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Abstract

Several uniform asymptotics expansions of the Weber parabolic cylinder functions are considered, one group in terms of
elementary functions, another group in terms of Airy functions. Starting point for the discussion are asymptotic expansions
given earlier by F.W.J. Olver. Some of his results are modi�ed to improve the asymptotic properties and to enlarge the
intervals for using the expansions in numerical algorithms. Olver’s results are obtained from the di�erential equation
of the parabolic cylinder functions; we mention how modi�ed expansions can be obtained from integral representations.
Numerical tests are given for three expansions in terms of elementary functions. In this paper only real values of the
parameters will be considered. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The solutions of the di�erential equation

d2y
dz2

−
(
1
4
z2 + a

)
y = 0; (1.1)

are associated with the parabolic cylinder in harmonic analysis; see [20]. The solutions are called
parabolic cylinder functions and are entire functions of z. Many properties in connection with physical
applications are given in [4].
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As in [1, Chapter 19] and [17, Chapter 7], we denote two standard solutions of (1.1) by U (a; z);
V (a; z). These solutions are given by the representations

U (a; z) =
√
� 2−(1=2)a

[
2−1=4y1(a; z)

�(3=4 + (1=2)a)
− 21=4y2(a; z)

�(1=4 + (1=2)a)

]
;

V (a; z) =
√
� 2−(1=2)a

�((1=2)− a)

[
tan �

(
1
2
a+

1
4

)
2−1=4y1(a; z)

�(3=4 + (1=2)a)

+cot �
(
1
2
a+

1
4

)
21=4y2(a; z)

�(1=4 + (1=2)a)

]
;

(1.2)

where

y1(a; z) = e−(1=4) z
2

1F1

(
−1
2
a+

1
4
;
1
2
;−1
2
z2
)
= e(1=4) z

2

1F1

(
1
2
a+

1
4
;
1
2
;
1
2
z2
)
;

y2(a; z) = ze−(1=4) z
2

1F1

(
1
2
a+

3
4
;
3
2
;
1
2
z2
)
= ze(1=4) z

2

1F1

(
−1
2
a+

3
4
;
3
2
;−1
2
z2
) (1.3)

and the conuent hypergeometric function is de�ned by

1F1(a; c; z) =
∞∑
n=0

(a)n
(c)n

zn

n!
(1.4)

with (a)n = �(a+ n)=�(a); n= 0; 1; 2; : : : :
Another notation found in the literature is

D�(z) = U (−�− 1
2 ; z):

There is a relation with the Hermite polynomials. We have

U (−n− 1
2 ; z) = 2

−n=2e−(1=4) z
2

Hn(z=
√
2);

V (n+ 1
2 ; z) = 2

−n=2e(1=4) z
2

(−i)nHn(iz=
√
2):

(1.5)

Other special cases are error functions and Fresnel integrals.
The Wronskian relation between U (a; z) and V (a; z) reads

U (a; z)V ′(a; z)− U ′(a; z)V (a; z) =
√
2=�; (1.6)

which shows that U (a; z) and V (a; z) are independent solutions of (1.1) for all values of a. Other
relations are

U (a; z) =
�

cos2 �a�((1=2) + a)
[V (a;−z)− sin �aV (a; z)];

V (a; z) =
�((1=2) + a)

� [sin �aU (a; z) + U (a;−z)]:

(1.7)

The functions y1(a; z) and y2(a; z) are the simplest even and odd solutions of (1.1) and the Wronskian
of this pair equals 1. From a numerical point of view, the pair {y1; y2} is not a satisfactory pair (see
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[8]), because they have almost the same asymptotic behavior at in�nity. The behavior of U (a; z)
and V (a; z) is, for large positive z and z � |a|

U (a; z) = e−(1=4) z
2

z−a−(1=2)[1 + O(z−2)];

V (a; z) =
√
2=� e(1=4) z2za−(1=2)[1 + O(z−2)]:

(1.8)

Clearly, numerical computations of U (a; z) that are based on the representations in (1.2) should be
done with great care, because of the loss of accuracy if z becomes large.
Eq. (1.1) has two turning points at ±2√−a. For real parameters they become important if a is

negative, and the asymptotic behavior of the solutions of (1.1) as a → −∞ changes signi�cantly if
z crosses the turning points. At these points Airy functions are needed. By changing the parameters
it is not di�cult to verify that U (− 1

2�
2; �t

√
2) and V (− 1

2�
2; �t

√
2) satisfy the simple equation

d2y
dt2

− �4(t2 − 1)y = 0 (1.9)

with turning points at t =±1. For physical applications, negative a-values are most important (with
special case the real Hermite polynomials, see (1.5)). For positive a we can use the notation
U ( 12�

2; �t
√
2) and V ( 12�

2; �t
√
2), which satisfy the equation

d2y
dt2

− �4(t2 + 1)y = 0: (1.10)

The purpose of this paper is to give several asymptotic expansions of U (a; z) and V (a; z) that can
be used for computing these functions for the case that at least one of the real parameters is large. In
[10] an extensive collection of asymptotic expansions for the parabolic cylinder functions as |a| → ∞
has been derived from the di�erential equation (1.1). The expansions are valid for complex values
of the parameters and are given in terms of elementary functions and Airy functions. In Section
2 we mention several expansions in terms of elementary functions derived by Olver and modify
some his results in order to improve the asymptotic properties of the expansions, to enlarge the
intervals for using the expansions in numerical algorithms, and to get new recursion relations for
the coe�cients of the expansions. In Section 3 we give similar results for expansions in terms of
Airy functions. In Section 4 we give information on how to obtain the modi�ed results by using
integral representations of the parabolic cylinder functions. Finally we give numerical tests for three
expansions in terms of elementary functions, with a few number of terms in the expansions. Only
real parameters are considered in this paper.

1.1. Recent literature on numerical algorithms

Recent papers on numerical algorithms for the parabolic cylinder functions are given in [14]
(Fortran; U (n; x) for natural n and positive x) and [13] (Fortran; U (a; x); V (a; x), a integer and
half-integer and x¿0). The methods are based on backward and forward recursion.
Baker [2] gives programs in C for U (a; x); V (a; x), and uses representations in terms of the

conuent hypergeometric functions and asymptotic expressions, including those involving Airy func-
tions. Zhang and Jin [23] gives Fortran programs for computing U (a; z); V (a; z) with real orders
and real argument, and for half-integer order and complex argument. The methods are based on
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recursions, Maclaurin series and asymptotic expansions. They refer also to [3] for the evalua-
tion of U (−ia; ze(1=4)�i) for real a and z (this function is a solution of the di�erential equation
y′′ + (14z

2 − a)y= 0). Thompson [19] uses series expansions and numerical quadrature; Fortran and
C programs are given, and Mathematica cells to make graphical and numerical objects.
Maple has algorithms for hypergeometric functions, which can be used in (1.2) and (1.3) [5].

Mathematica refers for the parabolic cylinder functions to their programs for the hypergeometric
functions [21] and the same advice is given in [12]. For a survey on the numerical aspects of special
functions we refer to [7].

