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1. INTRODUCTION 

In previous publications [Gil et al. 2002a, 2003], we described methods to com­
pute the modified Bessel function Kia(x) for positive x. We complete this anal­
ysis here by describing analogous methods for the computation of the function 
Lia(x). With this, methods for the reliable computation of a pair of linearly in­
dependent numerically satisfactory solutions become available which find their 
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implementation in the accompanying paper [Gil et al. 2004]. Methods to com­
pute their derivatives are also provided. 

The functions Kia(x) and Lia(x) are solutions of the modified Bessel equation 
for imaginary orders 

x2w" + xw' + (a2 - x 2 )w = 0. (1) 

The function Kia (x) finds application in a number of problems of physics and 
applied mathematics [Gil et al. 2002a]. The function Lia(x) is a real valued 
numerically satisfactory companion to Kia(x) in the sense described in Olver 
[1997], pp. 154-155. 

In terms of the modified Bessel function of the first kind lv(x), the solutions 
are defined as: 

TC 1 
Kia(x) = 2i sinh(rra) [Lia(X) - Iia(x)], Lia(X) = 2U-ia(X) + lia(x)], (2) 

with Wronskian W[Kia(x), Lia(x)] = 1/x. 
Both Kia(x) and Lia(x) are real solutions for real x > 0 and a E JR. Because 

they are even functions of a, in the sequel we will consider a ::=: 0, although this 
restriction is not present in the code. 

In Section 2, we describe the different methods of computation considered, 
namely: series expansions, asymptotic expansions for large x, Airy-type uniform 
asymptotic expansions, non-oscillating integral representations (including a 
discussion on the quadrature rule) and a continued fraction method. We avoid 
duplicating information already given in previous papers; in particular, the 
references Gil et al. [2002a, 2003] provide information required for building 
the algorithms of the accompanying paper [Gil et al. 2004]. A few misprints in 
[Gil et al. 2002a] are corrected. 

In Section 3, we include a discussion on the dominant asymptotic behaviour 
of the functions. These exponential dominant factors can be taken out, leading 
to scaled functions that can be computed in a much wider range. The algorithm 
described in the accompanying paper [Gil et al. 2004] offers the possibility of 
computing scaled and unscaled functions. 

2. METHODS OF COMPUTATION 

In Gil et al. [2002a, 2003] methods are described to compute the Kia(x) 
for different regions in the (x, a) plane. In particular, we considered series 
expansions [Temme 1975], asymptotic expansions for large x [Abramowitz 
and Stegun 1964, Eq. 9.7.2], uniform asymptotic expansions for a::= x [Balogh 
1967; Dunster 1990; Olver 1997, pg. 425]. Also, non-oscillating integral rep­
resentations [Temme 1994; Gil et al. 2002a] are available. Similar techniques 
are available for the computation of Lia(x) and the derivatives Kfa(x), L:O(x). 
In addition, a continued fraction method can be applied for the computation 
of Kia(x) and KI/x). Those techniques generally give at least two alternative 
methods for computing the functions in the (x, a) plane for moderate values of x 
and a; therefore, we can always compare different methods of computation for 
testing their accuracy. The selection of one or another method of computation in 
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a given region will depend on the range of applicability of each method and its 
efficiency. 

We now describe the different methods of computation that are used in the 
programs. 

2.1 Series Expansions 

Series expansions can be built that properly describe the solutions near the 
singular point (x = 0) of the defining differential equation (1). The idea, as 
described in Temme [1975) and Gil et al. [2002a], is to substitute the Maclau­
rin series for lv(x) [Abramowitz and Stegun 1964, Eq. 9.6.10) in Eqs. (2). The 
following expansions are obtained 

1 ~ / 1 2 ~ [ rk] K;a(x) = n(a) L.., fkck,K;a(x) = -( )- L.., kfk - -2 Ck 
k=O n a x k=O 

(3) 

where 

Ck = (x /2)2k / k ! (4) 

sin(<Pa,k - a ln(x/2)) 
(a2( 1 + a2) ... (k2 + a2))1;2' 

= ~ tan(<Pa k - a ln(x/2)), with <Pak = arg(f(l + k + ia)). a , , 

(5) 

The coefficients f k and rk differ from those in Gil et al. [2002a] by a constant fac­
tor (for fixed a). The new normalization shows explicitly (Eqs. (3)) the dominant 
exponential behaviour n(a) and l/n(a) as a -+ oo (~ e±.ira/2). 

An efficient method to compute the coefficients was described in Gil et al. 
[2002a] and Temme [1975]; this method is based on the fact that both fk and 
rk satisfy the three-term recurrence relation 

(k 2 + a2h - (2k - lh-1 + rk-2 = 0. (6) 

Perron's theorem is inconclusive with respect to the existence of minimal solu­
tions for this recurrence relation; anyhow, the second equation in (6) confirms 
that neither f k nor rk are minimal solutions. Therefore, forward recursion will 
be numerically stable. Starting values can be computed taking into account 
that arg f(l + ia) = a0(a), where a0(a) is the Coulomb phase shift, for which 
Chebyshev expansions are available for double precision [Cody and Hillstrom 
1970]. Namely, we have: 

ro = cos[ao(a) - a ln(x/2)], 

r 1 = ~{cos[ao(a) - a ln(x/2)] - a sin[ao(a) - a ln(x/2)]}, 
l+a 

(7) 
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and 

fo = ~ sin[ao(a) - a ln(x /2)], 
a 

fi = 1 
2 {sin[a0(a)-aln(x/2)]+acos[ao(a)-aln(x/2)]}. 

a(l +a ) 

These formulas correct two misprints in [Gil et al. 2002a, Eqs. 12 and 13]. 
Series can be used for x/a small. See Gil et al. [2004], Section 2. 

