, for f = 3N

the degrees of freedom of the molecule. Then the ideal gas assumption Cp =

Cv + R is used to calculate γ = Cp/Cv. We show the results in Figure 5.3,

were the dynamics of the velocity u = u(t, x) and pressure p = p(t, x) cause

substantial perturbations in the solution space – leading to shockwaves and

increased mixing of the components of the flow.

Let us briefly discuss the origin, from a physical standpoint, of the

viscosity functional ν. If we replace the constants α and C with the standard

first approximation (see Ref. [30]):

C = Cνϑ
s (5.24)

where s ∈ (0, 1) is the empirically determined temperature index that takes

the place of α, and Cν is chosen to conform to some temperature dependency;

for example, the so-called Sutherland form leads to

CνS = kνS/(1 + S/ϑ),

where S is Sutherland’s constant and CνJ and kνS are empirically determined.

This then leads to the multicomponent viscosity of a mixture (see Ref. [30]),

which, upon using the identities associated with 5.13, in the bulk limit gives:

νmix =
n∑
i=1

[
x2
i

/(
x2
i ν + Cν

∑
k 6=i

xixk
Rϑ

pMi[Dik]

)]
, (5.25)

for Cν = 1.385 as determined by collisional analysis (See Ref. [30]). This form

of the viscosity is substantially less stable numerically than (5.19), though
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Figure 5.4: Here we show the supersonic nozzle with a propagating hypergolic
reaction mechanism.

of a similar form. That is, both formulations can be seen to satisfy Ein-

stein’s more general form (see Ref. [30, 246–248]) that may be given as νmix =

ν + Cνϕ, where ϕ = ϕ(ν1, . . . , νn, ρ, ϑ, µ1, . . . , µn) is a state dependent func-

tion. In fact, from this it is clear that the functional form from (5.19),

νmix = ψ′(p)
∑n

i=1 ρi∂ρip, alternatively satisfies the Einstein relation, and has

the effect of substantially increasing the stability of the system.

Finally let us show a supersonic nozzle with hypergolic reaction kinet-

ics. That is, set the initial conditions homogeneous in the domain, such that

the mass fractions satisfy αi,0 = 10−5 for i = 1, . . . , 4, with all other initial

conditions set as in Figure 5.3. The boundary conditions are set to satisfy:

ρnh|Kji
= ρnh|Kij

, µn+1
h,i (x = 0) = µnh,i(x = 0),

and un+1
h (x = 100) = unh(x = 100),

with a supersonic nozzle at the inlet:

µn+1
h,1,3(x = 0) = 0.45, µn+1

h,2,4(x = 0) = 0.01 and un+1
h (x = 0) = 10m/µs.

The solution is given in Figure 5.4, where the supersonic inlet is shown with
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respect to the speed of sound, and the reaction kinetics from (5.7) are observed

to travel along the edge of the shock front.

5.4 General Chemical Reactors

Consider the generalized barotropic flow reactor in arbitrary dimension

N , with n chemical constituents:

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇x · S = 0,

∂t(ρµi) +∇x · (ρµiu)−∇x · (Di∇xµi) = Ai,

Ai = (ξi − ηi)

(
kf

n∏
i=1

(ρµi)
ηi − kb

n∏
i=1

(ρµi)
ξi

)
,

(5.26)

with initial conditions,

ρ|t=0 = ρ0 > 0, ρu|t=0 = m0, (ρµi)|t=0 = ρi,0,

and where the stress tensor satisfies

S = p− 2hD(u)− g∇x · u, (5.27)

for h = h(ρ, µ) the shear viscosity, g = g(ρ, µ) the bulk viscosity, and the

strain tensor D(u) = 1
2

(∇xu+ t∇xu). Let us rewrite (5.27) componentwise

via Sij = pδij − τij where,

τij = h

(
∂ui
∂xj

+
∂uj
∂xi

)
+ g∇x · uδij.

It is important to note that in Ref. [249] the bulk viscosity g vanishes in

the barotropic setting, though there is no reason to expect this to hold in

general. That is, generally we may consider a shear viscosity h satisfying the
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Einstein relation, as discussed above, where we can adapt the coefficient g via

a computation similar to that shown in Ref. [36] to set g = 2 (ρ∂ρh− h) (where

it should be noted that such a formulation is known not to satisfy the second

entropy inequailty, as previously discussed).

