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ABSTRACT

"A Computer Model of Solar Panel-Plasma Interactions"

High-power solar arrays for satellite power systems are presently being

planned with dimensions of kilometers, and with tens of kilovolts distributed

over their surface. Such systems will face many plasma interaction problems,

such as power leakage to the plasma, particle focusing, and anomalous arcing

to name a few.	 In most cases, these effects cannot be adequately modeled

without detailed knowledge of the plasma-sheath structure and space charge

effects. This report details the work performed under contract NAS 9-15196 to

adapt the computer program PANEL to augment the laboratory studies of a 1 x 10

meter solar array in a simulated low Earth orbit plasma being conducted in the

chamber A facilities at NASA/Johnson Space Center. 	 The plasma screening

process is discussed, program theory is outlined, and a series of calibration

models is presented. These models are designed to demonstrate that PANEL is

capable of accurate self-consistent space-charge calculations. 	 Such models

include PANEL predictions for the Child-Langmuir diode problem. Also included

are two models of the interactions of an infinitely long one meter wide solar

array in a dense, 10 eV plasma.
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1: INTRODUCTION

The interaction of a large high voltage solar array with a space or

laboratory plasma cannot, in general, be modeled analytically. For this

reason, a computer program, PANEL, has been developed to calculate potentials,	 j

densities, and currents on a three-dimensional grid of points. 	 A major

feature of PANEL is that it includes space-charge effects in a self-consistent

manner. The method used in PANEL is an extension to three dimensions of the

inside-out method developed by Parker (1964), and used by Parker and Whipple

(1970) to model two-electrode probes on a satellite. More recently Parker

(1976, 1977a) has used the method to calculate sheath and wake structures

about disk and pill-box shaped objects in flowing plasmas. An early version

of PANEL, written by Parker (1977) was used by Reiff, Freeman, and Cooke

(1980) to model the interaction of a geosynchronous substorm plasma with the

NASA/Marshall Space Flight Center baseline design for the solar power satel-

lite (Hanley, 1978).	 The purpose for the further development of PANEL,

reported here, has been to produce a code capable of augmenting the laboratory

studies of a 10 meter solar array in a simulated low Earth orbit plasma being

conducted at NASA/Johnson Space Center (McCoy and Konradi, 1978).

Section 2 of this report contains a general discussion of the plasma

screening process, applications of the Child-Langmuir diode law. and a

development of an analytic model for comparison to PANEL results. Section 3

describes the inside-out method as it is used in PANEL to solve the coupled

Vlasov-Poisson equations in two- and three-dimensions.	 And in section 4,

current PANEL results are presented.	 Appendix A contains a review of the

symbols and units used in this report. Appendix B gives a subroutine linkage

j	 chart, and Appendix C outlines the modifications to PANEL for the two-

dimensional option. The emphasis so far, has been on testing PANEL against the

,i
i

1



analytic models discussed in section 2. Also included are two two-dimensional

models of an "infinitely long" charged panel.

2: THE PLASMA SHEATH

Perhaps the best known example of plasma screening is the Debye treatment

of the plasma screening of an isolated test charge.	 A positive test

charge, 6Q, placed in a plasma of temperature T, will attract electrons and
-	 4

repel ions so as to develop a surrounding sheath with a potential distribution

given by,

V(r) ' we r exp ("r/aD)
0

where XD = (cokT/Noe 2 ) 1/2 is the Debye length. Implicit in the derivation of

this equation (Jackson, 1962) are the assumptions that the charge has

negligible cross-section, and that V(r) << kT/e for r > a0. For a microscopic

body of radius R, satisfying these assumptions, we can write

V(r) - l
bb	

exp ( , •r/aD )	 (2-1)

where Vb is the surface potential of the body.

For macroscopic bodies with a high degree of symmetry, sheath structures

may be calculated by capitalizing on the constants of the motion allowed by

the symmetry, e.g., angular momentum (Whipple, 1977).	 In general though,

self-consistent treatment of a macroscopic body requires computer modeling.

In spite of this difficulty, a better understanding of the shielding process

can be gained by studying current limiting by space charge in the 1-0 planar
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electron diode.

The first theoretical treatments of the electron diode were published

independently by Child (1911) and Langmuir (1913). Variations on this problem

have been studied by Fay et al. (1938), and the general topic of space charge

effects in vacuum tubes is treated in the book by Birdsall and Bridges (1966).

Consider the three electrode system shown in Figure 2/1. At x = -d, we

have a cathode, with zero potential capable of emitting unlimited quantities

of electrons all with zero velocity. At x n 0, we have a transparent screen

at potential V o , and at x = x l , we have a non-emitting anode at potential V .

The kinetic energy of an electron at x is

mev

The current density for electrons at x is

J = av	 (2-3)

where a is the charge density. Poisson's equation in one dimension is

d2V = -a /co•	 (2-4)
dx2

Substituting for a from equation (2-3) and then for v from equation (2-1), we

have

dx2 =	 E  (cev^l/2
	 (2-4)

Multiply this by 2^ and integrate from (0, Vo ) to (x, V)');

(11)2 Ix = _ J	 16 (V 1/2 V 1/2	 2-5)dx	 o	 b2	 9 x	
- o

where b 2	 4go (2e/me)'
/2
 = 2.336 x 10- 6 (amps/volts 3 / 2 ). The boundary condi-

tion that we desire at x	 0, is Ex = - rIo = 0, a common definition of the
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sheath edge in the spacecraft charging problem. Using this condition, and

taking the positive square root of equation (2-5),

Tx' - 'fib Pe (V x 1/2 - Vo l/2 ) ] 1/2	 (2-6)

where Je - -J. Solving for dx we integrate again from (0, Vo ) to (x 1 , V1);

x 1 • ,J V l 3/" [1 + 2 (^) 1/2 ] - (1 - 
(!1 ) 1/2]112 .

 	 (2-7)
e

This equation can be applied to region I, -d < x < 0, where V o n 0 (zero

initial velocity) to recover the Child-Langmuir (C-L) result

d2 - 2.336 x 10-6 V 3/2/Je,	 (2-8)

where d 2 and Je must have the same unit of area.	 If d and V are fixed,

equation (2-8) gives the maximum conducted current despite an unlimited supply

of electrons. If d, V, and J e are all considered independent, the sheath edge

electric field that was set to zero will become the dependent variable.

To apply equation ( 2-7) to a planar spacecraft surface at potential V, we

identify x
i
 with the spacecraft surface, and x - 0 with the sheath edge where

E - 0. Region I is now identified with the undisturbed plasma where Vo repre-

sents the average thermal energy of the electrons. Therefore, a transfor-

mation of voltage is needed because we want the sheath edge to be at zero

potential; thus, V l + V + Vo

define	 • ^ • V
i

	Vo -	 -.
0	 o	 e
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I

i	 and	 + 1)' 1 .	 (2-9)	
t

1

Substituting this last result into equation (2-7) we get for the sheath

thickness a,

x n a n b (V 3/ ^`/ e ) • S(y)	 (2-10)

S(*) _ I(1 + 
*
-1) 31 4 . [(1 + 2 (1 + 

*)
-1/2 ) . (1 - (1 + *) -1/2 ) 112 ]}. (2-11)

Equation (2-10) is written such that S(*) is the correction to the usual

Child-Langmuir result due to non-zero initial velocities. Equation (2-11) is

plotted in Figure 2/2 as a function of log (*- 1 ).	 When applied to a

Maxwellian plasma, S(*) will be only qualitatively correct since there will be

a distribution of initial velocities, but it should be reasonably accurate for

larger values of 0.

