577 research outputs found

    Numerical and Asymptotic Aspects of Parabolic Cylinder Functions

    Get PDF
    Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are modified to improve the asymptotic properties and to enlarge the intervals for using the expansions in numerical algorithms. Olver's results are obtained from the differential equation of the parabolic cylinder functions; we mention how modified expansions can be obtained from integral representations. Numerical tests are given for three expansions in terms of elementary functions. In this paper only real values of the parameters will be considered.Comment: 16 pages, 1 figur

    Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments

    Get PDF
    We describe a variety of methods to compute the functions Kia(x)K_{ia}(x), Lia(x)L_{ia}(x) and their derivatives for real aa and positive xx. These functions are numerically satisfactory independent solutions of the differential equation x2w′′+xw′+(a2−x2)w=0x^2 w'' +x w' +(a^2 -x^2)w=0. In an accompanying paper (Algorithm xxx: Modified Bessel functions of imaginary order and positive argument) we describe the implementation of these methods in Fortran 77 codes.Comment: 14 pages, 1 figure. To appear in ACM T. Math. Sof

    Asymptotic approximations to the nodes and weights of Gauss-Hermite and Gauss-Laguerre quadratures

    Get PDF
    Asymptotic approximations to the zeros of Hermite and Laguerre polynomials are given, together with methods for obtaining the coefficients in the expansions. These approximations can be used as a standalone method of computation of Gaussian quadratures for high enough degrees, with Gaussian weights computed from asymptotic approximations for the orthogonal polynomials. We provide numerical evidence showing that for degrees greater than 100100 the asymptotic methods are enough for a double precision accuracy computation (1515-1616 digits) of the nodes and weights of the Gauss--Hermite and Gauss--Laguerre quadratures.Comment: Submitted to Studies in Applied Mathematic

    Integral Representations for Computing Real Parabolic Cylinder Functions

    Get PDF
    Integral representations are derived for the parabolic cylinder functions U(a,x)U(a,x), V(a,x)V(a,x) and W(a,x)W(a,x) and their derivatives. The new integrals will be used in numerical algorithms based on quadrature. They follow from contour integrals in the complex plane, by using methods from asymptotic analysis (saddle point and steepest descent methods), and are stable starting points for evaluating the functions U(a,x)U(a,x), V(a,x)V(a,x) and W(a,x)W(a,x) and their derivatives by quadrature rules. In particular, the new representations can be used for large parameter cases. Relations of the integral representations with uniform asymptotic expansions are also given. The algorithms will be given in a future paper.Comment: 31 pages, 3 figures. To appear in Numer. Mat

    A numerical method for oscillatory integrals with coalescing saddle points

    Full text link
    The value of a highly oscillatory integral is typically determined asymptotically by the behaviour of the integrand near a small number of critical points. These include the endpoints of the integration domain and the so-called stationary points or saddle points -- roots of the derivative of the phase of the integrand -- where the integrand is locally non-oscillatory. Modern methods for highly oscillatory quadrature exhibit numerical issues when two such saddle points coalesce. On the other hand, integrals with coalescing saddle points are a classical topic in asymptotic analysis, where they give rise to uniform asymptotic expansions in terms of the Airy function. In this paper we construct Gaussian quadrature rules that remain uniformly accurate when two saddle points coalesce. These rules are based on orthogonal polynomials in the complex plane. We analyze these polynomials, prove their existence for even degrees, and describe an accurate and efficient numerical scheme for the evaluation of oscillatory integrals with coalescing saddle points

    Computation of the modified Bessel function of the third kind of imaginary orders: uniform Airy-type asymptotic expansion

    Get PDF
    AbstractThe use of a uniform Airy-type asymptotic expansion for the computation of the modified Bessel functions of the third kind of imaginary orders (Kia(x)) near the transition point x=a, is discussed. In A. Gil et al., Evaluation of the modified Bessel functions of the third kind of imaginary orders, J. Comput. Phys. 17 (2002) 398–411, an algorithm for the evaluation of Kia(x) was presented, which made use of series, a continued fraction method and nonoscillating integral representations. The range of validity of the algorithm was limited by the singularity of the steepest descent paths near the transition point. We show how uniform Airy-type asymptotic expansions fill the gap left by the steepest descent method

    Numerical and asymptotic aspects of parabolic cylinder functions

    Get PDF
    Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions given earlier by F.W.J. Olver. Some of his results are modified to improve the asymptotic properties and to enlarge the intervals for using the expansions in numerical algorithms. Olver's results are obtained from the differential equation of the parabolic cylinder functions; we mention how modified expansions can be obtained from integral representations. Numerical tests are given for three expansions in terms of elementary functions. In this paper only real values of the parameters will be considered
    • …
    corecore