Again using that ρi = ρµi with (5.18) and (5.19) we have the state

vector

U = (ρ, ρu1, ρu2, ρu3, ρ1, . . . , ρn)T ,

the i = 1, . . . , 3 inviscid flux vectors

f i = (ρui, ρu1ui + pδ1i, . . . , ρuNui + pδNi, ρ1ui, . . . , ρnui)
T , (5.28)

such that the Jacobian splits into the following three matrices for N = 3:

Γ1 =



0 1 0 0 0 · · · 0
−u2

1 2u1 0 0 ∂ρ1pδ11 · · · ∂ρnpδ11

−u2u1 u2 u1 0 0 · · · 0
−u3u1 u3 0 u1 0 · · · 0
−u1µ1 µ1 0 0

...
...

...
... u1In

−u1µn µn 0 0


, (5.29)

and

Γ2 =



0 0 1 0 0 · · · 0
−u2u1 u2 u1 0 0 · · · 0
−u2

2 0 2u2 0 ∂ρ1pδ22 · · · ∂ρnpδ22

−u3u2 0 u3 u2 0 · · · 0
−u2µ1 0 µ1 0

...
...

...
... u2In

−u2µn 0 µn 0


, (5.30)
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and

Γ3 =



0 0 0 1 0 · · · 0
−u3u1 u3 0 u1 0 · · · 0
−u3u2 0 u3 u2 0 · · · 0
−u2

3 0 0 2u3 ∂ρ1pδ33 · · · ∂ρnpδ33

−u3µ1 0 0 µ1
...

...
...

... u3In

−u3µn 0 0 µn


, (5.31)

such that for i = 1, . . . , N, we have that ΓiU i = f i,i, where U i = ∂U/∂xi.

Likewise we have the viscous flux vectors:

gi = (0, τi1, . . . , τiN ,D1∂xiµ1, . . . ,Dn∂xiµn)T

where setting χ = 2h+ g, the dissipative flux matrices Ki,l in N = 3 are:

K1,1 =
1

ρ



0 0 . . . . . . . . . . . . . . . 0
−χu1 χ 0 0 . . . . . . . . . 0
−hu2 0 h 0 . . . . . . . . . 0
−hu3 0 0 h . . . . . . . . . 0
−D1µ1 0 0 0 D1 0 . . . 0

−D2µ2
...

. . . . . . . . . D2
. . .

...
...

...
...

. . . . . . . . . . . . 0
−Dnµn 0 0 . . . . . . . . . 0 Dn


, (5.32)

K1,2 =
1

ρ


0 0 0 0
−gu2 0 g 0 0
−hu1 h 0 0

0 0 0 0
0 0

 , (5.33)

K1,3 =
1

ρ


0 0 0 0
−gu3 0 0 g 0

0 0 0 0
−hu1 h 0 0

0 0

 , (5.34)
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K2,1 =
1

ρ


0 0 0 0
−hu2 0 h 0 0
−gu1 g 0 0

0 0 0 0
0 0

 , (5.35)

K2,2 =
1

ρ



0 0 . . . . . . . . . . . . . . . 0
−hu1 h 0 0 . . . . . . . . . 0
−χu2 0 χ 0 . . . . . . . . . 0
−hu3 0 0 h . . . . . . . . . 0
−D1µ1 0 0 0 D1 0 . . . 0

−D2µ2
...

. . . . . . . . . D2
. . .

...
...

...
...

. . . . . . . . . . . . 0
−Dnµn 0 0 . . . . . . . . . 0 Dn


, (5.36)

K2,3 =
1

ρ


0 0 0 0
0 0 0 0 0
−gu3 0 0 g
−hu2 0 h 0

0 0

 , (5.37)

K3,1 =
1

ρ


−hu3 0 0 h

0 0 0 0 0
−gu1 g 0 0

0 0 0 0
0 0

 , (5.38)

K3,2 =
1

ρ


0 0 0 0
0 0 0 0
−hu3 0 0 h 0
−gu2 0 g 0

0 0

 , (5.39)
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K3,3 =
1

ρ



0 0 . . . . . . . . . . . . . . . 0
−hu1 h 0 0 0 . . . . . . 0
−hu2 0 h 0 . . . . . . . . . 0
−χu3 0 0 χ . . . . . . . . . 0
−D1µ1 0 0 0 D1 0 . . . 0

−D2µ2
...

. . . . . . . . . D2
. . .

...
...

...
...

. . . . . . . . . . . . 0
−Dnµn 0 0 . . . . . . . . . 0 Dn


, (5.40)

where again the 0’s are zero matrices of appropriate size such that we may

recover the gi for i = 1, . . . , 3 by summing:

gi =
N∑
l=1

Ki,lU l.