Another variation of this problem is given by Birdsall (1966). 	 The

conditions are illustrated in the lower portion of Figure 2/1, with the grids

at x n 0 and x l both at the same positive potential V 1 , and the separation

distance xl considered fixed. The negative space charge of the electrons in

the gap between zero and x 1 will depress the potential in the gap and give

rise to current limitation if the potential drops to zero. This variant is

more suited for comparison to PANEL, since the geometry is fixed and only

voltages and charge densities vary. The potential distribution in the gap is

determined by subdividing region II into regions A and B whose boundary at xm

is the point of minimum potential where we have also the condition of zero

electric field. The potential can be obtained separately in each region with

exactly the same approach that led to equation (2-7) to give
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b[(2 - f) J ^ -1/2	 (VA I/2 + 2Ym 1 /2) 	 (YA1/2 - Y
m l/2 ) 1/2 n xm - xA

i

(2-12)

1/2	 1/2	 1/2	 1/2 _	 1/2 ) 1/2 
b(fJ)'	 (Vg	 + 2Vm	 )	 ( Vg	 Vm 	 xg ' xrn

The factor, f, is the fraction of transmitted current; if Vm > 0 1 f n 1.

Equations (2-12) may be solved for x m by setting (VA , xA) n (V 1 , 0) and

(Vg, xg) n ( V 1 , x1). For the case Vm > 0 and f n 1, we find xm n x 1 /2, and

equations (2-12) can be combined to give Birdsall's equation:

(41/2 _ 4h11/2) (41/2 + 2$m 1/2)2 = B(E - 1/2) 2 	(2-13)

where 4 n V/V1, sm n Vm/Vo and t n x/x1. The	 dimensionless current	 B, is

defined by 0	 J e/b2 V13/2 x 1 - 2 , where the normalizing current is C-L current

for a diode with separation x 
1 , 

and potential drop V 1 . The value of the mini-

mum potential for a given current is found by evaluating equation (2-13) at

x n 0, giving

4#m/ 2 - 341/2 + (4 - 1) n 0.	 (2-14)

Figure 2/3a (from Birdsall) gives 4 m as a function of input current S. The

dotted portion of the curve, has been labeled the "C-overlap" by Fay et al.

(1938) and has been shown to contain no stable solutions (Birdsall, 1966).

Figure 2/3b (also from Birdsall) gives selected potential profiles from

equrtion (2-13) for the range 0 < B 4 8.

For solutions with B > 8 we set Em n 0 in equation (2-12). Allowing now

for f ( 1 and a non-symmetric potential distribution, we can derive Birdsall's

dimensionless equations;
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63
i12 - 

(2 _ f) s (C - Em) 2

(2-15)

83/2 - f 8 R- 
Cm) 

2^	 I

f 2- 03 1/2 -  f
Em	 -	 (2-16)

1/2
8	

2	 f 2 - f-	
+ 1 ^	 (2-11)f (2

where Em - xm/x 1 .	 Figure 2/3c (also borrowed from Birdsall), shows a few

selected potential profiles from equations (2-15).

The multiplicity of solutions in the region 4 < 9 < 8 means that there

should be hysteresis in the behavior of the classical diode model.	 This

hysteresis was observed experimentally by Gill (1925). He also observed the

predicted current limiting. It should be mentioned that although the condi-

tion Vm - 0 does lead to mathematical solutions for the range 4 < 6 < - these

solutions are a result of the enforced time-independence of the classical

method and can be shown to be unstable when time dependence is cerisidered

(Birdsall. 1966). This lack of stability has been confirmed by the experi-

ments of Salzberg and Haeff (1938).

These solutions of what I call the gap problem have been very useful in

the development of PANEL. 	 PANE L's predictions for the gap model will be

presented in section 4.

Returning now to the spacecraft plasma sheath problem, it is common to

use the C-L sheath thickness given in equation (2-8) as an estimate of

satellite sheath thickness for appropriate conditions. These conditions are:
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1. Satellite dimensions should be much larger than all estimates of

sheath thickness, such that a planar approximation is Justified.

2. The surface potential 1s much greater than the plasma temperature, so

the Initial velocities of particles entering the sheath can be neglected

[or accurately accounted for by equation (2-10)3. Also repelled

particles must not penetrate significantly into the sheath since the C-L

treatment considers only attracted particles.

3. The current is assumed to be the random thermal current

(J o ` Noe	 *m) of attracted particles falling on the sheath edge.

For diode geometries other than planar, Langmuir (1913) has shown that

the space charge limited current will always be proportional to V 3/2 , however,

the distribution of potential in space does depend on geometry. The problems

of current flow between concentric spheres and cylinders has been addressed by

Langmuir and Blodgett (1924). Their solutions take the form of equation (2-8)

with d replaced by various series expansions in terms of the ratios of the

electrodes' radii, with the results presented in tabular form. Parker (1979)

has adapted these results to estimate sheath thickness for charged spherical

satellites, and provides a convenient fit to those results. In the following

equations a n sheath r ,,dius, ro n body radius, and d is the C-L screening

distance given by equation (2-10) with * n -, or by equation (2-20) below:

+ ^
4 

+ d ] 1/ 2	 ; ^ < .2
0	 0

I— n 	 1+ [4+ L ]1/2 + 0.052 r	 ; .2 < L < 19	 (2-18)
0	 0	 0	 o

r 1 + rS).753 ] .7S24 a (L) . S67	 ; O > 19
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It is interesting to stop at this point and compare screening length

estimates. On one hand, we have the Debye length for the microscopic case

with low potentials

ad • (=?) 1/2 meters	 (2-19)
e

and, on the other hand, the planar C-L screening length

4*et 2	
/	 11 4 	 3 -1/2 3/4

dcl n
 J ( 4W

 zQ— )
1/w 

V
34	

9.34 (T(ev))"	 t^(cm- ))	 Y	 meters (2-20)
No kT

where I have substituted for the current the thermal current Jo. Note the

difference in the temperature and density dependencies; (T/N) 1/2 as opposed to

(N2T)" 1/4 . A brief example will help demonstrate the inappropriateness of

applying the Debye model to large objects.	 Consider an object of radius

ro n 10m, at a potential of 100V in a plasma with T o n 1 ev, and N n 100/cc.

For these conditions, the C-L distance is by (2-20), d n 29.5 m, and from

(2-18) we have a - 2.4 r o n 24m; whereas with a Debye length of 0.14 m,

equation (2-1) predicts a - 13 m for a sheath edge potential of one volt. The

Debye model predicts screening oo the order of a few Debye lengths which

significantly underestimates the sheath thickness.

The planar, one-dimensional C-L screening length has its own short-

comings.	 In applying it to space conditions one assumes that the screening

length will be small compared to surface dimensions so that the surface can be

approximated as infinite. But this is iicumpatible with the assumed boundary

condition of an undisturbed plasma one screening length-away from the surface.

Since repelled particles will be reflected at the sheath edge, the repelled

particle distribution will be nearly isotropic. 	 On the other hand, the
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attracted particles cove to the edge from one direction only, resulting in

only a hemispherical distribution out to a point where the surface no longer

appears infinite.	 Such a plasma cannot even be quasi-neutral unless the

potential at the "sheath edge" is significantly i{c,n-zero, which would be

contrary to the original conditions of the C-L model. This difficulty is not

as severe for the cylindrical and spherical extensions. This situation can be

improved somewhat if we relax the definition of the sheath edge to require

only that the electric field be near zero there, and let the potential deviate

from zero (closer to the surface potential) so as to draw in more attracted

particles ane educe the repelled particle tensity. This in turr requires

that we invoke a presheath region to match the sheath edge to regions where

the attracted and repelled distributions are identical, and the potenti.-i and

electric fields vanish.