2. Expansions in terms of elementary functions

2.1. The case a60; z ¿ 2
√−a;−a+ z � 0

Olver’s expansions in terms of elementary functions are all based on the expansion O-(4:3) 1

U (− 1
2�

2; �t
√
2) ∼ g(�)e−�2�

(t2 − 1)1=4
∞∑
s=0

As(t)
�2s

(2.1)

as � → ∞, uniformly with respect to t ∈ [1+ �;∞); � is a small positive number and � is given by

�= 1
2 t
√
t2 − 1− 1

2 ln[t +
√
t2 − 1]: (2.2)

The expansion is valid for complex parameters in large domains of the �- and t-planes; details on
these domains are not given here.
The coe�cients As(t) are given by the recursion relation

As+1(t) =
1
2

1√
t2 − 1

dAs(t)
dt

+
1
8

∫ t

cs+1

3u2 + 2
(u2 − 1)5=2As(u) du; A0(t) = 1; (2.3)

where the constants cs can be chosen in combination with the choice of g(�). Olver chose the
constants such that

As(t) =
us(t)

(t2 − 1)3s=2 ; (2.4)

where the us(t) are polynomials in t of degree 3s, (s odd), 3s− 2 (s even, s¿2). The �rst few are
u0(t) = 1; u1(t) =

t(t2 − 6)
24

; u2(t) =
−9t4 + 249t2 + 145

1152
and they satisfy the recurrence relation

(t2 − 1)u′s(t)− 3stus(t) = rs−1(t); (2.5)

where
8rs(t) = (3t2 + 2)us(t)− 12(s+ 1)trs−1(t) + 4(t2 − 1)r′s−1(t):

The quantity g(�) in (2.1) is only available in the form of an asymptotic expansion

g(�) ∼ h(�)

( ∞∑
s=0

gs

�2s

)−1
; (2.6)

1 We refer to Olver’s equations by writing O-(4:3), and so on.
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where

h(�) = 2−(1=4)�
2−(1=4)e−(1=4)�

2

�(1=2)�
2−(1=2); (2.7)

g0 = 1; g1 =
1
24

; g3 =− 2021
207 360

; g2s = 0 (s= 1; 2; : : :);

and in general

gs = lim
t→∞ As(t): (2.8)

2.1.1. Modi�ed expansions
We modify the expansion in (2.1) by writing

U (− 1
2�

2; �t
√
2) =

h(�)e−�2�

(t2 − 1)1=4F�(t); F�(t) ∼
∞∑
s=0

�s(�)
�2s

; (2.9)

where h(�) and � are as before, and

�=
1
2

[
t√

t2 − 1 − 1
]
: (2.10)

The coe�cients �s(�) are polynomials in �, �0(�) = 1, and are given by the recursion

�s+1(�) =−4�2(�+ 1)2 d
d�

�s(�)− 1
4

∫ �

0
(20�′2 + 20�′ + 3)�s(�′) d�′: (2.11)

This recursion follows from (2.3) by substituting t = (�+ 1
2)=

√
�(�+ 1), which is the inverse of the

relation in (2.10). Explicitly,

�0(�) = 1;

�1(�) =− �
12
(20�2 + 30�+ 9);

�2(�) =
�2

288
(6160�4 + 18 480�3 + 19 404�2 + 8028�+ 945);

�3(�) =− �3

51 840
(27 227 200�6 + 122 522 400�5 + 220 540 320�4

+ 200 166 120�3 + 94 064 328�2 + 20 545 650�+ 1403 325); (2.12)

where � is given in (2.10). Observe that limt→∞ �(t)=0 and that all shown coe�cients �s(�) vanish
at in�nity for s¿ 0. These properties of �s(�) follow by taking di�erent constants cs than Olver did
in (2.3). In fact we have the relation

∞∑
s=0

gs

�2s

∞∑
s=0

�s(�)
�2s

∼
∞∑
s=0

us(t)
(t2 − 1)(3=2)s�2s ;

where the �rst series appears in (2.6). Explicitly,

us(t) = (t2 − 1)(3=2)s
s∑

j=0

gs−j�j(�): (2.13)
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The relation (2.13) can easily be veri�ed for the early coe�cients, but it holds because of the unicity
of Poincar�e-type asymptotic expansions.
The expansion in (2.9) has several advantages compared with (2.1):
(i) In the recursion relation (2.5), both us and u′s occur in the left-hand side. By using computer

algebra it is not di�cult to compute any number of coe�cients us, but the relation for the
polynomials �s(�) is simpler than (2.5), with this respect.

(ii) The quantity h(�) in (2.9) is de�ned as an exact relation, and not, as g(�) in (2.1), by an
asymptotic expansion (cf. (2.6)).

(iii) Most important, the expansion in (2.9) has a double asymptotic property: it holds if one or
both parameters t and � are large, and not only if � is large.

For the function V (a; z) we have

V (− 1
2�

2; �t
√
2) =

e�
2�

�
√
�h(�)(t2 − 1)(1=4)P�(t); P�(t) ∼

∞∑
s=0

(−1)s �s(�)
�2s

; (2.14)

where the �s(�) are the same as in (2.9). This expansion is a modi�cation of O-(11:19) (see also
O-(2:12)).
For the derivatives we can use the identities

d
dt

e−�2�

(t2 − 1)1=4F�(t) =−�2(t2 − 1)1=4e−�2�G�(t); G�(t) ∼
∞∑
s=0

 s(�)
�2s

;

d
dt

e+�2�

(t2 − 1)1=4P�(t) = +�2(t2 − 1)1=4e+�2�Q�(t); Q�(t) ∼
∞∑
s=0

(−1)s  s(�)
�2s

:

(2.15)

The coe�cients  s can be obtained from the relation

 s(t) = �s(�) + 2�(�+ 1)(2�+ 1)�s−1(�) + 8�2(�+ 1)2
d�s−1(�)
d�

; (2.16)

s= 0; 1; 2; : : : : The �rst few are

 0(t) = 1;

 1(t) =
�
12
(28�2 + 42�+ 15);

 2(t) =− �2

288
(7280�4 + 21 840�3 + 23 028�2 + 9684�+ 1215);

 3(t) =
�3

51 840
(30 430 400�6 + 136 936 800�5 + 246 708 000�4

+ 224 494 200�3 + 106 122 312�2 + 23 489 190�+ 1658 475):

(2.17)

This gives the modi�cations (see O-(4:13))

U ′(− 1
2�

2; �t
√
2) =− �√

2
h(�)(t2 − 1)1=4e−�2�G�(t); G�(t) ∼

∞∑
s=0

 s(�)
�2s

(2.18)
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and

V ′(− 1
2�

2; �t
√
2) =

(t2 − 1)1=4e�2�√
2�h(�)

Q�(t); Q�(t) ∼
∞∑
s=0

(−1)s  s(�)
�2s

: (2.19)

Remark 2.1. The functions F�(t); G�(t); P�(t) and Q�(t) introduced in the asymptotic representations
satisfy the following exact relation:

F�(t)Q�(t) + G�(t)P�(t) = 2: (2.20)

This follows from the Wronskian relation (1.6). The relation in (2.20) provides a convenient
possibility for checking the accuracy in numerical algorithms that use the asymptotic expansions of
F�(t); G�(t); P�(t) and Q�(t).

2.2. The case a60; z ¡− 2√−a; −a− z � 0

For this case we mention the modi�cation of O-(11:16). That is, for t¿1 + � we have the
representations

U (− 1
2�

2;−�t
√
2)=

h(�)
(t2 − 1)1=4

[
sin( 12��

2)e−�2�F�(t)

+
�(1=2 + (1=2)�2)cos((1=2)��2)

�
√
�h2(�) e�

2�P�(t)

]
; (2.21)

where F�(t) and P�(t) have the expansions given in (2.9) and (2.14), respectively. An expansion
for V (− 1

2�
2;−�t

√
2) follows from the second line in (1.7), (2.9) and (2.21). A few manipulations

give

V (− 1
2�

2;−�t
√
2)=

h(�)
(t2 − 1)1=4�(1=2 + (1=2)�2)

[
cos( 12��

2)e−�2�F�(t)

−�(1=2 + (1=2)�2)sin((1=2)��2)
�
√
�h2(�) e�

2�P�(t)

]
: (2.22)

Expansions for the derivatives follow from the identities in (2.15). If a= − 1
2�

2 = − n− 1
2 ; n=0; 1;

2; : : : , the cosine in (2.21) vanishes, and, hence, the dominant part vanishes. This is the Hermite
case, cf. (1.5).