To proceed we must adapt our boundary fluxes to N dimensions. That

is, the inviscid numerical flux Φi is now given by:

Φ̃i(U
n
h|Kij

,Un
h|Kji

,ϕh) =
∑
j∈S(i)

∫
Kij

Φ(Un
h|Kij

,Un
h|Kji

, nij) ·ϕh|Kij
dK

≈
∫

Kij

N∑
l=1

(fnh)l · (nij)lϕh|Kij
dK,

(5.41)

for nij the unit outward pointing normal. Likewise, the general viscous flux

becomes

Gi(Σ
n
h,U

n
h,ϕh) =

∫
Kij

Ĝ (Σn
h|Kij

,Σn
h|Kji

,Un
h|Kij

,Un
h|Kji

, nij) ·ϕh|Kij
dK

≈
∫

Kij

N∑
l=1

(gnh)l · (nij)lϕh|Kij
dK.

(5.42)

And finally the numerical flux is given to satisfy:

Qi(Û ,Σ
n
h,U

n
h,ϑh,ϑ

h
x) =

∫
Gi

Σn
h · ϑhdx+

∫
Gi

Un
h · ϑhxdx

−
∑
j∈S(i)

∫
Kij

Û(Un
h|Kij

,Un
h|Kji

,ϑh|Kij
)dK,

(5.43)
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with,

Ui(U
n
h,ϑh) =

∑
j∈S(i)

∫
Kij

Û(Un
h|Kij

,Un
h|Kji

,ϑh|Kij
)dK

≈
∫

Kij

N∑
l=1

(Un
h)l · (nij)lϑh|Kij

dK.

With these definitions in mind, the statement of the approximate solu-

tions satisfies (5.22) in the general case, and upon discretizing, we may solve

(5.7) in three dimensions which takes the same form as (5.23).
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Chapter 6

Conclusions and Future Work

In Chapter 2 we developed a well-posedness argument for the flow of

a compressible, miscible, viscous multicomponent fluid. We developed an ex-

istence theorem which relied heavily on the short time existence results of

Solonnikov, in addition to the derivation of a novel multicomponent entropy

inequality. It was found that this second entropy inequality, in tandem with

the classical entropy, was enough to establish global in time L2 regularity

of solutions. We then showed uniqueness of solutions using an application

of Gronwall’s lemma. We would like to entend these results to higher dimen-

sional settings, to include more physics, such as energy conservation equations,

electrodynamics, surface tension effects and turbulence.

In Chapter 3 we have shown an efficient and robust high-order numer-

ical scheme for a mixing compressible barotropic viscous fluid comprised of

up to n distinct components. We began by applying a discontinous Galerkin

method for spacial discretization. The solution was shown to be in very good

agreement with two exact solutions derived by a choice of initial conditions,

which only demonstrate minimal numerical error at the boundary points. The

solution was then shown for two time-explicit schemes, the forward Euler and

k-th order explicit Runge-Kutta schemes. Analysis of the method demon-

strated the expected conditional stability up to a restriction by the CFL con-

dition, and that the numerical scheme up to this stability parameter is energy
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consistent; and in fact, that the energy consistency holds for a very large fam-

ily of physically relevant problems. We further provided a large class of free

boundary type solutions which are easily implemented, and which are numer-

ically well-behaved. These two classes of boundary conditions were compared,

and it was seen that indeed they demonstrate distinctly different behaviors

even given (seemingly) equivalent initial data.

A number of examples and potential physical applications were shown

and cited in Chapter 3 in order to develop a sense of the large number of

applications of this method in chemistry, physics, engineering, and related

fields. Future directions of the work include the addition of functional tem-

perature ϑ = ϑ(t, x) dependence into the model (via the energy conservation

equation), the addition of fluid-structure interfacing, and the expansion of

the modelisation to include ionic and polar species as well as dense plasmas

(magnetohydrodynamic effects), surface tensions and gravitational effects.

In Chapter 4 we have presented a numerical solution to the quantum

hydrodynamic equations of motion as posited in the context of quantum hy-

drodynamics with chemical applications. Our approximate solution is rescaled

in time from the usual QHD solutions, and is the first model of its type pre-

sented in a discontinous continuous Galerkin or mixed method framework in

the context in which it arises in chemical applications. Our solution further

shows good stability, up to a stiffness of the system of equations which is a

well-known feature of the QHD system of equations, and a scale invariance

behavior which makes it very appealing for the so-called “fast and dirty com-

putations” often needed in realistic chemistry applications. Additionally we

have shown in a rigorous and consistent way how to prescribe proper bound-

ary data, which is often bypassed in the usual Lagrangian formulations of the
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system. We have further demonstrated that in the conservation formulation

of this system, the quantum wavefunction ψ and quantum action S, which

are used as motivation for the derivation of QHD systems to begin with (e.g.