This presheath problem was recognized and accounted for by Laagmuir

(1929) in his analysis of a plasma discharge between plane parallel

electrodes, however the resolution of that problem is too involved for

presentation here, and net directly applicable to the problem of a planar

satellite in a collisionless plasma. 	 The presheath problem has also been

studied by Parker (1980) for an extremely large spherical body (large compared

to all estimates of sheath thickness) in a collisionless plasma, using a

technique similar to the inside-out method but solving a condition of

quasineutrality instead of Poisson's equation. The sheath was modeled as a

potential discontinuity at the surface. Results indicate that no matter how

thin the sheath gets, the presheath thickness will always be comparable to

body dimensions (as one would expect from geometrical shadowing conside-

rations). In the presneath region the potential drop is of order kT/e and the

{
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ion and electron densities are essentially equal, but reduced from ambient

values.	 One-dimensional theory predicts that such a body will collect a

current density of attracted particles equal to the random thermal density

current, but a conclusion of Parker ' s study was that the collected current

density will be increased in the - -esheath region by a factor dependent upon

the body )otential but approaching a limiting value of 1.45 for infinite body

t
potential, independent of body shape.

Another complication is presented by secondary and photoelectron

emission. The extent to which these additional sources will modify a plasma

sheath is of course dependent upon the emission flux. Guernsey and Fu (1970)

and Fu (1971), have studied the case charactarized by (Nu/Ne) > (Te/Tv) > 1

where the u subscript refers to the photo or secondary electrons, and the e

for the plasma electrons.	 We would expect these conditions to lead to a

positive surface potential of a few volts and a monotonic decrease to zero

with increasing distance from the surface.	 Their study confirmed that

solution, but also revealed the existence of another non-monotonic type with a

negative "overshoot" potential minimum located about one photoelectron Debye

length from the surface. This overshoot was also accompanied by a lowering of

the equilibrium surface potential by an amount roughly equal to the overshoot

potential. Without a time dependent analysis one cannot decide which solution

is the true steady-state, but energy considerations suggested that the non-

`	 monotonic solution is the true steady-state when 
Ne 

( Hu )	 1, where H is
t	 VU- ^kT	 u

the peak in the photoelectron kinetic energy spectrum.

If the preceeding picture of the plasma screening process seems incom-

plete, it is for a few good reasons. One is that many aspects of the problem

have not been fully investigated yet, but more importantly, there are just too

many parameters to ever hope to develop a "one-size fits all" theory of plasma
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screening.	 In ffy opinion, the objectives of this line of research is to

develop the necessary methods and computational tools to solve specific

problems as they arise.

3: THE INSIDE-OUT METHOD

The classical theory of electrodynamics states that the scalar

electrostatic potential V(z) and the charge density p(V(z)) will satisfy

Poisson's equation

2 V(zv	 )_ -p(V(z) ) /EO.	 (3-1)

In problems where the charge density does not depend upon the potential,

equation (3-1) becomes an inhomogeneous linear elliptic partial differential

equation.	 For such equations, the theory of partial differential equations

(Jackson, 1962), will guarantee a unique solution interior to a closed

boundary S, on which is specified either (but not both) the potential V(xs)

(Dirichlet boundary conditions), or the normal derivative aV(x s )/ans (Neuman

boundary conditions). Unique solutions may also be obtained for problems with

mixed boundary conditions with Dirichlet conditions on part of the boundary,

and Neuman for the rest. For the general non-linear problem where the charge

density depends on the distribution of potential, there are no uniqueness or

existence guarantees for solutions to equa t ion (3-1).	 Experience, however,

leads us to believe that the physically real problems that we encounter in the

study of plasma screening do have at least one self-consistent solution for V

and p .	 It is this experience that leads us to pursue solutions to such

problems.
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The inside-out method adopts an iterative approach to solving plasma

sheath problems.	 The best estimate for a(x) is used in equation (3-1) to

obtain a new estimate for V(z). Next, new estimates for c(z) are obtained via

the Vlasov equation and the latest values for V(X) and the process repeated.

The calculation of P(z) has been labeled the "Vlasov problem" and the problem

of finding solutions to (3-1) is called the "Poisson problem".

PANEL has the feature of being able to operate in both a two-dimensional

and a three-dimensional mode. 	 The three-dimensional version is presented

first, and the conversions to two-dimensional operation are found in Appendix

C.

THE POISSON PROBLEM

With P(z) temporarily considered known and independent of V(x), equation

(3-1) becomes linear, thus a well posed boundary value problem will have a

unique solution.	 PANEL uses a standard finite-difference method to solve

Poisson's equation (Collatz, 1960). The approach is to discretize the space

to be modeled by constructing a three-dimensional grid of points P i,j,k . An

x-y plane at constant z is illustrated in figure 3/1. The standard approach

is to let the x, y, and z spacings all be a constant h so that there is a cube

of volume h 3 associated with each interior point. 	 But, in modeling many

objects it is convenient to use variable spacing to achieve greater economy by

allowing a higher density of points where a need is anticipated. This means

that each interval must be calculated, but the symbol h will still be used to

represent a typical interval.	 With variable spacing, the volume associated

with a point P becomes a rectangular parallelepiped with faces located at the

midpoints between P and its neighbors.	 The shaded area in figure 3/1

13



represents the x-y projection of this volume. Also indicated in the figure is

the sense of the directions represented by the notation, N, S, E, W, U, D for

t;	 north, south, east, west, up, and down, respectively.

On this grid, we now develop a difference equation to aproximate (3-1).

We start with the central difference operator, d, which is defined as

d f(x) - f(x + h/2) - f(x - h/2).

Applying this operator twice we get,

6 2 f(x) - a [f(x + h/2) - f(x - h/2)]

= [f(x + h) - f(x)] - [f(x) - f(x - h)]	 (3-2)

= f(x +h) -2f(x)+ f(x -h).

The connection between this last expression and the second derivative can

be observed by first writing the Taylor series for f (x + h),

f(x ± h) - f(x) ± h 
df 

(x) + 1 h2	
2 

(x) ± 1 h3 

3f 

(x) t ......(3-3)

substituting these series into (3-2), we find

6 2f(x)	 n f(x + h) -2f(x) + f(x - h)

=	 2[h2 2!
dx2	 (x) + 4!	 h4 d x4	 (x)] 

+ 0(h6),	
(3-4)

and solving for 
d 2 ff,

dx2

14



d2f	 6 2f (X) 
_ h2 d

af	
(3-5)

dx2	 h2	 U dx" + 0(h4).

The simplest approximation that we can make for the second partial derivative

is thus,

32f x	 z a f(x + h, Y,z) - 2f(x,y,z) + f(x - h,y,z)	 (3-6)
axe	 h2

with an error of order h 2 . Higher order approximations can be obtained by a

similar Taylor series analysis (Collatz, 1960), but the resulting formulas

sufficiently complicate the consideration of boundary conditions enough to

discourage their use in favor of just reducing h as much as possible. This of

course increases the number of points required to model a given object; so if

a machine size limit is reached and greater accuracy is still required, the

use of higher order approximations would be an option.

To investigate the effect of using ;variable spacing we can let h + h + , h_

where both are positive numbers. Starting again at (3-3) with this change, we

see that the odd order contributions to (3-4) no longer cancel, thus (3-5)

becomes

d?f	 262f	 _ 2 ( h+ - h-) df (x) _ ......	 (3-7)
dx2	(h+2 + h_ 2 )	 (h+2 + h_2) 3X

so, if h+ and h_ are not nearly equal, accuracy will be reduced.