2.3. The case a� 0; −2√−a¡z¡ 2
√−a

For negative a and −1¡t¡ 1 the expansions are essentially di�erent, because now oscillations
with respect to t occur. We have (O-(5:11) and O-(5:23))

U (− 1
2�

2; �t
√
2)∼ 2g(�)

(1− t2)1=4

[
cos(�2�− 1

4�)
∞∑
s=0

(−1)su2s(t)
(1− t2)3s�4s

− sin(�2�− 1
4�)

∞∑
s=0

(−1)su2s+1(t)
(1− t2)3s+(3=2)�4s+2

]
; (2.23)
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with us(t) de�ned in (2.5) and g(�) in (2.6), and

U ′(− 1
2�

2; �t
√
2)∼ �

√
2g(�)(1− t2)1=4

[
sin(�2�− 1

4�)
∞∑
s=0

(−1)sv2s(t)
(1− t2)3s�4s

+cos(�2�− 1
4�)

∞∑
s=0

(−1)sv2s+1(t)
(1− t2)3s+(3=2)�4s+2

]
; (2.24)

as � → ∞, uniformly with respect to |t|61−�, where the coe�cients vs are given by (see O-(4:15))

vs(t) = us(t) + 1
2 tus−1(t)− rs−2(t) (2.25)

and

�= 1
2arccos t − 1

2 t
√
1− t2: (2.26)

For the function V (a; z) we have (O-(11:20) and O-(2:12))

V (− 1
2�

2; �t
√
2)∼ 2g(�)

�(1=2 + (1=2)�2)(1− t2)1=4

[
cos
(
�2�+ 1

4�
) ∞∑

s=0

(−1)su2s(t)
(1− t2)3s�4s

− sin(�2�+ 1
4�)

∞∑
s=0

(−1)su2s+1(t)
(1− t2)3s+(3=2)�4s+2

]
;

V ′(− 1
2�

2; �t
√
2)∼ �

√
2g(�)(1− t2)1=4

�(1=2 + (1=2)�2)

[
sin(�2�+ 1

4�)
∞∑
s=0

(−1)sv2s(t)
(1− t2)3s�4s

+cos
(
�2�+ 1

4�
) ∞∑

s=0

(−1)sv2s+1(t)
(1− t2)3s+(3=2)�4s+2

]
: (2.27)

By using the Wronskian relation (1.6) it follows that we have the following asymptotic identity

∞∑
s=0

(−1)su2s(t)
(1− t2)3s�4s

∞∑
s=0

(−1)sv2s(t)
(1− t2)3s�4s

+
∞∑
s=0

(−1)su2s+1(t)
(1− t2)3s+(3=2)�4s+2

∞∑
s=0

(−1)sv2s+1(t)
(1− t2)3s+(3=2)�4s+2

∼ �(1=2 + (1=2)�2)
2�

√
�g2(�) ∼ 1− 1

576�4
+

2021
2 488 320�8

+ · · · : (2.28)

2.3.1. Modi�ed expansions
We can give modi�ed versions based on our earlier modi�cations, with g(�) replaced with h(�),

and so on. Because in the present case t belongs to a �nite domain, the modi�ed expansions do not
have the double asymptotic property. We prefer Olver’s versions for this case.
This completes the description of U (a; z); U ′(a; z); V (a; z); V ′(a; z) in terms of elementary functions

for negative values of a.
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2.4. The case a¿0; z¿0; a+ z � 0

For positive values of a the asymptotic behavior is rather simple because no oscillations occur
now. The results follow from Olver’s expansions O-(11:10) and O-(11:12). The modi�ed forms are

U ( 12�
2; �t

√
2) =

h̃(�)e−�2�̃

(t2 + 1)1=4
F̃�(t); F̃�(t) ∼

∞∑
s=0

(−1)s �s(�̃)
�2s

; (2.29)

where

�̃= 1
2[t

√
1 + t2 + ln(t +

√
1 + t2)]; (2.30)

h̃(�) = e(1=4)�
2

�−(1=2)�2−(1=2)2(1=4)�
2−(1=4): (2.31)

The coe�cients �s in (2.29) are the same as in (2.9), with � replaced by

�̃=
1
2

[
t√
1 + t2

− 1
]
: (2.32)

For the derivative we have

U ′( 12�
2; �t

√
2) =− 1√

2
�h̃(�)(1 + t2)1=4e−�2�̃G̃a(z); G̃a(z) ∼

∞∑
s=0

(−1)s  s(�̃)
�2s

; (2.33)

where  s(�̃) is given in (2.16), with �̃ de�ned in (2.32).

2.5. The case a¿0; z60; a− z � 0

Olver’s expansion O-(11:10) and O-(11:12) cover both cases z¿0 and z60. We have the modi�ed
expansions

U ( 12�
2;−�t

√
2) =

√
2�

�(1=2 + (1=2)�2)
h(�)e�

2�̃

(1 + t2)1=4
P̃�(t);

U ′( 12�
2;−�t

√
2) =− �√

2

√
2�

�(1=2 + (1=2)�2)
h(�)e�

2�̃(1 + t2)1=4Q̃�(t);

(2.34)

where

P̃�(t) ∼
∞∑
s=0

�s(�̃)
�2s

; Q̃�(t) ∼
∞∑
s=0

 s(�̃)
�2s

:

In Section 4.1.2 we give details on the derivation of these expansions.

Remark 2.2. By using the second relation in (1.7), the representations for V (a; z) and V ′(a; z) for
positive a can be obtained from the results for U (a; z) and U ′(a; z) in (2.29), (2.33) and (2.34).

Remark 2.3. The functions F̃�(t); G̃�(t); P̃�(t) and Q̃�(t) introduced in (2.29), (2.32) and (2.34)
satisfy the following exact relation:

F̃�(t)Q̃�(t) + G̃�(t)P̃�(t) = 2: (2.35)
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Fig. 1. Regions for the modi�ed asymptotic expansions of U (a; z) given in Section 2 and the Airy-type expansions of
Section 3 (which are valid in much larger domains than those indicated by the arrows).

This follows from the Wronskian relation

U (a; z)U ′(a;−z) + U ′(a; z)U (a;−z) =−
√
2�

�(a+ (1=2))
:

See also Remark 2.1.

Remark 2.4. The expansions of Sections 2.4 and 2.5 have the double asymptotic property: they are
valid if the a+ |z| → ∞. In Sections 2.4 and 2.5 we consider the cases z¿0 and �60, respectively,
as two separate cases. Olver’s corresponding expansions O-(11:10) and O-(11:12) cover both cases
and are valid for −∞¡t¡∞. As always, in Olver’s expansions large values of � are needed,
whatever the size of t.

In Fig. 1 we show the domains in the t; a-plane where the various expansions of U (a; z) of this
section are valid.

3. Expansions in terms of Airy functions

The Airy-type expansions are needed if z runs through an interval containing one of the turning
points ±2√−a, that is, t =±1.