[20, 41, 214]), are in fact completely determined (up to a constant of integra-

tion) by the solutions % and v.

The solutions in Chapter 4 are very closely related to quantum hy-

drodynamic solutions which have been extensively studied in other fields (see

[42, 215, 216, 220, 250]), but still maintain some important differences. One of

the most important and prohibitive aspects of the quantum chemical formu-

lation of QHD, is that the potential surface V arises from a multiple of 3N

degrees of freedom of each quantum subsystem, for N the number of atoms in

each molecular subsystem (for example in an intramolecular rearrangement).

This arises from the interpretation of the wavefunction ψ as being the foun-

dational variable in the dynamics of the quantum subsystem in the chemical

models. Clearly, even for relatively small molecules, this immediately leads to

extremely difficult numerical problems. In this sense it is important to have

a numerical scheme which is easily parallelizable, fast, robust and accurately

reflects the mathematical character of the solution. The MDG formulation

presented herein is a numerical method that fulfills these requirements, and

offers a viable solution to some of the many difficulties which arise in the

complicated solution space of chemical quantum hydrodynamics. The scale

invariance of the solution makes it even an alternative approach to the La-

grangian formulation; up to the “formal” accuracy of solutions.

In Chapter 5 we have shown a robust, stable, consistent and accurate

implementation of reactor models using an adapted discontinuous Galerkin

finite element scheme. Our schemes show good stability, and are able to ac-
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commodate a wide variety of initial-boundary data, including supersonic inlets,

acoustic inlets, and radiative boundaries. The hypergolic reaction was chosen

in order to find a “hard” test case for the numerics of the system, since the

reaction rate of detonation reactions is so high. We have found that our sys-

tem was able to deal with this, and was able to accurately model the chemical

physics of stationary and flow reactor dynamics.

The discontinuous Galerkin approximate solution to these compressible

flow reactors is particularly well-suited for applications in combustion mod-

eling, atmospheric, oceanic and geological modeling, as well as in astronomy

and a plethora of experimental studies involving chemical reactor kinetics.

The future direction of this work is to include the important physics contained

in thermalized turbulence, interfacial surfaces, and electrodyanmics into the

existing models.

Generally this work has been concerned with expanding the known re-

sults of evolution equations, to include systems that contain more parameters

of interest to physical chemistry. We have discovered in this process, that

modern applied mathematics, though often quite rigorous and complicated,

offers substantial advantages in its ability to find consistent and stable models

to highly coupled nonlinear systems of equations. Finding “well-posed” model

systems further offers the benefit of obtaining deep, careful and closely ana-

lyzed mathematical couplings, which very often, we have found, are able to

direct “physical intuition” along lines which yield stable and mathematically

non-degenerate results. Numerically, these variational form (finite element) so-

lutions demonstrate remarkable accuracy and consistency, strongly conforming

to the proper mathematical character of the solution.

What remains to be done, which is of substantial importance in chemi-
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cal applications, is the comparison of these numerical experiments to novel ex-

perimental systems in the laboratory. Though compressible barotropic flows,

quantum hydrodynamics and reaction-diffusion systems have been used to

study many experimental systems in many fields (as cited above), the diffi-

culty in developing fully generalized and tractable numerical versions of these

solutions has kept them from becoming ubiquitous in the scientific community

at large. Many communities, due to the mathematical complications intro-

duced in these systems, have been forced to resort to incompressible and static

models, even when the assumptions underlying these models are nonideal for

the context of the study performed. It is our hope that this work may serve

as a catalyst in overcoming the barrier to the expansive study of generalized

evolution equations in physical chemistry.
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Appendix A

We have that Γ is of the form:

Γ =


0 1 0 · · · 0
−u2 2u Z1 · · · Zn
−uµ1 µ1

...
... uIn

−uµn µn

 ,

where we set for i = 1, . . . , n the indeterminates Zi = ∂ρip. Solving the

characteristic equation

0 =

∣∣∣∣∣∣∣∣∣∣∣

−ς 1 0 · · · 0
−u2 2u− ς Z1 · · · Zn
−uµ1 µ1

...
... (u− ς)In

−uµn µn

∣∣∣∣∣∣∣∣∣∣∣
,

the eigenvalues counted with multiplicity are,

ς1 = u+ c , ς2 = u− c, ς3 = u, ς4 = u, . . . , ςn+2 = u︸ ︷︷ ︸
n−1

where the speed of sound is given by c =
√
µ1Z1 + . . .+ µnZn. While u has

multiplicity n it is better to consider the eigenvalues in the three groups, u±c,

u, and the remaining (n − 1) copies of u as illustrated by the decomposition
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of the diagonalizing transformation matrix

V (U) = (c1 · · · cn) =



1 1 1 0 · · · · · · 0
u+ c u− c u 0 · · · · · · 0
µ1 µ1 0 −Z2 · · · · · · −Zn
µ2 µ2 0 Z1 0 · · · 0
...