We could now formally construct a differenced form of Poisson's equation

from (3-6), however it is more honest to present PANEL'S Poisson algorithm as

originally developed by Parker (1917b). 	 We first throw Poisson's equation

into partially dimensionless form by dividing by kT/e, so with m - Ve/kT and

A 
D 
2 , eokT/Noe 2 we get

15



i
i

020(X) - aD - 2 (ne - n i ) - R,	 (3-8)

where ne and n i are the electron and ion densities in units of the ambient

density No. Integrate now (3-8) over the cell volume associated with point P,

and apply the divergence theorem to the left hand side;

fffV20d 3X - f  an ds - fffR OX - Q.	 (3-9)

where an is the outward normal derivative at the surface of the cell. Q can
be identified as the net charge within the cell, however, this identification

is not implicit in the formal development. We next approximate the surface

integral in (3-9) by the sum:

	

F
A F ( 2'n ) F	 Q'	 (3-10)

where F - N, S, E, W, U, D, and AF is the area on each of these faces. These

areas are given by,

AN - AS a 4(xi+l - x i- 1 )((Zk+ 1 - Zk - 1)

AE ' AW ' 1(yj+1 - yj- 1 ) (Zk+ 1 - Zk- 1)
	(3-11)

All 
-'D - 4( xi+1 - xi-1) (yj+1 - Yj-1).

The partials (a-) are approximated by the difference quotients:
F

(an ) N ' y^ N -^y (an ) - ys _ y	 (3-12)

,j+1	 i	 S	 j -1

4	 16
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and similarly for the E, W, U, and D directions, where m is the potential at

the point P, and • N , es , etc. are the neighboring potentials. 	 Thus substi-

tuting equations (3-11) and (3-12) into (3-10) we obtain the algebraic

expression,

#	 C	 + C	 + C	 o +	 +	 • Q,	 (3-13)
N m N	 s • s	 E • +E ^ww ^u ou ^rooD - Co

where	 C _ (xi+1 - xi-1 )(Zk+l - Zk-1)

N	 4(yi +1 - yi)

and likewise for CS t!,rough CD ; C = I CF.
F

Equation (3-13) can be applied to each interior point in the model, but

exterior or boundary points require a modified treatment so as to include the

required boundary conditions. The types of boundary conditions (B.C.) used in

PANEL are:

1. Floating, where the outward normal derivative on the cell and model

boundary is linearly related to the potential on the boundaryt.

t In the theory of boundary value problems, independent specification of
the normal derivat 4 -e and potential is an over specification of the boundary
conditions and there will be no solution unless the solution was already known
and used to specify the B.C. Here we are specifying only a relation between
the two conditions, but even this implies a knowledge of the Green function
for the problem. For the case where the boundary is far enough away from the
"object" for the objet,. to look like a point charge or at least a uniformly
charged sphere, we can assume a Green function of 1/r, so we have the
relations:

an' n	 ^o= -n 2 ra.
r

For a closer boundary, the possibility exists for finding the appropriate
Green function, but this has not been pursued far enough to produce a useful

algorithm.
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2. Neuman, where the inward normal component of the electric field is

specified.

3. Dirichlet, where the boundary potential is specified.

4. Extended Dirichlet, where a boundary potential of zero is assumed to

exist one interval beyond the usual model boundary.

5. Reflection, where like condition 4, an extended boundary is assumed,

but with a potential equal to the nearest interior neighbor.

When a boundary is assumed to represent "infinity", i.e. a source of

undisturbed plasma at zero potential, the boundary should be far enough away

from the "object" that all boundary conditions give the same results. It is

frequently not possible to make grids that large so it becomes necessary to

choose the B.C. which best approximates "infinity" on a limited grid. Parker

and Sullivan (1969) has addressed this problem, and concluded that for the

spherical diode problem, the floating B.C. (1) produced the best "infinity"

approximation with the least computing time.	 The zero gradient B.C. (2)

produced an effective infinity at a distance comparable to the floating B.C.,

but required about twice the computing time as B.C. (1). The zero potential

B.C. (3) required a more distant boundary to produce similar results, and the

required computing time was between that required for B.C. (1) and B.C. (2).

All of these boundary conditions are effected by treating a boundary

point as an interior point, and by adding the appropriate "off-grid" poten-

tial. Equation (3-12) and (3-13) also require modification at exterior points

since if the maximum (minimum) value of x in the model is X II ( X I ) the point
i

XII+1 ( Xo ) does not exist. The required modifications for A N, AS,
) E

andand (am/an) W are respectively:

A^1 x	 -x	 )(z	 -z	 +^	 -x	 -z	 ),fora	 II;
N	 4 ( i+i	 i-1	 k+1	 k-i

)
	2 

(x 
II	 II-1

)(z k+i	 k-i
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AS ' E(xz - x 1 )(Zk+i - zk- 
i), for i	 1;

(11) . •= .+ 
•* - •

an E	 xi+^ - xi	 - 
x II-I - xII

ae	
eW - •	 •*W - •

and	
a#	 IS

x 	 x2 - xl

where the asterisk indicates that •* is chosen subject to the boundary

condition.

With the appropriate consideration of exterior points, we can now apply

equation (3-13) to all grid points giving a system of linear equations that is

solved by the method of over-relaxation (O.R.) (Stiefel, 1963). 	 Faster and

more sophisticated methods are discussed by Hockney (1965), but O.R. has been

chosen for its programming simplicity and versitility.	 To derive the O.R.

f.rmula used in Panel's relaxation algorithm, we first cast the system of

equations produced by equation (3-13) into the form

M

	

E 1 fpm mm - Qp ' 0,	 p , i t 2,00004M	 (3-14)

mn

where M is the total number of grid points. The solution of the p equation

with respect to the central unknown 
I  

yields:

♦p 	 0pm mm )

pp	 m*p

(3-15)

This equality will not be satisfied until the problem has relaxed or converged

to the final result. When (3-15) is not satisfied, we assume the righthand

side to be the better value for •p , so by denoting the various approximations

by the index u we step through the index p, replacing 
epu 

with 
epu+1 

to arrive
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at the computational rule,

u+ 1	 W	 1u+ 1	 M	 u
•p	

n ^	 -	
C •m	

- 1+
 1 CPm 4

m )
pp	 mn 1	 mnp

We have ,jumped ahead and added the over-relaxation factor W. In the ordinary

single step method, W n 1, and for W > 2 the method will diverge. The matrix

Cpm , obtained from the discretization of a boundary value problem is of the

banded symmetric-definite type, and for such, convergence is insured for

W < 2; Panel uses W n 1.9 with no divergence problems.

In the program, the subroutine FIELD controls the Poisson calculation.

The calculation of the interiur coefficients is delegated to the subroutines

CNS, t.EW, and CUD. The boundary conditions and B.C. influenced coefficients

are effected in FIELD and the subroutine RELAX performs the relaxation

ope.^ation.

THE VLASOV PROBLEM

In kinetic theory, the density and current at a point z' are given by the

Oth and 1st velocity moment of the single particle distribution function:

	

Nx (x')	 jfs(z', v') d 3v'	 (3-16)

JS (X') n qs jfs(xx 9 v') v`1 4d 3vv',	 (3-17)

where n is the unit vector in the direction of 3s. The distribution function

is the density of particles in six-dimensional phase space (three position and

three velocity coordinates). Further progress now requires findinc -' at z'.
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Application of Liouville's theorem to a collisionless plasma

i

leads the colli-

sionless Boltzmann or Vlasov f equation (Montgomery and Tidman, 1964).