3.1. The case a�0; z¿0

We summarize the basic results O-(8:11), O-(8:15) and O-(11:22) (see also O-(2:12)):

U (− 1
2�

2; �t
√
2) = 2�1=2�1=3g(�)�(�)

[
Ai(�4=3�)A�(�) +

Ai′(�4=3�)
�8=3

B�(�)

]
; (3.1)

U ′(− 1
2�

2; �t
√
2) =

(2�)1=2�2=3g(�)
�(�)

[
Ai(�4=3�)

�4=3
C�(�) + Ai′(�4=3�)D�(�)

]
; (3.2)
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V (− 1
2�

2; �t
√
2) =

2�1=2�1=3g(�)�(�)
�(1=2 + (1=2)�2)

[
Bi(�4=3�)A�(�) +

Bi′(�4=3�)
�8=3

B�(�)

]
; (3.3)

V ′(− 1
2�

2; �t
√
2) =

(2�)1=2�2=3g(�)
�(�)�(1=2 + (1=2)�2)

[
Bi(�4=3�)

�4=3
C�(�) + Bi′(�4=3�)D�(�)

]
: (3.4)

The coe�cient functions A�(�); B�(�); C�(�) and D�(�) have the following asymptotic expansions:

A�(�) ∼
∞∑
s=0

as(�)
�4s

; B�(�) ∼
∞∑
s=0

bs(�)
�4s

; (3.5)

C�(�) ∼
∞∑
s=0

cs(�)
�4s

; D�(�) ∼
∞∑
s=0

ds(�)
�4s

; (3.6)

as � → ∞, uniformly with respect to t¿ − 1 + �, where � is a small �xed positive number. The
quantity � is de�ned by

2
3(−�)3=2 = �(t); −1¡t61; (�60);
2
3�
3=2 = �(t); 16t; (�¿0);

(3.7)

where �; � follow from (2.26), (2.2), respectively, and

�(�) =
(

�
t2 − 1

)1=4
: (3.8)

The function �(t) is real for t ¿− 1 and analytic at t = 1. We can invert �(t) into t(�), and obtain

t = 1 + 2−1=3�− 1
102

−2=3�2 + 11
700�

3 + · · · :
The function g(�) has the expansion given in (2.6) and the coe�cients as(�); bs(�) are given by

as(�) =
2s∑

m=0

�m�−(3=2)mA2s−m(t)
√

�bs(�) =−
2s+1∑
m=0

�m�−(3=2)mA2s−m+1(t); (3.9)

where As(t) are used in (2.1), �0 = 1 and

�m =
(2m+ 1)(2m+ 3) · · · (6m− 1)

m!(144)m
; �m =−6m+ 1

6m− 1am: (3.10)

A recursion for �m reads

�m+1 = �m
(6m+ 5)(6m+ 3)(6m+ 1)
144 (m+ 1)(2m+ 1)

; m= 0; 1; 2; : : : :

The numbers �m; �m occur in the asymptotic expansions of the Airy functions, and the relations
in (3.9) follow from solving (3.1) and (3.3) for A�(�) and B�(�), expanding the Airy functions
(assuming that � is bounded away from 0) and by using (2.1) and a similar result for V (a; z)
(O-(11:16) and O-(2:12)).
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For negative values of � (i.e., −1¡t¡ 1) we can use (O-(13:4))

as(�) = (−1)s
2s∑

m=0

�m(−�)−(3=2)mÃ2s−m(t);

√
−�bs(�) = (−1)s−1

2s+1∑
m=0

�m(−�)−(3=2)mÃ2s−m+1(t);

(3.11)

where

Ãs(t) =
us(t)

(1− t2)(3=2)s
:

The functions C�(�) and D�(�) of (3.2) and (3.4) are given by

C�(�) = �(�)A�(�) + A′
�(�) + �B�(�); D�(�) = A�(�) +

1
�4
[�(�)B�(�) + B′

�(�)]: (3.12)

The coe�cients cs(�) and ds(�) in (3.6) are given by

cs(�) = �(�)as(�) + a′s(�) + �bs(�); ds(�) = as(�) + �(�)bs−1(�) + b′s−1(�); (3.13)

where

�(�) =
�′(�)
�(�)

=
1− 2t[�(�)]6

4�
(3.14)

with �(�) given in (3.8). Explicitly,

1√
�
cs(�) =−

2s+1∑
m=0

�m�−(3=2)mB2s−m+1(�) ds(�) =−
2s∑

m=0

�m�−(3=2)mB2s−m(�); (3.15)

where Bs(�) = vs(t)=(t2 − 1)(3=2)s, with vs(t) de�ned in (2.25). Other versions of (3.15) are needed
for negative values of �, i.e., if −1¡t¡ 1; see (3.11).

3.2. The case a�0; z60

Near the other turning point t =−1 we can use the representations (O-(9:7))

U (− 1
2�

2;−�t
√
2)= 2�1=2�1=3g(�)�(�)

[
sin( 12��

2)

{
Ai(�4=3�)A�(�) +

Ai′(�4=3�)
�8=3

B�(�)

}

+cos(12��
2)

{
Bi(�4=3�)

∞∑
s=0

A�(�) +
Bi′(�4=3�)

�8=3
B�(�)

}]
(3.16)

as � → ∞, uniformly with respect to t¿ − 1 + �, where � is a small �xed positive number.
Expansions for V (a; z) follow from (3.1) and (3.16) and the second relation in (1.7). Results for
the derivatives of U (a; z) and V (a; z) follow easily from the earlier results.
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3.3. Modi�ed forms of Olver’s Airy-type expansions

Modi�ed versions of the Airy-type expansions (3.1)–(3.4) can also be given. In the case of the
expansions in terms of elementary functions our main motivation for introducing modi�ed expansions
was the double asymptotic property of these expansions. In the case of the Airy-type expansions
the interesting domains for the parameter t, from a numerical point of view, are �nite domains that
contain the turning points ±1. So, considering the expansions given so far, there is no need to have
Airy-type expansions with the double asymptotic property; if � remains �nite and |t| � 1 we can
use the expansions in terms of elementary functions. However, we have another interest in modi�ed
expansions in the case of Airy-type expansions. We explain this by �rst discussing a few properties
of the coe�cient functions A�(�); B�(�); C�(�) and D�(�).
By using the Wronskian relation (1.6) we can verify the relation

A�(�)D�(�)− 1
�4

B�(�)C�(�) =
�(1=2 + (1=2)�2)
2�

√
�g2(�) ; (3.17)

where g(�) is de�ned by means of an asymptotic expansion given in (2.6). By using the di�erential
equation (O-(7:2))

d2W
d�2

= [�4�+	(�)]W; (3.18)

where

	(�) =
5
16�2

− (3t2 + 2)�
4(t2 − 1)3 = 2

1=3
[
− 9
280

+
7
150

2−1=3�− 1359
26 950

2−2=3�2 +
196
8125

�3 : : :
]
; (3.19)

we can derive the following system of equations for the functions A�(�); B�(�):

A′′ + 2�B′ + B−	(�)A= 0;

B′′ + 2�4A′ −	(�)B= 0;
(3.20)

where primes denote di�erentiation with respect to �. A Wronskian for this system follows by
eliminating the terms with 	(�). This gives

2�4A′A+ AB′′ − A′′B− 2�B′B− B2 = 0;

which can be integrated as

�4A2�(�) + A�(�)B′
�(�)− A′

�(�)B�(�)− �B2�(�) = �4
�(1=2 + (1=2)�2)
2�

√
�g2(�) ; (3.21)

where the quantity on the right-hand side follows from (3.17) and (3.12). It has the expansion