...
... 0

. . . . . .
...

...
...

...
...

. . . . . . 0
µn µn 0 0 . . . 0 Z1


whose columns are the corresponding eigenvectors, which we abbreviate for

convenience in the 3× 3 block matrix form
1 1 1 0

u+ c u− c u 0
µ1 µ1 0 −Y
X X 0 (Z1)In−1

 ,

where we have set X = (µ2, . . . , µn)T and Y = (Z2, . . . , Zn).

The inverse transformation matrix is given by

V −1(U ) =
1

2c2


−uc c Z1 Y

uc −c Z1 Y

2c2 0 −2Z1 −2Y

0 0 −2X 2Z−1
1 (c2

In−1 −XY )

 .

Verifying this is a straightforward block matrix multiplication up to the

factor of 2c2, where V V −1 is given by
1 1 1 0

u+ c u− c u 0

µ1 µ1 0 −Y
X X 0 Z1In−1



−uc c Z1 Y

uc −c Z1 Y

2c2 0 −2Z1 −2Y

0 0 −2X 2Z−1
1 (c2

In−1 −XY )

 .
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We illustrate the computation only for the lower right portion, where 2µ1Z1 + 2Y X 2µ1Y − 2Z−1
1 (c2Y − Y XY )

2Z1X − 2Z1In−1X 2XY + 2(c2
In−1 −XY )



=

 2c2 2µ1Y − 2Z−1
1 (c2 − Y X)Y

0 2c2
In−1



=

 2c2 2µ1Y − 2Z−1
1 (µ1Z1)Y

0 2c2
In−1

 since µ1Z1 + Y X = c2

=

 2c2 0

0 2c2
In−1

 .

For the eigenvalues and eigenvectors of Γ we obtain with

c =
√
µ1∂ρip+ . . .+ µn∂ρnp,

the pairs

u+ c,



1
u+ c
µ1

µ2
...
µn


u− c,



1
u− c
µ1

µ2
...
µn


u,



1
u
0
0
...
0


,
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while the remaining n− 1 pairs involving the eigenvalue u are

u,



0
0

−∂ρ2p
∂ρ1

0
0
...
0


u,



0
0

−∂ρ3p
0
∂ρ1p

0
...
0


· · · u,



0
0

−∂ρnp
0
0
...
0
∂ρ1p


.
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Appendix B

The conservation method of recovering trajectories in (4.42) and the

velocity integration method of recovering trajectories in (4.45) in no way ex-

haust the number of ways of representing solutions in the Lagrangian frame.

In fact, there are an infinite number of ways of choosing trajectories. We in-

troduce a way of computing a subset of these, and refer to these as “offset

methods.”

Figure B.1: On the top we show the quantum trajectories using the offset
method solution of the same problem in Figure 4.10 with r = 1; and on the
bottom we show the same trajectories using r = 2.

The offset solution relies mainly on velocity integration but includes
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some information from mass conservation as follows: velocity integration pro-

vides an estimated position for each particle at the following time-step. Then

one works through particle by particle, starting at the new estimated position

and using mass conservation to estimate the new positions of its neighbors (a

tunable number of consecutive elements on either side) offset from the velocity

estimate of the ‘current’ particle. We set our tuning parameter to r here on

both sides, though there is no reason a priori to choose a symmetric (with

respect to either side) tuning parameter. Generically this provides a set of

estimates for the position of each particle: one directly from integration, and

others via the relationship of that estimated position to the relative estimated

position of its nearest neighbors.

That is, if Pm
m is the velocity estimated position, and Pm

m−r and Pm
m+r are

the positions of the particles on either side that density conservation requires,

and applying our symmetry constraint gives for the new position that:

Pnew = w0P
m
m +

r∑
i=1

(
wiP

m−i
m + wiP

m+i
m

)
,

where the wi’s are the weights for each component, in our examples computed

with a Gaussian weighting functions ωi = e−(ln(2)/r2)i2 such that:

wi = ωi

/ r∑
i=0

ωi for i = 0, . . . , r.

Then for r = 1 we have w0 = 1/2 and w1 = 1/4. We show two examples of ob-

tained offset trajectories in Figure B.1, which are located at distinct locations

in the solution space. Also note that these trajectories behave substantially

different than those in Figures 4.7 and 4.10.
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886, 2004.