Ofs . 

e + 1.05 + 31 (f + vx^)•3v^s • 0.	 (3-18)
MS

In words, fs is constant along a particle's path in six-dimensional phase

space, which can be characterized by the constants of the motion.	 In a

general electrostatic field such a constant is the total energy, defined by

Hs(x^ v) ' ^ msv2 * gsV(x)

where g sV(x) is the potential energy of the particle at z. The six-dimension

phase space path projected onto the usual space coordinates is just the usual

trajectory of a particle prescribed by Newtonian mechanics.

Consider the trajectory connecting (x', v') with (x, v) for a given elec-

trostatic field where at z, the distribution of particles of specie s 1s known

to be fs (x, 'v). If fs can be written as a function of only H(x', v), and since

H(x', v') - H(x, v'); we have therefore

fs (H(x. v)) ` fs(H(x'. v''));

tThe Vlasov equation represents the zeroth order terms in a cluster
expansion of the Liouville equation, with smallness parameter g n Vd 3)-1
the inverse of the number of particles in a Debye s^here. ForO under
substorm conditions ne - 1/cc and kT - 10kev, g . 10- 1 , so the collisionless
approximation is a very good one:. A ver, In the F region with n - 106/cc
and kTe - .2ev, g n 10 suggesting that the transport problem there needs a
more detailed treatment.
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or simply	 fs(x'', v'') • fs (x', v').	 (3-19)

We have now effectively solved the Vlasov equation and may now, in principle,

	

3-1 1.	 3-(-7
proceed to evaluate the integrals in equations 0 and f.

Note that some different value of 'v' will map to a different point

(x̀2 , v2) where we know the distribution function to be different (or zero).

Thus, in evaluating the integrals in equations (3-16) and (3-17), equation

(3-19) must be used to develope a composite expression for V. For example,

consider the problem of a non-emitting body immersed in a Maxwellian plasma.

At infinity, the distribution fun-tlon in three-dimensions, for specie s is,

	

fs(+ ' v') • Ns('c )3/2 exp (-	 P.1- 1. 	 (3-20)

At some point 'x' near the body, the distribution function will be,

fs( X', V ') • Ns(^) 3/2 exp ^•( ms ^s 2 ' gsV(x'))ATs 1 x Gs(x', P ). (3-21)

where G. is a function with a value of either zero or one depending on whether

(xx , v') maps to a non-source or source at infinity. In other formulations,

the G function is effectively replaced by reconstructing the limits of

integration in equations (3-16) and (3-17).

In practice, the integrals in (3-16) and (3-17) are approximated by

summations over a discrete set of velocities where each value of v' represents

a trajectory that must be followed to evaluate G(x', v'). we now have the

choice of either starting trajectories at "infinity" and following them in; or

because of the assumed time-independence, we could start at X' and follow

trajectories backwards in time to "infinity % The first technique has been
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dubbed the "Outside-in Method" by Parker (1964) and has the advantage of 	
f

i

having all trajectories successfully connecting to a source and of supplying

usefull trajectory information to all points along the trajectory. Its chief

disadvantage lies in the difficulty of getting adequate trajectory probing of

some regions of the problem. The Inside-out Method adopts the other approach

of following trajectories backwards in time. 	 This allows one to evaluate

G(x', v') at all points with equal accuracy, but can lead to large numbers of

trajectories to be retraced with each iteration. This last difficulty has

been recently overcome by recording the fate of each trajectory so that in

subsequent iterations, that information can be used to trace only those

trajectories that lie on the velocity space boundary between null and escaping

trajectories. This "boundary tracking" innovation can greatly increase storage

requirements, but the reduction in time requirements make it essential.

In the following paragraphs I shall described how PANEL performs the

integrals (3-16) and (3-17). 	 Parts of this description has been taken

directly from Parker (1977).

It is convenient to transform (3-16) and (3-17) to energy and angle

variables in velocity space. 	 Since we will be primarily interested in

Maxwellian energy distributions, we may adopt the following units in terms of

which dimensionless variables may be defined:

kT - unit of energy, when: - is the temperature of the Maxwellian

distribution;

/077mm - unit of velocity, namely, the most probably thermal velocity;

No n unit of particle density, the unperturbed density;

Jo	,rm n unit of current, the undisturbed thermal current.

The energy and angle variables are:

H n energy in multiples of kT;
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a • polar angle with respect to z-axis;

A n azimuthal angle with respect to the plane containing the z-axis and

the point x.

These angles which define the orientatio-, of the velocity vector v', are

illustrated in figure 3/2. Note that the potential energy • is also in units

of kT. so with the new unit of velocity we can write: H n v z + •.

The density and current Integrals (3-16) and (3-11) may be written

Ns n fff f'v 2dv sin a do do G

J S n fff f'v 3dv cos a sine de d o G

where Js is assumed to be the current to a surface perpendicular to the

z-axis. Introducing now. the Maxwell distribution (without drift), we have

n n 1	 f!-H ^= i dH f' sin a do f 2' G do	 (3-22)
2	 max(0^)	

o	 0, 

o
• F
J 

n 	 fa e-H (H - •) dH fa/2 cos a sin a do fo' G do (3-23)

max%#

The lower limit on the energy integral is chosen to be zero for an attractive

potential (a ( 0). and to be • for a repulsive potential (a ) 0). 	 This

ensures that we never consider particles with negative kinetic energy.

The integrals to (3-22) and (3-23) are evaluated by the method of

Gaussian quadrature (Jennings. 1964). It is not feasible to derive it here,

but the method can be illustrated by stating that in the formula

f^ f(x) dx • I Af( xi) ; R
i n0
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it is possible to choose A i and xi such that R - 0 for f(x) any polynomial of

degree < 2n + 1.	 When attempting to integrate a function of undetermined

degree, it is desirable to make n as large as possible. 	 This poses two

problems: 1) the formulas .
 for xi and Ai get increasingly complicated as n

increases and 2) the step function nature of G(z, v) implies a polynomial of

infinite degree.	 Both problems are partially overcome by dividing the

integration interval uniformly as for ordinary trapezoidal integration, and

then applying a Gaussian quadrature of order 2 to eac'- subinterval. Thus, in

preparation for this, we transform the ranges of integration into intervals

between -1 and +1 by the transformations:

H(c) - 1- + max (0, ^), 	 -1 < c < +1	 (3-24)

a = cos- 1	1 - a /2 for current

a = cos-' (-a)	 for density	
-1 < a < +1	 (3-25)

B = n (1 + b),	 -1 < b < +1	 (3-26)

The transformed current and density integrals then become,

n 1	 f+1 J±1 j+1 a-H(c) iffrcT -© G 
da db do	

(3-27)
1	 1 -1	

(1 - c)2

1 j+1	 ' J+ 1 -H(c) (H(c) - m ^ G da db do	
(3-28)_	 11	 1	 l e	

(1 - 
c)2

We now have the integrals in a form suitable for Gaussian quadratures.

We now divide the c-range into Mc sub-intervals, and apply a Gaussian

quadrature of order 2 to each. Similarly, we divide the a-range and b-range

into Ma and Mb sub-intervals, with Gaussian quadratures of order 2 applied to
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each sub-interval.	 Now, both equations (3-27) and (3-28) can be put in the

form

I	 f+ i f+' f+'W(H)-G(H, a, B)-da db do	 (3-29)

which may be approximated by the sum:

I	 1	 Mc	 Ma	
Ib [W(H-).G(H-, a , B ) + W(H+)-G(H+• a+ • B+)]

Ma Mc	 KC =1 Ka-1 Kb-1

(3-30)

where W is the energy weight function defined by,

W(H) a e-H(c)[H(c) - ml	 for current
2(1 - c)2

(3-40)

W(H)	

a-H(c)	 C 2_m	
for density

(1 - c)

H - H(c ) , H + = H(C+)

with	 a - a(a ) , a+ = a(a+)

B	 0(b-) , B+ ' B(b+).

