3,525 research outputs found

    A semi-analytical scheme for highly oscillatory integrals over tetrahedra

    Get PDF
    This is the peer reviewed version of the following article: [Hospital-Bravo, R., Sarrate, J., and Díez, P. (2017) A semi-analytical scheme for highly oscillatory integrals over tetrahedra. Int. J. Numer. Meth. Engng, 111: 703–723. doi: 10.1002/nme.5474], which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/nme.5474/full. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.This paper details a semi-analytical procedure to efficiently integrate the product of a smooth function and a complex exponential over tetrahedral elements. These highly oscillatory integrals appear at the core of different numerical techniques. Here, the Partition of Unity Method (PUM) enriched with plane waves is used as motivation. The high computational cost or the lack of accuracy in computing these integrals is a bottleneck for their application to engineering problems of industrial interest. In this integration rule, the non-oscillatory function is expanded into a set of Lagrange polynomials. In addition, Lagrange polynomials are expressed as a linear combination of the appropriate set of monomials, whose product with the complex exponentials is analytically integrated, leading to 16 specific cases that are developed in detail. Finally, we present several numerical examples to assess the accuracy and the computational efficiency of the proposed method, compared to standard Gauss-Legendre quadratures.Peer ReviewedPostprint (author's final draft

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    Calculation of Generalized Polynomial-Chaos Basis Functions and Gauss Quadrature Rules in Hierarchical Uncertainty Quantification

    Get PDF
    Stochastic spectral methods are efficient techniques for uncertainty quantification. Recently they have shown excellent performance in the statistical analysis of integrated circuits. In stochastic spectral methods, one needs to determine a set of orthonormal polynomials and a proper numerical quadrature rule. The former are used as the basis functions in a generalized polynomial chaos expansion. The latter is used to compute the integrals involved in stochastic spectral methods. Obtaining such information requires knowing the density function of the random input {\it a-priori}. However, individual system components are often described by surrogate models rather than density functions. In order to apply stochastic spectral methods in hierarchical uncertainty quantification, we first propose to construct physically consistent closed-form density functions by two monotone interpolation schemes. Then, by exploiting the special forms of the obtained density functions, we determine the generalized polynomial-chaos basis functions and the Gauss quadrature rules that are required by a stochastic spectral simulator. The effectiveness of our proposed algorithm is verified by both synthetic and practical circuit examples.Comment: Published by IEEE Trans CAD in May 201

    Rapid evaluation of radial basis functions

    Get PDF
    Over the past decade, the radial basis function method has been shown to produce high quality solutions to the multivariate scattered data interpolation problem. However, this method has been associated with very high computational cost, as compared to alternative methods such as finite element or multivariate spline interpolation. For example. the direct evaluation at M locations of a radial basis function interpolant with N centres requires O(M N) floating-point operations. In this paper we introduce a fast evaluation method based on the Fast Gauss Transform and suitable quadrature rules. This method has been applied to the Hardy multiquadric, the inverse multiquadric and the thin-plate spline to reduce the computational complexity of the interpolant evaluation to O(M + N) floating point operations. By using certain localisation properties of conditionally negative definite functions this method has several performance advantages against traditional hierarchical rapid summation methods which we discuss in detail

    Polynomial (chaos) approximation of maximum eigenvalue functions: efficiency and limitations

    Full text link
    This paper is concerned with polynomial approximations of the spectral abscissa function (the supremum of the real parts of the eigenvalues) of a parameterized eigenvalue problem, which are closely related to polynomial chaos approximations if the parameters correspond to realizations of random variables. Unlike in existing works, we highlight the major role of the smoothness properties of the spectral abscissa function. Even if the matrices of the eigenvalue problem are analytic functions of the parameters, the spectral abscissa function may not be everywhere differentiable, even not everywhere Lipschitz continuous, which is related to multiple rightmost eigenvalues or rightmost eigenvalues with multiplicity higher than one. The presented analysis demonstrates that the smoothness properties heavily affect the approximation errors of the Galerkin and collocation-based polynomial approximations, and the numerical errors of the evaluation of coefficients with integration methods. A documentation of the experiments, conducted on the benchmark problems through the software Chebfun, is publicly available.Comment: This is a pre-print of an article published in Numerical Algorithms. The final authenticated version is available online at: https://doi.org/10.1007/s11075-018-00648-
    • …
    corecore