[19] C. Liu and J. Shen. A phase field model for the mixture of two in-

compressible fluids and its approximation by a fourier-spectral method.

Physica D-Nonlinear Phenomena, 179(3–4):211–228, 2003.

[20] R.E. Wyatt. Quantum dynamics with trajectories, volume 28 of Inter-

disciplinary Applied Mathematics. Springer-Verlag, New York, 2005.

Introduction to quantum hydrodynamics, With contributions by C.J.

Trahan.

[21] S. O’Sullivan and T.P. Downes. An explicit scheme for multifluid mag-

netohydrodynamics. Monthly Notices of the Royal Astronomical Society,

366(4):1329–1336, 2006.

166



[22] V.M. Zhdanov. Transport Processes in Multicomponent Plasma. CRC,

Taylor and Francis, New York, 2002.

[23] R.D. Groot and P.B. Warren. Dissipative particle dynamics: Bridging

the gap between atomistic and mesoscopic simulation. The Journal of

Chemical Physics, 107(11):4423–4435, 1997.

[24] H. Moehwald and D.G. Shchukin. Sonochemical nanosynthesis at the

engineered interface of a cavitation microbubble. Physical Chemistry

Chemical Physics, 8(30):3496–3506, 2006.

[25] M. E. Ryan, A. M. Hynes, and J. P. S. Badyal. Pulsed plasma poly-

merization of maleic anhydride. Chemistry of Materials, 8(1):37–42,

1996.

[26] H. Eckert. Structural characterization of noncrystalline solids and

glasses using solid state nmr. Progress in Nuclear Magnetic Resonance

Spectroscopy, 24(3):159 – 293, 1992.

[27] M.S. Child. Molecular Collision theory. Constable and Company, Ltd.,

London, W6 9ER, 1974.

[28] B. Perthame. Kinetic formulation of conservation laws, volume 21 of

Oxford Lecture Series in Mathematics and its Applications. Oxford

University Press, Oxford, 2002.

[29] R.E. Heath. Analysis of the Discontinuous Galerkin Method Applied to

Collisionless Plasma Physics. PhD thesis, 2007.

167



[30] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. The Molecular Theory

of Gases and Liquids. Structure of Matter Series. Wiley-Interscience,

Revised, New York, 1954.

[31] S. Chapman and T. G. Cowling. The Mathematical Theory of Nonuni-

form Gases. Cambridge Mathematical Library. Cambridge University

Press, Cambridge, third edition, 1990.

[32] W. Pauli. Thermodynamics and the Kinetic Theory of Gases (Vol. 3

of Pauli Lectures on Phys.). Pauli Lectures on Physics. Dover publica-

tions, Basel, 2000.

[33] H. Struchtrup. Scaling and expansion of moment equations in kinetic

theory. J. Stat. Phys., 125(3):569–591, 2006.

[34] V. A. Solonnikov. The solvability of the initial-boundary value problem

for the equations of motion of a viscous compressible fluid. Zap. Naučn.
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Verlag, Basel, 2001.

[43] S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet. Structure

of Korteweg models and stability of diffuse interfaces. Interfaces Free

Bound., 7(4):371–414, 2005.

[44] C. Michoski, J.A. Evans, P.G. Schmitz, and A. Vasseur. Quantum

Hydrodynamics with Trajectories via a Nonlinear Conservation Form

Mixed Discontinuous Galerkin method with Chemical Applications. J.

Comput. Phys., Submitted, 2009.

[45] W.C. Gardiner. Combustion Chemistry. Springer-Verlag New York

Inc., New York, NY, 1984.

169



[46] F.A. Williams. Combustion Theory. Combustion Science and Engineer-

ing Series. The Benjamin/Cummings Publishing Company, Inc., Menlo

Park, California, 1985.
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libria for the Keller-Segel chemotaxis model. J. Differential Equations,

236(2):551–569, 2007.

[80] M. Eisenbach. Chemotaxis. Imperial College Press, 2004.

[81] A.B.R. Mayer. Colloidal metal nanoparticles dispersed in amphiphilic

polymers. Polymers for Advanced Technologies, 12(1–2):96–106, 2001.

[82] A. Mellet and A. Vasseur. Global weak solutions for a Vlasov-Fokker-

Planck/Navier-Stokes system of equations. Math. Models Methods

Appl. Sci., 17(7):1039–1063, 2007.

[83] P. Tartaj, T. Gonzalez-Carreno, and C.J. Serna. Magnetic behavior of

gamma-Fe2O3 nanocrystals dispersed in colloidal silica particles. Jour-

nal of Physical Chemistry B, 107(1):20–24, 1993.