Gaussian quadrature of order 2 applied to the interval -1, +1 yields the

abscissas t (3)_
1/2

 with a weight coefficient of unity. Applying this simple

formula to each sub-interval gives the formula,

it = 11- [t - + 2Ki - 1 + Mi l for i = a, b, c.	 (3-41)

t

t

so, with these formulae for a, b, and c, we may use equations (3-24) through
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(3-26) to choose sets of trajectories to be followed backwards in time to

either source or non-source regions and thus approximate the integrals for
i

density and current.

In the first iteration only a small set of the total 8M cMaMb trajectories

are used, and in following iterations the number is increased until the

maximum number of trajectories is being followed. This is an economizing move

that doesn't affect the accuracy of the calculation since in the beginning

iterations, densities are only approximate. As each trajectory is followed to

its end-point, its fate (escape - true, absorbed = false) is recorded in the

four-dimensional logical matrix (N x 2Mc x 2Ma x 2Mb ) called TRYE for elec-

trons and TRYI for ions, where N identifies the point. When each trajectory

has been used at least once, the TRY matrices are used in subsequent itera-

tions to trace only those that lie on a velocity space boundary. This is

accomplished by simply comparing the last recorded fate for the trajectory in

question to that for each of its six energy and angle neighbors in the TRY

matrix. If all seven fates are identical, the trajectory is not followed and

its fate is merely read from TRY. If they are not all identical, the trajec-

tory is followed and any change of fate is recorded in TRY. If all the fates

for a point and particle become the same, a shut-out would occur and no

trajectories would be traced.	 To prevent this, all of the highest energy

trajectories are exempted from the boundary searching process, and traced each

iteration.
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Trajectories

In an electrostatic field with no magnetic fields, a particle will move

according to the equation,

z x+o+vt+1

where t is time and E is the electric field. This equation is put into the

units common to PANEL with the transformation t + t'-(2kT/m). Thus we have

x xo 
+ v xt1 + - -7 2x^ t

'2

y = yo + vyto +	 - -Z
1 at

 axe t'
2 	(3-42)

z	
zo + vto +z	 - 2x) t'2

where as before, v is in units of the most probable thermal velocity, and 0 is

the dimensionless potential.

PANEL traces particle trajectories on the same grid that is used for the

Poisson calculation. At each interior grid point, the six neighboring inter-

mediate points each define a face of a cell enclosing the grid point. The

velocities in equations (3-42) are always given as a result of a previous

step, or as initial conditions as a trajectory starts. The partial deriva-

tives of the potential in (30-42) are approximated by divided differences

calculated in the following manner. At the point P(x i , yj , zk ), form the west

and east potential differences,

AOW = 
0 (i. j , k) - @ (i-I, j, k)

At  = m
(1 + 1, j . k) - 4 ( i. j . k)

r.
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and similarly for y and z.	 Next, the absolute value I("W - AOE )I 	 is compared

to	 the	 particle's	 total energy,	 H,	 multiplied	 by	 an input resolution factor

RES.	 If	 the	 variation in	 potential	 differences	 is less	 than H • RES, PANEL

uses

	

at	 °@W + At 

z  7 1 +1 - xi -1'

for the entire cell, and if the variation is too great, the cell is halved and

for the west and east halves we use,

	

04	
6m W

(ox )W xi - xi-1

and

oll
	 _	 at 

o x E x i+ 1 - xi

Thus, a cell can conceivably be divided into eight sub-cells. 	 This subdi-

vision is always performed at the start of a trajectory when the particle will

probably never enter most of the sub-cells.

Once the cell or sub-cell has been defined and the "electric field"

calculated equations (3-42) are solved independently for the times required to

cross the cell, and the shortest positive time is chosen. Using this time,

the particle is stepped to another face of the cell and the process begins

again in the next cell until an outer boundary is reached. At a boundary, a

particle can escape, be absorbed on a surface, or be reflected (for a

reflection boundary condition).
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STABILITY AND CONVERGENCE

Parker and Sullivan (1970) have analized the stability and convergence of

the inside-out method, applied to a uniformly charged sphere in a uniform

plasma. Although a three-dimension method like PANEL could be expected to

differ from a simple one-dimension method in its stability properties, tests

have shown that the results of their study are applicable to PANEL. That

analysis will be briefly outlined.

1 we imagine that the Poisson solving process can be represented by the

operator L(m) and that the Vlasov process can be represented by ?(a), then the

state of a system would be prescribed by

L(0) = F(4),	 (3-43)

and the iterative procedure previously described would follow the Picard

iteration rule,

	

L(mn+1) = F( mn )1	 (3-44)

where n is the iteration index. This iteration scheme, however, was found to

diverge when the distance between their sphere and the model boundary exceeded

the Debye length. An effective cure for this, is to replace rule (3-44) with 	
r

L(mn+1) 	
F(aOn + (1 - a) m^-1 ),	 0 < a < 1.	 (3-45)

This technique is called mixing, and the superscript M indicates previously

mixed potentials, i.e.,
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•n_ 1	 a0n-1 + ( 1 - 0) 6M

Their analysis of rule	 (3-45)	 predicts monotone convergence for

a ( 2/(2 + y), oscillatory	 convergence	 for 2/(2 + y) ( a ( 2/(1 + y), and

divergence for a > 2/(1 + y), with an optimum value, aopt - 2/(1 + y). The

parameter y is given by

y - 2d 2/n2XD29

where d is the boundary-object separation distance, and A  is the Debye length

for the plasma. These predictions have been proven to be accurate for the

one-dimension sphere model.

One could insure convergence by choosing a very small, but then a large

number of iterations would be required. 	 Therefore it is desireable to

optimize a. With PANEL, I have found this prediction for aopt to be a good

first approximation; but to really obtain optimal convergence, calculations

must be stopped every three or four iterations to adjust a.
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4: RESULTS

The results presented here are of two distinct types:	 "calibration"

models designed tc test PANEL against problems for which analytic answers are

	

available, and two production models to demonstrate PANEL's capabilities.	 j

Thus far, the emphasis has been on the former. Just as with an instrument,

I
results are worthless without calibration. This emphasis has been rewarded,

as many subtle errors (both with PANEL and my use of PANEL) have been detected
f

and corrected.	 For this reason, the runs presented here represent only a

fraction of those that have been made.

The models called Gap 06, Gap 07, and Gap 08 are calibration models of

the problems described in equations (2-12) through (2-17) in section 2 of this

report. Pan 21 is a model of a planar electron diode, and can be compared to

the Child-Langmuir law, equation (2-20).	 Finally, Pan 29 and Pan 36 are

production models of charged panel in a plasma similar to that encountered in

the Chamber A experiments at the Johnson Space Center (McCoy and Konradi,

1978). All of these are two-dimensional models. Three-dimensional tests have

also been made, but limited computing time has prever,;..ed the running of

physically meaningful three-dimensional models.

In the gap problem, electrons are accelerated from a cold cathode (T - 0)

to the potential V 1 (see figure 2/1) at x - 0, to produce a beam current J.