�4
[
1− 1

576�4
+

2021
2 488 320�8

+ · · ·
]
; (3.22)

as follows from O-(2:22) and O-(5:21).
As mentioned before, the interesting domain of the Airy-type expansions given in this section is

the domain that contains the turning point t = 1, or � = 0. The representations of the coe�cients
of the expansions given in (3.9) cannot be used in numerical algorithms when |�| is small, unless
we expand all relevant coe�cients in powers of �. This is one way how to handle this problem
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numerically; see [18]. In that paper we have discussed another method that is based on a system
like (3.20), with applications to Bessel functions. In that method the functions A�(�) and B�(�)
are expanded in powers of �, for su�ciently small values of |�|, say |�|61, and the Maclaurin
coe�cients are computed from (3.20) by recursion. A normalizing relation (the analogue of (3.21))
plays a crucial role in that algorithm. The method works quite well for relatively small values of a
parameter (the order of the Bessel functions) that is the analogue of �.
When we want to use this algorithm for the present case only large values of � are allowed

because the function g(�) that is used in (3.1)–(3.4) and (3.21) is only de�ned for large values
of �. For this reason we give the modi�ed versions of Olver’s Airy-type expansions. The modi�ed
versions are more complicated than the Olver’s expansions, because the analogues of the series
in (3.5) and (3.6) are in powers of �−2, and not in powers of �−4. Hence, when we use these
series for numerical computations we need more coe�cients in the modi�ed expansions, which is
certainly not desirable from a numerical point of view, given the complexity of the coe�cients in
Airy-type expansions. However, in the algorithm based on Maclaurin expansions of the analogues
of the coe�cient functions A�(�); B�(�); C�(�) and D�(�) this point is of minor concern.
The modi�ed expansions are the following:

U (− 1
2�

2; �t
√
2) =

�(1=2 + (1=2)�2)�(�)
�2=3h(�)

[
Ai(�4=3�)F�(�) +

Ai′(�4=3�)
�8=3

G�(�)

]
; (3.23)

V (− 1
2�

2; �t
√
2) =

�(�)
�2=3h(�)

[
Bi(�4=3�)F�(�) +

Bi′(�4=3�)
�8=3

G�(�)

]
: (3.24)

The functions F�(�) and G�(�) have the following asymptotic expansions:

F�(�) ∼
∞∑
s=0

fs(�)
�2s

; G�(�) ∼
∞∑
s=0

gs(�)
�2s

: (3.25)

The quantity � and the functions �(�) and h(�) are as in Section 3.1. Comparing (3.23), (3.24)
with (3.1), (3.3) we conclude that

F�(�) = H (�)A�(�); G�(�) = H (�)B�(�); H (�) =
2
√
��g(�)h(�)

�(1=2 + (1=2)�2)
: (3.26)

The function H (�) can be expanded (see O-(2:22), O-(2:27), O-(6:2) and (2:6))

H (�) ∼ 1 + 1
2

∞∑
s=1

(−1)s s
( 12�

2)s
; (3.27)

where s are the coe�cients in the gamma function expansions

�( 12 + z) ∼
√
2�e−zzz

∞∑
s=0

s
zs
;

1
�( 12 + z)

∼ ezz−z

√
2�

∞∑
s=0

(−1)s s
zs
: (3.28)

The �rst few coe�cients are

0 = 1; 1 =− 1
24

; 2 =
1
1152

; 3 =
1003
414 720

:
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The second expansion in (3.28) can be used in (3.26) to �nd relations between the coe�cients
as(�) and bs(�) of (3.5) and of fs(�) and gs(�) of (3.25). That is

f0(�) = 1; f1(�) =
1
24

; f2(�) = a1(�) +
1
576

; f3(�) =
1
24

a1(�)− 1003
103 680

;

g0(�) = b0(�); g1(�) =
1
24

b0(�);

g2(�) = b1(�) +
1
576

b0(�); g3(�) =
1
24

b1(�)− 1003
103 680

b0(�):

The coe�cients fs(�); gs(�) can also be expressed in terms of the coe�cients �s(�) that are intro-
duced in (2.9) by deriving the analogues of (3.9).
The system of equations (3.20) remains the same:

F ′′ + 2�G′ + G −	(�)F = 0;

G′′ + 2�4F ′ −	(�)G = 0
(3.29)

and the Wronskian relation becomes

�4F2�(�) + F�(�)G′
�(�)− F ′

�(�)G�(�)− �G2
�(�) = �4

2
√
��h2(�)

�(1=2 + (1=2)�2)
: (3.30)

The right-hand side has the expansion (see (3.28) and (2.7)) �4
∑∞

s=0(−1)ss=( 12�2)s. Observe that
(3.30) is an exact relation, whereas (3.21) contains the function g(�), of which only an asymptotic
expansion is available.

3.4. Numerical aspects of the Airy-type expansions

In [18, Section 4], we solved the system (3.29) (for the case of Bessel functions) by substituting
Maclaurin series of F(�); G(�) and 	(�). That is, we wrote

F(�) =
∞∑
n=0

cn(�)�n; G(�) =
∞∑
n=0

dn(�)�n; 	(�) =
∞∑
n=0

 n�n;

where the coe�cients  n can be considered as known (see (3.19)), and we substituted the expansions
in (3.29). This gives for n= 0; 1; 2; : : : ; the recursion relations

(n+ 2)(n+ 1)cn+2 + (2n+ 1)dn = �n; �n =
n∑

k=0

 kcn−k ;

(n+ 2)(n+ 1)dn+2 + 2�4(n+ 1)cn+1 = �n; �n =
n∑

k=0

 kdn−k :

(3.31)

If � is large, the recursion relations cannot be solved in forward direction, because of numerical
instabilities. For the Bessel function case we have shown that we can solve the system by iteration
and backward recursion. The relation in (3.30) can be used for normalization of the coe�cients in
the backward recursion scheme.
For details we refer to [18]. The present case is identical to the case of the Bessel functions;

only the function 	(�) is di�erent, and instead of �2 in (3.31) we had the order � of the Bessel
functions.
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4. Expansions from integral representations

The expansions developed by Olver, of which some are given in the previous sections, are all
valid if |a| is large. For several cases we gave modi�ed expansions that hold if at least one of the
two parameters a; z is large and we have indicated the relations between Olver’s expansions and the
new expansions. The modi�ed expansions have in fact a double asymptotic property. Initially, we
derived these expansions by using integral representations of the parabolic cylinder functions, and
later we found the relations with Olver’s expansions. In this section we explain how some of the
modi�ed expansions can be obtained from the integrals that de�ne U (a; z) and V (a; z). Again we
only consider real values of the parameters.

4.1. Expansions in terms of elementary functions by using integrals

4.1.1. The case a¿0; z¿0; a+ z � 0
We start with the well-known integral representation

U (a; z) =
e−(1=4) z

2

�(a+ 1
2)

∫ ∞

0
wa−(1=2)e−(1=2)w

2−zw dw; a¿− 1
2 (4.1)

which we write in the form

U (a; z) =
za+(1=2)e−(1=4) z

2

�(a+ (1=2))

∫ ∞

0
w−1=2e−z2�(w) dw; (4.2)

where

�(w) = w + 1
2w

2 − � lnw; �=
a
z2

: (4.3)

The positive saddle point w0 of the integrand in (4.3) is computed from

d�(w)
dw

=
w2 + w − �

w
= 0; (4.4)

giving

w0 = 1
2 [
√
1 + 4�− 1]: (4.5)

We consider z as the large parameter. When � is bounded away from 0 we can use Laplace’s
method (see [11] or [22]). When a and z are such that � → 0 Laplace’s method cannot be applied.
However, we can use a method given in [15] that allows small values of �.
To obtain a standard form for this Laplace-type integral, we transform w → t (see [16]) by writing

�(w) = t − � ln t + A; (4.6)

where A does not depend on t or w, and we prescribe that w= 0 should correspond with t = 0 and
w = w0 with t = �, the saddle point in the t-plane.
This gives

U (a; z) =
za+(1=2) e−(1=4) z

2−Az2

(1 + 4�)1=4�(a+ 1=2)