[84] J. Buajarern, L. Mitchem, and J. P. Reid. Characterizing multiphase

organic/inorganic/aqueous aerosol droplets. Journal of Physical Chem-

istry A, 111(37):9054–9061, 2007.

174



[85] Shui L., J.C.T. Eijkel, and A. van den Berg. Multiphase flow in mi-

crofluidic systems - control and applications of droplets and interfaces.

Advances in Colloid and Interface Science, (133):35–49, 2007.

[86] S. Liu, F. Wang, and H. Zhao. Global existence and asymptotics

of solutions of the Cahn-Hilliard equation. J. Differential Equations,

238(2):426–469, 2007.

[87] S.Y. Heriot and R.A.L. Jones. An interfacial instability in a transient

wetting layer leads to lateral phase separation in thin spin-cast polymer-

blend films. Nature Materials, 4(10):782–786, 2005.

[88] E.J. Davis and G. Schweiger. The Airborne Microparticle. Springer-

Verlag, 2002.

[89] R.M. Harrison and R.E. van Grieken. Atmospheric Particles, volume 5

of IUPAC Series on Analytical and Physical Chemistry of Environmental

Systems. John Wiley & Sons, New York, NY, 1998.

[90] J. Pedlosky. Geophysical fluid dynamics, volume 2nd Edition. Springer-

Verlag New York Inc., New York, NY, 1987.

[91] G. Vallis. Atmospheric and oceanic fluid dynamics: fundamentals and

large-scale circulation, volume 2nd Edition. Cambridge University Press,

New York, NY, 2006.

[92] K. Promislow, J. Stockie, and B. Wetton. A sharp interface reduction

for multiphase transport in a porous fuel cell electrode. Proc. R. Soc.

Lond. Ser. A Math. Phys. Eng. Sci., 462(2067):789–816, 2006.

175



[93] U. Pasaogullari and C.Y. Wang. Liquid water transport in gas diffusion

layer of polymer electrolyte fuel cells. Journal of the Electrochemical

Society, 151(3):A399–A406, 2004.

[94] L.K. Doraiswamy and S.D. Naik. Phase transfer catalysis: chemistry

and engineering. AICHE Journal, 44(3):612–646, 1998.

[95] F. Miniati, D.S. Ryu, A. Ferrara, and T.W. Jones. Magnetohydrody-

namics of cloud collisions in a multiphase interstellar medium. Astro-

physical Journal, 510(2):726–746, 1979.

[96] F.H. Harlow and A.A. Amsden. Numerical-calculation of multiphase

fluid-flow. J. of Comput. Phys., 17(1):19–52, 1975.

[97] J.K. Dukowicz. A particle-fluid numerical-model for liquid sprays. J.

Comput. Phys., 35(2):229–253, 1980.

[98] G.M. Faeth. Evaporation and combustion of sprays. Progress in Energy

and Combustion Science, 9(1–2):1–76, 1983.

[99] G.M. Faeth. Mixing, transport and combustion in sprays. Progress in

Energy and Combustion Science, 14(4):293–345, 1987.

[100] D.L. Youngs. Numerical-simulation of turbulent mixing by rayleigh-

taylor instability. Physica D, 12(1–3):32–44, 1984.

[101] J.H. Hunter, M.T. Sandford, R.W. Whitaker, and R.I. Klein. Star

formation in colliding gas-flows. Astrophysical Journal, 305(1):309–332,

1986.

176



[102] T.E. Ongaro, C. Cavazzoni, G. Erbacci, A. Neri, and M. V. Salvetti. A

parallel multiphase flow code for the 3d simulation of explosive volcanic

eruptions. Parallel Computing, 33(7–8):541–560, 2007.

[103] C. Hirsch. Numerical computation of internal and external flows, volume

1–2 of Wiley series in numerical methods in engineering. John Wiley &

Sons Ltd., Chichester [England], 1988.

[104] Shih-I Pai and Shijun Luo. Theoretical and computational dynamics of

a compressible flow. Beijing: Science Press, New York, NY, 1991.

[105] M. Feistauer, J. Felcman, and I. Straškraba. Mathematical and com-
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Birkhäuser, Basel, 2007.

[127] D. Bresch, B. Desjardins, and C-K. Lin. On some compressible fluid

models: Korteweg, lubrication, and shallow water systems. Comm.

Partial Differential Equations, 28(3-4):843–868, 2003.

[128] A. Valli and W.M. Zaj
‘
aczkowski. Navier-Stokes equations for compress-

ible fluids: global existence and qualitative properties of the solutions in

the general case. Comm. Math. Phys., 103(2):259–296, 1986.