PANEL models this experiment by assuming that there is an undisturbed

Maxwellian plasma at x l < -d, so that the current J is the randon. thermal

current (J o - Noe	 *m) crossing the grid at x - -d. (Although the plasma

has density No, the electrons crossing the grid have N - No /2). As described

in section 2, this current is normalized by the relevent C-L current, thus we

have the current ratio,
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The results of Gap 06, Gap 07, and Gap 08 are plotted in figures 4/1 and

4/2. In these plots, the transmitted electrons travel from right to left

across a gap of one meter. This is modeled by 24 grid points; 12 z and 2 x

coordinates. At z	 0 electrons are absorbed; at z - 11 (.lot shown), they are

generated; and they are reflected at both x boundaries. (Since this is a one

dimension problem, PANEL could have been fitted with a one-dimension option,

but unlike the two-dimension option, a one-dimension option would have only

limited applications.)	 In all three plots, the potentials predicted by the

classical theory are labeled  as curve A, and the results of PANEL are labeled

P. The features of these models are:

Gap 06:	 9 - 10, J n 2.373 x 10 -2 A/m 2 , Te = 10 eV, V 1	100 V,

No - 2.8 x 10 5 cm-3 , Me - 4, Ma = 32;

Gap 07: 0 - 10, J - 2.373 x 10 -2 A/m 2 , Te = 1 eV, V 1 - 100 V,

No = 8.9 x 10 5 cm- 
3, Me - 4, Ma - 32;

Gap 08:	 B - 4,	 J - 9.49 x 10 -3 A/m 2 , Te = 1 eV, V 1 - 100 V,

No - 3.5 x 10 5 cm
-3 , Me = 4, Ma 32.

Gap 07 anI 08 are both well converged, but Gap 07 has an uncertainty indicated

by the error bar on the plot. I consider these models to be a positive test

of PANEL, inspite of the large deviations from the classical predictions. The

classical theory considers a source of electrons with no thermal spread. By

comparing Gap 06 with Gap 07 we can see that as the source plasma cools from a

temperature of 10 eV to 1 eV, the results get closer to the classical predic-

33



tion.	 In Gap 08 where 9 n 4, the predicted minimum potential is 75.0 volts

while PANEL gives 75.1 ± 0.7 (the error indicates the degree of convergence).

This again indicates that the disagreement with the classical theory in Gap 06

and Gap 07 are due to non-zero temperatures since one would expect this effect

to be most pronounced with low minimum potentials, and least pronounced with

higher minimum potentials.

From Gap 08 we can also learn something about the number of trajectories

that must be traced to give accurate densities. 	 In figure 4/2, the lower

curves labeled D and C are densities for PANEL and classical theories respec-

tively. Briefly, the classical densities are derived by eliminating v from

J - Nev	 (4-1)

and	 2 mv 2 • eV	 (4-2)

to get	 N - J( me/2e 3 V) 1/2 .	 ( 4-3)

For Gap 08 the total zenith angle range of 2w is covered by 64 trajectories to

give a trajectory separation of .098 rad. or 5.63 0 .	 This separation was

further reduced by one half by noting that due to symmetry, positive and

negative angles of equal magnitude lead to equivalent trajectories; thus all

trajectories were shifted by half of the separation angle. The result is that

although the voltages were obtained with good accuracy, the densities still

lack resolution.

Pan 21 represents a simple but important test of PANEL. 	 This is a

comparison of PANEL with the Child-Lanqmuir law shown in fig. 4/3. Due to the

close agreement, a curve has been drawn only through the PANEL points. At
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Sciccted points, PANEL and C-L potentials are given for comparison. The C-L

r106-entials are given in parentheses and C-L densities are plotted with

crosses.	 Here 32 points (2 x 16) were used to model a diode with a 16.51

meter plate separation, and a 100 volt potential difference.	 The model

parameters are:

Pan 21; Te n 1 eV, N n 3.2 x 102 
W.39 

a d n 0.4m, Me n 4, Ma n 32,

J- 8.58 x 10 -6 A/m z

The greatest disagreement between PAN 21 and the C-L theory occurs at z -

14, whete the PANEL prediction is 22% high, with improved agreement at lower z

values. At z - 8, the disagreement is only 1%. The larger deviations should

be expected in the low voltage region near the cathode due to the non-zero

injection velocity of the electrons. For this reason, it would be desireable

to compare PANEL predictions with the modified C-L law, equation (2-10), but

unfortunately, this comparison has not yet been made.

Pan 29 and Pan 36 are two-dimensional models of a cross-section of an

infinitely long, one meter wide panel held at a potential of 100 volts in a

hydrogen plasma with equal ion and electron temperatures of 10 eV. The chosen

plasma temperature of 10 eV is higher than the usual temperatures encountered

in LEO or in the JSC Chamber A experiments which are frequently less than 1

eV. Models with a panel potential of 100 V and a temperature of 1 eV have

been considered, but under these conditions PANEL is significantly less

stable. To achieve stability thus requires a smaller mixing parameter, more

iterations and more computing time; so for these first models, a higher but

not unreasonable temperature was chosen.

Due to the symmetry of the problem, it was possible to model the entire
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cross-section by calculating potentials and densities in one quadrant only by

using the reflection boundary condition on the DOWN and WEST boundaries. For

PAN 29 the UP B.C. is V n 0, and for the EAST boundary the B.C. is the zero

normal gradient boundary condition [B.C. (2), iV/in n 0]. Model parameters

for PAN 29 and PAN 36 are:

T 1 n 10 eV, T. n 10 eV, No • 1.9 x 10" an 3, A  - . 17m,
Joe- 1.61 x 10

-j
 A/m'. ME n 4, MA n 32.

PAN 29 potential contours are displayed in Figures 4/4, and the PAN 36 results

are displayed in Figures 4/5, 4/6 and 4/7. The potential contours shown in

Figures 4/4 and 4/5 were produced by the well-known technique of eyeball

interpolation.	 For PAN 36, potentials (labeled P) and charge densities

(labeled C) along the DOWN and WEST boundaries are presented in Figures 4/6a

and b respectively, and the electron and proton densities along theiba same

boundaries are shown in Figure 4/7. In addition to the change to B.C.'s the

other differences between PAN 29 and PAN 36 are location of the boundaries and

the number of grid points. PAN 29 has an UP boundary distance of 1.85 meters

with a 8 x 8 grid, while PAN 36 has an UP boundary distance of 2.4 meters with

a 9 x 10 grid.

Several interesting features of the general problem can be observed by

crinpari ng the contour plots 4/4 and 4/5. First, by assuming that PAN 36 is

the better model of the two, we can see that B.C. (2) on the EAST boundary of

PAN 29 (Figure 4/4) produced potentials along the DOWN boundary that are very

close to those of PAN 36; and therefore supposedly better than what could have

been obtained with a V n 0 condition. The drawback is that B.C. (2) severely

destabilizes the problem. One model, PAN 35 (nearly identical to PAN 36, but

. ,
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with B.C. (2) on both the UP and EAST boundaries) diverged severely with a

mixing factor of 0.08, while PAN 36 was stable with mixing factors up to

O.S. This suggests the possibility of speeding convergence on smaller grids

by using varying mixing factors with small values near B.C. (2) boundaries and

increasing to larger values near fixed potentials.