∫ ∞

0
ta−1=2e−z2tf(t) dt; (4.7)
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where

f(t) = (1 + 4�)1=4
√

t
w
dw
dt
= (1 + 4�)1=4

√
w
t

t − �
w2 + w − �

: (4.8)

By normalizing with the quantity (1 + 4�)1=4 we obtain f(�) = 1, as can be veri�ed from (4.8) and
a limiting process (using l’Hôpital’s rule). The quantity A is given by

A= 1
2w

2
0 + w0 − � lnw0 − �+ � ln �: (4.9)

A �rst uniform expansion can be obtained by writing

f(t) =
∞∑
n=0

an(�)(t − �)n: (4.10)

Details on the computation of an(�) will be given in the appendix.
By substituting (4.10) into (4.7) we obtain

U (a; z) ∼ e−(1=4) z
2−Az2

za+(1=2)(1 + 4�)(1=4)

∞∑
n=0

an(�)Pn(a)z−2n; (4.11)

where

Pn(a) =
z2a+2n+1

�(a+ 1=2)

∫ ∞

0
ta−1=2e−z2t(t − �)n dt; n= 0; 1; 2; : : : : (4.12)

The Pn(a) are polynomials in a. They follow the recursion relation

Pn+1(a) = (n+ 1
2)Pn(a) + anPn−1(a); n= 0; 1; 2; : : :

with initial values

P0(a) = 1; P1(a) = 1
2 :

We can obtain a second expansion

U (a; z) ∼ e−(1=4) z
2−Az2

za+(1=2)(1 + 4�)1=4

∞∑
k=0

fk(�)
z2k

(4.13)

with the property that in the series the parameters � and z are separated, by introducing a sequence
of functions {fk} with f0(t) = f(t) and by de�ning

fk+1(t) =
√
t
d
dt

[√
t
fk(t)− fk(�)

t − �

]
; k = 0; 1; 2; : : : : (4.14)

The coe�cients fk(�) can be expressed in terms of the coe�cients an(�) de�ned in (4.10). To
verify this, we write

fk(t) =
∞∑
n=0

a(k)n (�)(t − �)n (4.15)

and by substituting this in (4.14) it follows that

a(k+1)n (�) = �(n+ 1)a(k)n+2(�) + (n+
1
2)a

(k)
n+1(�); k¿0; n¿0: (4.16)
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Hence, the coe�cients fk(�) of (4.13) are given by

fk(�) = a(k)0 (�); k¿0: (4.17)

We have

f0(�) = 1;

f1(�) = 1
2 [a1(�) + 2�a2(�)];

f2(�) = 1
4 [12�

2a4(�) + 14�a3(�) + 3a2(�)];

f3(�) = 1
8 [120�

3a6(�) + 220�2a5(�) + 116�a4(�) + 15a3(�)]:

(4.18)

Explicitly,

f0(�) = 1;

f1(�) =− �
24
(20�2 − 10� − 1);

f2(�) =
�2

1152
(6160�4 − 6160�3 + 924�2 + 20� + 1);

f3(�) =− �3

414 720
(27 227 200�6 − 40 840 800�5 + 16 336 320�4

−1 315 160�3 − 8112�2 + 2874� + 1003);

(4.19)

where

� =
1
2

[
1 +

z√
4a+ z2

]
; �=

(2� − 1)2
�

=
2z2√

4a+ z2(z +
√
4a+ z2)

: (4.20)

We observe that fk(�) is a polynomial of degree 2k in � multiplied with �k .
If a and z are positive then � ∈ [0; 1]. Furthermore, the sequence {�k=z2k} is an asymptotic scale

when one or both parameters a and z are large. The expansion in (4.13) is valid for z → ∞ and
holds uniformly for a¿0. It has a double asymptotic property in the sense that it is also valid
as a → ∞, uniformly with respect to z¿0. As follows from the coe�cients given in (4.19) and
relations to be given later, we can indeed let z → 0 in the expansion.
The expansion in (4.13) can be obtained by using an integration by parts procedure. We give a

few steps in this method. Consider the integral

Fa(z) =
1

�(a+ 1=2)

∫ ∞

0
ta−(1=2)e−z2tf(t) dt: (4.21)

We have (with �= a=z2)

Fa(z) =
f(�)

�(a+ (1=2))

∫ ∞

0
ta−(1=2)e−z2t dt +

1
�(a+ (1=2))

∫ ∞

0
ta−(1=2)e−z2t[f(t)− f(�)] dt

= z−2a−1f(�)− 1
z2�(a+ (1=2))

∫ ∞

0
t(1=2)

[f(t)− f(�)]
t − �

de−z2(t−� ln t)

= z−2a−1f(�) +
1

z2�(a+ (1=2))

∫ ∞

0
ta−(1=2)e−z2tf1(t) dt;
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where f1 is given in (4.14) with f0=f. Repeating this procedure we obtain (4.13). More details on
this method and proofs of the asymptotic nature of the expansions (4.11) and (4.13) can be found
in our earlier papers. We concentrate on expansion (4.13) because (4.11) cannot be compared with
Olver’s expansions.
To compare (4.13) with Olver’s expansion (2.16), we write

a= 1
2�

2; z = �
√
2t: (4.22)

Then the parameters � and � de�ned in (4.20) become

� =
1
2

[
1 +

t√
1 + t2

]
= �̃+ 1; �=

2t2√
1 + t2(t +

√
1 + t2)

; (4.23)

where �̃ is given in (2.32). After a few manipulations we write (4.13) in the form (cf. (2.29))

U ( 12�
2; �t

√
2) =

h̃(�) e−�2�̃

(t2 + 1)1=4
F̃�(z); F̃�(z) ∼

∞∑
k=0

(−1)k �̃k(�)
�2k

; (4.24)

where

�̃= 1
2[t

√
1 + t2 + ln(t +

√
1 + t2)]; (4.25)

h(�) = e(1=4)�
2

�−(1=2)�2−(1=2) 2(1=4)�
2−(1=4) (4.26)

and

�̃k(�) =
(−1)k
(2t2)k

fk(�): (4.27)

Explicitly,

�̃0(�) = 1;

�̃1(�) =
1− �
12

(20�2 − 10� − 1);

�̃2(�) =
(1− �)2

288
(6160�4 − 6160�3 + 924�2 + 20� + 1);

(4.28)

�̃3(�) =
(1− �)3

51840
(27 227 200�6 − 40 840 800�5 + 16 336 320�4

−1 315 160�3 − 8112�2 + 2874� + 1003);
where � is given in (4.23). Comparing (4.24) with (2.29) we obtain �̃k(�) = �k(�̃); k¿0, because
� = 1 + �̃.

4.1.2. The case a¿0; z60; a− z � 0
To derive the �rst expansion in (2.34) we use the contour integral

U (a;−z) =

√
2�e(1=4) z2

�(a+ (1=2))
Ha(z); Ha(z) =

�(a+ (1=2))
2�i

∫
C

e zs+(1=2) s
2

s−a−(1=2) ds; (4.29)
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where C is a vertical line in the half-plane R s¿ 0. This integral can be transformed into a standard
form that involves the same mapping as in the previous subsection. We �rst write (by transforming
via s= zw)

Ha(z) =
z(1=2)−a�(a+ (1=2))

2�i

∫
C

ez
2(w+(1=2)w2)w−a−(1=2) dw

=
z(1=2)−a�(a+ (1=2))

2�i

∫
C

ez
2�(w) dw√

w
; (4.30)

where �(w) is de�ned in (4.3). By using the transformation given in (4.6) it follows that

Ha(z) =
z(1=2)−a�(a+ (1=2))eAz

2

2�i

∫
C

ez
2t t−a−(1=2) f(t) dt: (4.31)

The integration by parts method used for (4.21) gives the expansion (see [18])

Ha(z) ∼ zaeAz
2

(4a+ z2)1=4

∞∑
k=0

(−1)k fk(�)
z2k

; (4.32)

where the fk(�) are the same as in (4.13); see also (4.18). This gives the �rst expansion of (2.34).

