9,990 research outputs found

    Status of research at the Institute for Computer Applications in Science and Engineering (ICASE)

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science is summarized

    Surrogate-equation technique for simulation of steady inviscid flow

    Get PDF
    A numerical procedure for the iterative solution of inviscid flow problems is described, and its utility for the calculation of steady subsonic and transonic flow fields is demonstrated. Application of the surrogate equation technique defined herein allows the formulation of stable, fully conservative, type dependent finite difference equations for use in obtaining numerical solutions to systems of first order partial differential equations, such as the steady state Euler equations. Steady, two dimensional solutions to the Euler equations for both subsonic, rotational flow and supersonic flow and to the small disturbance equations for transonic flow are presented

    Numerical investigation of unsteady laminar incompressible co-axial boundary layer flows

    Get PDF
    Finite difference method for analysis of laminar incompressible boundary layer flows at jet exi

    Model simplification by asymptotic order of magnitude reasoning

    Get PDF
    AbstractOne of the hardest problems in reasoning about a physical system is finding an approximate model that is mathematically tractable and yet captures the essence of the problem. This paper describes an implemented program AOM which automates a powerful simplification method. AOM is based on two domain-independent ideas: self-consistent approximations and asymptotic order of magnitude reasoning. The basic operation of AOM consists of five steps: (1) assign order of magnitude estimates to terms in the equations, (2) find maximal terms of each equation, i.e., terms that are not dominated by any other terms in the same equation, (3) consider all possible n-term dominant balance assumptions, (4) propagate the effects of the balance assumptions, and (5) remove partial models based on inconsistent balance assumptions. AOM also exploits constraints among equations and submodels. We demonstrate its power by showing how the program simplifies difficult fluid models described by coupled nonlinear partial differential equations with several parameters. We believe the derivation given by AOM is more systematic and easily understandable than those given in published papers

    Proceedings for the ICASE Workshop on Heterogeneous Boundary Conditions

    Get PDF
    Domain Decomposition is a complex problem with many interesting aspects. The choice of decomposition can be made based on many different criteria, and the choice of interface of internal boundary conditions are numerous. The various regions under study may have different dynamical balances, indicating that different physical processes are dominating the flow in these regions. This conference was called in recognition of the need to more clearly define the nature of these complex problems. This proceedings is a collection of the presentations and the discussion groups

    A computer model of solar panel-plasma interactions

    Get PDF
    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem
    corecore