It can also be seen that the increased grid point density near the panel

in PAN 36 has caused the 70 V, 50 V, and 30 V contours to move closer to the

panel with smoother contours near the edge of the panel.	 The electron

currents collected from above the panel are imitated by the arrows below the

panel in figures 4/4 and 4/5, and have been normalized by the random thermal

current, Jo . Near the center of the panel. both models give the same current,

but with the increased point density in PAN 36 ;* begin to see a slight

reduction in current collection near the edge. A further increase in point

density would probably show more current focusing. 	 However, the strong

central focusing (greater than an order of magnitude difference between

central and edge currents) observed by McCoy (1980) in the solar panel tests

at JSC 1s not indicated in these models. This focusing could be dependent on

the correct choice of panel voltage and plasma parameters, but is most likely

due to a band of dielectric along the edges of that test panel. 	 This

possibility will be tested in future models.

For both PAN 29 and PAN 36, the C-L screening distance is D CL n 1.2 m,

and the corrected screening distance is Os n 1.73 m.	 These points are

indicated in Figures 4/4, 4/5, 4/6, and 4/7, and the uncorrected C-L contour

is marked with crosses in Figure 4/6. Figures 4/5 and 4/7 show that poten-

tials have been reduced to less than kT/e (n 10 V) within either estimate.

There is some "compression" of the contours caused by the closeness of the

V n 0 boundaries, as is evidenced by the most distant points in Figure 4/7
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where the electron density unrealistically drops below the proton density due

to the artificially high electric field between the outermost two points.

However. comparisor of the EAST boundaries of Figures 4/4 and 4/5 suggests

that this compression is not too severe.

Although all of the PAN 29 and PAN 36 boundaries are too close to allow

an undisturbed plasma region to develop. Figure 4/7b shows a definite pre-

sheath region beyond the DDL point with electron and proton densities nearly

equal but reduced from the ambient values.

The Models PAN 29 and PAN 36 are clearly not a complete study of the

solar panel-plasma interaction problem, but the results that have been

presented should demonstrate that PANEL is capable of accurate space charge

calculations. Three-dimensional test calculations have been successfully run,

but time limitations have prevented full scale three-dimensional modeling.

The two-dimensional model PAN 29 required twelve minutes of processing on an

ITEL AS/6. PAN 36 required about thirty minutes, and three-dimensiona, models

are expected to require many hours of processing time. Although this is not

an extreme requirement, two-dimensional modeling will continue to be important

for deciding matters such as the placement of boundaries, or the effect of

chamber walls.
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Appendix A: Symbols and Constants

The sy,-,u)ols and constants used throughout this report are reviewed in

this appendix. With only a few noted exceptions, the MKS system of units has

been adhered to.

T; temperature `i degrees Kelvin.

k; Boltzman's constant = 8.62 x 10-5 eV/°K.

e; electon charge	 1.602 x 10-19 Coulomb.

me ; electron mass	 9.11 x 10-31 kilograms.

mp ; proton mass = 1.673 x 10
-27 

grams.

E o ; free space permittivity = 8.85 x 10 12 farad/meter.

V; potential in Volts.

0; dimensionless potential normalized by kT/e.

v; velocity in meters/second, or normalized by 127rFm.

E; dimensionless electric field.

H; total energy in Joules, or dimensionless total energy normalized by

kT/e.

N; density in m-3.

No ; ambient density in m -3 .

n; dimensionless density normalized by No.

J; current in Amperes/meters 2 = Am-2.

J o ; random thermal current in Am -2 .

j; dimensionless current normalized by Jo.

P; charge density in Coulomb m -3 .

a; sheath thickness.

a D ; Debye length.

39



Appendix B: Subroutine linkage.

	

CNS:	 CEW:	 CUD:

	

f Y field	 t X field	 ± Z field

coefficients	 coefficients	 coefficients

	

FIELD:	 ARRAY.: Storage

	

Control of CNS,CEW,CUD,	
and printing of

	

and bounaary conditions 	
geometric coef-
ficients

RELAX:

 L I STB : Listing

	

Solve V2 0  - -p/co	 of potential
by over-relaxation 	 and density

arrays

PANEL	
LIST:  Listing

Input/Output	 of X Y Z
Calculation control	 coordinates

Input	 Potential mixing

FIND:

	

COABS : Calculation	 Find k Y Z
of energies,angles,
and coefficients

	

SPCHG : Control
	

POWER: Control
of DEN for density	 of DEN for current
calculation
	 calculation

DEN: Trajectory
initialization

and analysis

	

ORB IT3 : Individual
	

INTERP : Locate
trajectory incre-	 particles after

ments
	 trajectory steps,

calculate E fields
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Appendix C: The 2-0 Option

When a problem exhibits sufficient symmetry, it is sometimes possible to

reduce the number of integrals in equations (3.16) and (3.17) that must be

performed numerically; so, in a sense, PANEL's 2-D option still produces 3-D

results.

Using the Maxwellian distribution given in (3.21), and writing (3.16) and

(3.11) in terms of Cartesian velocity coordinates we have,

N(x' ) = No (m ) "' fav' favy fav' G(x' , v' )	 (C-1)

q	 (
x

1)
" exp [_ ^
	 2	 2	 2	 v(v x + vy + vz ) _ ^c7' )

(x') = q No ( m )
312 f V

, Davy f9v; G(x', v')	 (C-2)

x (^l	 n) exp [- m (v' 2 + v' 2 + v' 2 ) -	 V 
x'	

JN x	 y	 z	 kT

If G(x', v') is not a function of v y , and if n in (C-2) lies entirely in the

x-z plane, the v  integrations can be performed immediately leaving

t
a

N(x')	
No(2nkT) 

fau x jmv z G(x', v')
	

(C-3)

f	 and

a

x exp [ - ' M (
VX

2 + 
VZ

2) _	 X'

+a	 m
J z (x')	 No ( f̂i) f_dv' f dv- G(z', v') Vz

0
(C-4)

exp [- m (v' 2 + v' 2 ) - V 
X'

x	 z
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where we have set n - z. Transforming now to cylindrical polar coordinates,

and as in Section 3, denoting the exponential argument by H; we have

N(x') - No (M) jov'dv'j ±* de' G(x', v') exp (-H)	 (C-5)

and

J Z	 No () jov' 2dv'j+^^2s e' de' G(x', v') exp (-H)	 (C-6)
i Mr

Again as in Section 3, we transform to dimensionless v. H, and 4, and norma-

lize by Nso and Jso to get the two-dimensional versions of (3-22) and (3-23);

n =	 jca e-H dH j +ode G(x', v')	 (C-7)
max(O,o)

and	 j 

Z	

1	 j^ a -H	 dH j ^
2
2cose de G(x', v')	 (C -8)

T max(0,o)	 - n 

In preparation for Gaussian quadrature, we make the following transformatins:

E = 1
^±c^ 

+ max(0,0),	 -1 < c < +1	 (C-9)

9 = na	 for density

e - sin - (a)	 ,for current

Including these we have,

n 
_ f+1 1 CH(c)	

do dal G(x', v')	 (C-11)

	

1^	
(1 - c)

and

j	 2	 j+1 j+1 a -H (c )	 do da	 G (
x ,. P)t	 1 -1	

(1 - 
c)2

j	 And, as in section (3), we introduce the sub-interval Gaussian quadrature

F
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1

i

t
i

3

approximations:

	

n or 
j z ' 1^

a
	Ic	 Ea [W2(H 

)•G 2(H 
_,O - ) + W 2 (H + ) •G 2 ( H+ ,e+ )	 (c-12)

c 	 Kc=1 Ka-1

where the two-dimensional energy weight function is

W	 e-H(c) x { 1	 ,for density

	

2	
(1	

c)2	

T ,
	 for current	 (C-13)

and	 Ht = H(c ± ), et i e(a t).

The Gaussian abscissa formula (3-41) and the transformations (C-9) and (C-10)

are used to initiate trajectories.
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