Remark 2.5. The �rst result in (2.34) can also be obtained by using (4.1) with z¡ 0. The integral
for U (a;−z) can be written as in (4.2), now with �(w) = 1

2w
2 −w− ln �; �= a=z2. In this case the

relevant saddle point at w0 = (1 +
√
1 + 4�)=2 is always inside the interval [1;∞) and the standard

method of Laplace can be used. The same expansion will be obtained with the same structure and
coe�cients as in (2.34), because of the unicity of Poincar�e-type asymptotic expansions. See also
Section 4.1.4 where Laplace’s method will be used for an integral that de�nes V (a; z).

4.1.3. The case a60; z ¿ 2
√−a; −a+ z � 0

Olver’s starting point (2.1) can also be obtained from an integral. Observe that (4.1) is not valid
for a6− 1

2 . We take as integral (see [1, p. 687, 19.5.1])

U (−a; z) =
�(1=2 + a)

2�i e−(1=4) z
2
∫
�
ezs−(1=2)s

2

s−a−(1=2) ds; (4.33)

where � is a contour that encircles the negative s-axis in positive direction. Using a transformation
we can write this in the form (cf. (4.2))

U (−a; z) =
�(1=2 + a)

2�i z(1=2)−ae−(1=4) z
2
∫
�
e�(w) w−1=2 dw; (4.34)

where

�(w) = w − 1
2w

2 − � lnw; �=
a
z2

: (4.35)

The relevant saddle point is now given by

w0 = 1
2 [1−

√
1− 4�]; 0¡�¡ 1

4 : (4.36)

When � → 0 the standard saddle point method is not applicable, and we can again use the methods
of our earlier papers [15,16] and transform

�(w) = t − � ln t + A; (4.37)
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where the points at −∞ in the w- and t-plane should correspond, and w=w0 with t= �. We obtain

U (−a; z) =
�((1=2) + a)
(1− 4�)1=42�i z

(1=2)−ae−(1=4) z
2+z2A

∫
�
ez

2t t−a−(1=2)f(t) dt; (4.38)

where � is a contour that encircles the negative t-axis in positive direction and

f(t) = (1− 4�)1=4
√

t
w
dw
dt
= (1− 4�)1=4

√
w
t

t − �
w − w2 − �

: (4.39)

Expanding f(t) as in (4.10), and computing fk(�) as in the procedure that yields the relations in
(4.18), we �nd that the same values fk(�) as in (4.19), up to a factor(−1)k and a di�erent value of
� and �. By using the integration by parts method for contour integrals [15], that earlier produced
(4.32), we obtain the result

U (−a; z) ∼ za eAz
2−(1=4) z2

(z2 − 4a)1=4
∞∑
k=0

(−1)k fk(�)
z2k

; (4.40)

where the �rst fk(�) are given in (4.19) with

� =
1
2

[
1 +

z√
z2 − 4a

]
; �=

(2� − 1)2
�

=
2z2√

z2 − 4a+(z +√
z2 − 4a) : (4.41)

This expansion can be written in the form (2.9).

4.1.4. The case a60; z ¡− 2√−a; −a− z � 0
We use the relation (see (1.7))

U (−a;−z) = sin �aU (−a; z) +
�

�((1=2)− a)
V (−a; z); (4.42)

and use the result of U (−a; z) given in (4.40) or the form (2.9). An expansion for V (−a; z) in
(4.42) can be obtained from the integral (see [9])

V (a; z) =
e−(1=4) z

2

2�

∫
1∪2

e−(1=2)s
2+zssa−(1=2) ds; (4.43)

where 1 and 2 are two horizontal lines, 1 in the upper half plane J s¿ 0 and 2 in the lower half
plane J s¡ 0; the integration is from R s=−∞ to R s=+∞. (Observe that when we integrate on
1 in the other direction (from R s=+∞ to R s=∞) the contour 1∪ 2 can be deformed into � of
(4.33), and the integral de�nes U (a; z), up to a factor.) We can apply Laplace’s method to obtain
the expansion given in (2.14) (see Remark 4:1).

4.2. The singular points of the mapping (4.6)

The mapping de�ned in (4.6) is singular at the saddle point

w− =− 1
2 (
√
1 + 4�+ 1): (4.44)

If � = 0 then w− = −1 and the corresponding t-value is − 1
2 . For large values of � we have the

estimate:

t(w−) ∼ �
[
−0:2785− 0:4356√

�

]
: (4.45)
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This estimate is obtained as follows. The value t− = t(w−) is implicitly de�ned by Eq. (4.6) with
w = w−. This gives

t− − � ln t− − �+ � ln �=− 1
2

√
1 + 4�± ��i + � ln

4�

(1 +
√
1 + 4�)2

=± ��i − 2
√
�
[
1 +

1
24�

+ O(�−2)
]
; (4.46)

as � → ∞. The numerical solution of the equation s− ln s−1= ± �i is given by s±=0:2785 · · · e∓�i.
This gives the leading term in (4.16). The other term follows by a further simple step.

4.3. Expansions in terms of Airy functions

All results for the modi�ed Airy-type expansions given in Section 3.3 can be obtained by using
certain loop integrals. The integrals in (4.33) and (4.43) can be used for obtaining (3.23) and (3.24),
respectively. The method is based on replacing �(w) in (4.34) by a cubic polynomial, in order to
take into account the inuence of both saddle points of �(w). This method is �rst described in [6];
see also [11,22].

5. Numerical veri�cations

We verify several asymptotic expansions by computing the error in the Wronskian relation for the
series in the asymptotic expansions. Consider Olver’s expansions of Section 2.3 for the oscillatory
region −1¡t¡ 1 with negative a. We verify the relation in (2.28). Denote the left-hand side of
the �rst line in (2.28) by W (�; t). Then we de�ne as the error in the expansions

�(�; t) :=
∣∣∣∣ W (�; t)
1− (1=576�4) + (2021=2 488 320�8) − 1

∣∣∣∣ : (5.1)

Taking three terms in the series of (2.23), (2.24) and (2.27), we obtain for several values of � and
t the results given in Table 1. We clearly see the loss of accuracy when t is close to 1. Exactly the
same results are obtained for negative values of t in this interval.
Next, we consider the modi�ed expansions of Section 2.1. Denote the left-hand side of (2.20) by

W (�; t). Then we de�ne as the error in the expansions

�(�; t) :=
∣∣ 1
2W (�; t)− 1

∣∣ : (5.2)

When we use the series in (2.9), (2.14), (2.18) and (2.19) with �ve terms, we obtain the results
given in Table 2. We observe that the accuracy improves as � or t increase. This shows the double
asymptotic poperty of the modi�ed expansions of Section 2.1.
Finally we consider the expansions of Sections 2.4 and 2.5. Let the left-hand side of (2.35) be

denoted by W (�; t). Then we de�ne as the error in the expansions

�(�; t) :=
∣∣ 1
2W (�; t)− 1

∣∣ : (5.3)

When we use the series in (2.29), (2.33) and (2.34) with �ve terms, we obtain the results of Table 3.
We again observe that the accuracy improves as � or t increase. This shows the double asymptotic
property of the modi�ed expansions of Sections 2.4 and 2.5.
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Table 1
Relative accuracy �(�; t) de�ned in (5.1) for the asymptotic series of Section 2.3