[129] V. A. Solonnikov and A. Tani. Evolution free boundary problem for

equations of motion of viscous compressible barotropic liquid. In The

Navier-Stokes equations II—theory and numerical methods (Oberwol-

fach, 1991), volume 1530 of Lecture Notes in Mathematics, pages 30–55.

Springer, Berlin, 1992.

[130] D. Hoff and E. Tsyganov. Uniqueness and continuous dependence of

weak solutions in compressible magnetohydrodynamics. Z. Angew.

Math. Phys., 56(5):791–804, 2005.

[131] G-Q. Chen and M. Kratka. Global solutions to the Navier-Stokes equa-

tions for compressible heat-conducting flow with symmetry and free

boundary. Comm. Partial Differential Equations, 27(5-6):907–943,

2002.

180



[132] B. Ducomet and E. Feireisl. On the dynamics of gaseous stars. Arch.

Ration. Mech. Anal., 174(2):221–266, 2004.

[133] D. Donatelli and K. Trivisa. On the motion of a viscous compressible

radiative-reacting gas. Comm. Math. Phys., 265(2):463–491, 2006.

[134] D. Donatelli and K. Trivisa. A multidimensional model for the combus-

tion of compressible fluids. Arch. Ration. Mech. Anal., 185(3):379–408,

2007.

[135] D. Bresch and B. Desjardins. On the existence of global weak solu-

tions to the Navier-Stokes equations for viscous compressible and heat

conducting fluids. J. Math. Pures Appl. (9), 87(1):57–90, 2007.

[136] T. Yang and C. Zhu. Compressible Navier-Stokes equations with degen-

erate viscosity coefficient and vacuum. Comm. Math. Phys., 230(2):329–

363, 2002.

[137] Y. Cho and H. Kim. Existence results for viscous polytropic fluids with

vacuum. J. Differential Equations, 228(2):377–411, 2006.
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[172] V. Doleǰśı. On the discontinuous Galerkin method for the numerical

solution of the Navier-Stokes equations. Internat. J. Numer. Methods

Fluids, 45(10):1083–1106, 2004.

185



[173] F. Shakib, T.J.R. Hughes, and Z. Johan. A new finite element formula-

tion for computational fluid dynamics. X. The compressible Euler and

Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 89(1-

3):141–219, 1991. Second World Congress on Computational Mechanics,

Part I (Stuttgart, 1990).

[174] C. Michoski, P.G. Schmitz, J.A. Evans, and A. Vasseur. A discontinu-

ous Galerkin method for viscous compressible multifluids. J. Comput.

Phys., Submitted, 2008.

[175] D.N. Arnold, F. Brezzi, B. Cockburn, and D. Marini. Discontinuous

Galerkin methods for elliptic problems. In Discontinuous Galerkin

methods (Newport, RI, 1999), volume 11 of Lect. Notes Comput. Sci.

Eng., pages 89–101. Springer, Berlin, 2000.

[176] J.C. Strikwerda. Initial boundary value problems for incompletely

parabolic systems. Comm. Pure Appl. Math., 30(6):797–822, 1977.

[177] B. Gustafsson and A. Sundström. Incompletely parabolic problems in

fluid dynamics. SIAM J. Appl. Math., 35(2):343–357, 1978.

[178] G. Kreiss, H.-O. Kreiss, and N. A. Petersson. On the convergence

to steady state of solutions of nonlinear hyperbolic-parabolic systems.

SIAM J. Numer. Anal., 31(6):1577–1604, 1994.

[179] H.-O. Kreiss. Initial boundary value problems for hyperbolic systems.

Comm. Pure Appl. Math., 23:277–298, 1970.

[180] B. Engquist and A. Majda. Absorbing boundary conditions for the

numerical simulation of waves. Math. Comp., 31(139):629–651, 1977.

186



[181] T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations

of compressible viscous flows. J. Comput. Phys., 101(1):104–129, 1992.

[182] D.H. Rudy and J.C. Strikwerda. A nonreflecting outflow boundary

condition for subsonic Navier-Stokes calculations. J. Comput. Phys.,

36(1):55–70, 1980.

[183] I. Lie. Well-posed transparent boundary conditions for the shallow water

equations. Appl. Numer. Math., 38(4):445–474, 2001.

[184] J.C. Sutherland and C.A. Kennedy. Improved boundary conditions for

viscous, reacting, compressible flows. J. Comput. Phys., 191:502–524,

2003.

[185] C. Bardos, A. Y. le Roux, and J.-C. Nédélec. First order quasilinear
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