� 5 10 25 50 100
t

0.00 0:32e− 09 0:78e− 13 0:13e− 17 0:32e− 21 0:78e− 25
0.10 0:26e− 09 0:63e− 13 0:11e− 17 0:26e− 21 0:63e− 25
0.20 0:81e− 10 0:20e− 13 0:33e− 18 0:82e− 22 0:20e− 25
0.30 0:16e− 08 0:39e− 12 0:65e− 17 0:16e− 20 0:39e− 24
0.40 0:88e− 08 0:22e− 11 0:36e− 16 0:89e− 20 0:22e− 23
0.50 0:51e− 07 0:13e− 10 0:21e− 15 0:52e− 19 0:13e− 22
0.60 0:40e− 06 0:99e− 10 0:17e− 14 0:40e− 18 0:99e− 22
0.70 0:53e− 05 0:13e− 08 0:22e− 13 0:54e− 17 0:13e− 20
0.80 0:20e− 03 0:50e− 07 0:84e− 12 0:20e− 15 0:50e− 19
0.90 0:35e− 00 0:24e− 04 0:41e− 09 0:10e− 12 0:25e− 16

Table 2
Relative accuracy �(�; t) de�ned in (5.2) for the asymptotic series of Section 2.1

� 5 10 25 50 100
t

1.1 0:51e− 01 0:48e− 05 0:72e− 10 0:18e− 13 0:43e− 17
1.2 0:39e− 04 0:79e− 08 0:13e− 12 0:32e− 16 0:78e− 20
1.3 0:83e− 06 0:19e− 09 0:32e− 14 0:78e− 18 0:19e− 21
1.4 0:56e− 07 0:13e− 10 0:23e− 15 0:55e− 19 0:13e− 22
1.5 0:71e− 08 0:17e− 11 0:29e− 16 0:70e− 20 0:17e− 23
2.0 0:10e− 10 0:25e− 14 0:43e− 19 0:10e− 22 0:25e− 26
2.5 0:21e− 12 0:52e− 16 0:87e− 21 0:21e− 24 0:52e− 28
5.0 0:12e− 16 0:28e− 20 0:48e− 25 0:12e− 28 0:28e− 32
10.0 0:20e− 20 0:48e− 24 0:81e− 29 0:20e− 32 0:48e− 36
25.0 0:30e− 25 0:73e− 29 0:12e− 33 0:30e− 37 0:73e− 41

Table 3
Relative accuracy �(�; t) de�ned in (5.3) for the asymptotic series of Sections 2:4 and 2:5

� 5 10 25 50 100
t

0.00 0:32e− 09 0:78e− 13 0:13e− 17 0:32e− 21 0:78e− 25
0.25 0:12e− 09 0:28e− 13 0:47e− 18 0:12e− 21 0:28e− 25
0.50 0:45e− 11 0:11e− 14 0:19e− 19 0:46e− 23 0:11e− 26
0.75 0:57e− 11 0:14e− 14 0:24e− 19 0:58e− 23 0:14e− 26
1.0 0:27e− 11 0:65e− 15 0:11e− 19 0:27e− 23 0:65e− 27
1.5 0:29e− 13 0:70e− 17 0:12e− 21 0:29e− 25 0:70e− 29
2.0 0:20e− 13 0:48e− 17 0:81e− 22 0:20e− 25 0:48e− 29
2.5 0:43e− 14 0:11e− 17 0:18e− 22 0:43e− 26 0:11e− 29
5.0 0:45e− 17 0:11e− 20 0:18e− 25 0:45e− 29 0:11e− 32
10.0 0:16e− 20 0:38e− 24 0:64e− 29 0:16e− 32 0:38e− 36



244 N.M. Temme / Journal of Computational and Applied Mathematics 121 (2000) 221–246

6. Concluding remarks

As mentioned in Section 1.1, several sources for numerical algorithms for evaluating parabolic
cylinder functions are available in the literature, but not so many algorithms make use of asymptotic
expansions. The paper [10] is a rich source for asymptotic expansions, for all combinations of real
and complex parameters, where always |a| has to be large. There are no published algorithms that
make use of Olver’s expansions, although very e�cient algorithms can be designed by using the
variety of these expansions; [3] is the only reference we found in which Olver’s expansions are used
for numerical computations.
We started our e�orts in making algorithms for the case of real parameters. We selected appropriate

expansions from Olver’s paper and for some cases we modi�ed Olver’s expansions in order to get
expansions having a double asymptotic property. A serious point is making e�cient use of the
powerful Airy-type expansions that are valid near the turning points of the di�erential equation (and
in much larger intervals and domains of the complex plane). In particular, constructing reliable
software for all possible combinations of the complex parameters a and z is a challenging problem.
A point of research interest is also the construction of error bounds for Olver’s expansions and

the modi�ed expansions. Olver’s paper is written before he developed the construction of bounds
for the remainders, which he based on methods for di�erential equations, and which are available
now in his book [11].

Appendix . Computing the coe�cients fk(�) of (4.13)

We give the details on the computation of the coe�cients fk(�) that are used in (4.13). The �rst
step is to obtain coe�cients dk in the expansion

w = d0 + d1(t − �) + d2(t − �)2 + · · · ; (A.1)

where d0 = w0. From (4.6) we obtain

dw
dt
=

w
t

t − �
w2 + w − �

: (A.2)

Substituting (A.1) we obtain

d21 =
w0

�(1 + 2w0)
; (A.3)

where the saddle point w0 is de�ned in (4.5). From the conditions on the mapping (4.6) it follows
that d1¿ 0. Higher order coe�cients dk can be obtained from the �rst ones by recursion.
When we have determined the coe�cients in (A.1) we can use (4.8) to obtain the coe�cients

an(�) of (4.10).
For computing in this way a set of coe�cients fk(�), say f0(�); : : : ; f15(�), we need more than

35 coe�cients dk in (A.1). Just taking the square root in (A.3) gives for higher coe�cients dk very
complicated expressions, and even by using computer algebra programs, as Maple, we need suitable
methods in computing the coe�cients.
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The computation of the coe�cients dk; an(�) and fk(�) is done with a new parameter � ∈ [0; 12�)
which is de�ned by

4�= tan2 �: (A.4)

We also write

� = cos2 12�; (A.5)

which is introduced earlier in (4.20) and (4.23). Then

w0 =
1− �
2� − 1 ; �=

�(1− �)
(2� − 1)2 ; d1 =

2� − 1
�

: (A.6)

In particular the expressions for w0 and d1 are quite convenient, because we can proceed without
square roots in the computations. Higher coe�cients dk can be obtained by using (A.2).
The �rst relation f0(�) = a(0)0 (�) = 1 easily follows from (4:3), (4:8), (A:7) and (A:6):

f0(�) = (1 + 4�)1=4
√

�
w0
d1 = 1:

Then using (4.8) we obtain

a0(�) = 1; a1(�) =−cos
2 �(1 + 2c)2

6(c + 1)c2
; a2(�) =

cos4 �(20c4 + 40c3 + 30c2 + 12c + 3)
24(c + 1)2c4

;

where c=
√
�= cos 12�. Using the scheme leading to (4.17) one obtains the coe�cients fk(�). The

�rst few coe�cients are given in (4.19).
We observe that fk(�) is a polynomial of degree 2k in � multiplied with �k . If a and z are

positive then � ∈ [0; 1]. It follows that the sequence {�k=z2k} is an asymptotic scale when one or
both parameters a and z are large, and, hence, that {fk(�)=z2k} of (4.13) is an asymptotic scale
when one or both parameters a and z are large.
Because of the relation in (4.27) and �̃k(�)=�k(�̃), higher coe�cients fk(�) can also be obtained

from the recursion relation (2.11), which is obtained by using the di�erential equation of the parabolic
cylinder functions.
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