2.2 Asymptotic Expansions for Large x 

(8) 

Asymptotic expansions for large x are available from the known asymptotic 
expansion of lu(x) [Abramowitz and Stegun 1964, Eq. 9.7.l]: 

( )1/2 [n-l (ia k) I 
K;a(X) = 2x e-x ~ (2~)k + Yn ' 

1 x 1~ k(ia,k) I Lia(x) = ,J2;Xe 6 (-1) (2x)k + 8n , 

where (ia, m) is the Hankel symbol, which satisfies 

. (k + ~y +a2 . . 
(w, k + 1) = - k (ia, k), (ia, 0) = 1. 

+l 

(9) 

(10) 

Bounds for the error terms (yn, 8n) can be found in [Olver 1997, Pg. 269, Ex. 
13.2]. 

As discussed in Gil et al. [2002a] the numerical performance of the asymp­
totic expansion for Kia(x) is of more restricted applicability than for the case of 
the evaluation of Kv(x) for real v. Furthermore, the continued fraction method 
described in Gil et al. [2002a] covers the region where this expansion is of nu­
merical interest. For this reason, the continued fraction method is the preferred 
algorithm for the evaluation of Kia(x) and K:C,(x) for moderate values of a. On 
the other hand the asymptotic expansion for Lia(x) turns out to be accurate in 
a wider region, which is a fortunate situation given that the continued fraction 
method is not available in this case. See Gil et al. [2004], Section 2, for further 
details. 

Asymptotic expansions for the derivatives are also available by differentiat­
ing Equations (9). 

2.3 Airy-Type Uniform Asymptotic Expansions 

The Airy-type asymptotic expansions for Kia(x) can be found in Balogh [1967] 
and Dunster [1990] and Olver [1997, pg. 425]; the analogous expansions for 
Lia(x) [Dunster 1990] and K;a(x) are also available [Balogh 1967], while the 
expansion for L;a(x) can be derived in the same way. We summarize here the 
main features needed for the computation through these expansions, neglecting 
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the error terms. Further details can be found in Balogh [1967], Dunster (1990], 
Olver [1997], Gil et al. (2003], and Temme (1997]. 

The expansion for Kia(x) and Lia(x) in terms of Airy functions (Ai(z), Bi(z) 
and their derivatives) reads 

Kia(az) = rre-=~~</J(t} [ Ai(-a213 S)Fa(s) + a}13 Ai'(-a213s)Ga(s)], 

Lia(az) = ea;~t~t) [ Bi(-a213 ~)Fa(s) + )13 Bi'(-a213~)Ga<s>], 
where 

Fa(l;),..., f:<-)sas~), Ga(S),.., f:<-)8 bs~), 
s=O a s=O a 

(11) 

(12) 

as a -+ oo uniformly with respect to z E [O, oo). Error bounds for the asymptotic 
expansions of the Kia(x) and Lia(x) are given in Dunster (1990]. 

The quantity s is given by 

and 

~s3'2 =log 1+p -Jl-z2, o::: z::: 1, 

2 3/2 ~ 1 3(-s) =vz~-1-arccos;, z ~ 1, 

</J(s) = (~)1;4' </J(O) = 2113. 
1-z2 

(13) 

(14) 

Of course, it is crucial to accurately compute Equations (13) for small s. For 
this, series expansions around z = 1 can be used. 

The evaluation of the coefficients near the turning point z = 1 (which is 
our region of interest) can be performed via Maclaurin series expansions of the 
quantities </J, a8 and b8 ([Temme 1997]) in terms of the variable TJ = 2-113s (see 
Gil et al. (2003] and Temme (1997] for further details). 

Asymptotic expansions for the derivatives can be found by differentiating 
Equations (11). In this way: 

, rre-atr/2 [ ., 2/3 1 · 2/3 ] Ki0 (az) = 2 213 ( ) Ai (-a S)Pa<n + 213 Ai(-a s>Qa(s) , 
za </J s a 

(15) 

L;0 (az) = ~~;12( ) [si'(-a213S)Pa<s> + i13 Bi(-a213 S)Qa<n], 
za </J s a 

where P 0 (S) and Q0 (S) can be written in terms of F 0 (s), Ga(S) and their deriva­
tives and they have asymptotic expansions 

PaCs> ,.._, f:<-)8 Cs~>, Qa(s),..., f:<-)sds~>, 
s=O a s=O a 

(16) 
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whose coefficients can be obtained from the computed coefficients as and bs (in 
Taylor series around~ = 0) through the relations: 

where 

Cs(s) = as(s) + x(S)bs-1Cs) + b~_1(s), 
ds<n = -x(S)as<n - a~(S) - sbs(s), 

(17) 

(18) 

The prime in Equations (17) and (18) denotes the derivative with respect to 
s. Using Equations (17) the coefficients Cs and ds can be computed from the 
coefficients as and b8 • Details on the evaluation of as and bs are given in Gil 
et al. [2003], where an explicit Maple algorithm is given for the computation of 
as and bs for s = 0, 1, 2, 3. 

By computing the Wronskian relation for the modified Bessel functions and 
using the Wronskian for Bessel functions, it is easy to derive the relation 

1 
FaCsWaCO - 2Ga(OQa(s) = 1, 

a 
(19) 

which is a useful relation for checking the correctness of the approximations 
for the coefficients in the asymptotic expansions. 

An algorithm to compute Airy functions of a real variable is needed for the 
computation of these asymptotic expansions. In the routines Gil et al. [2004] 
we use Algorithm 819 [Gil et al. 2002b]. 

These Airy-type asymptotic expansion are applied in Gil et al. [2004] in a 
broad region around the turning point line a= x. 

2.4 Non-Oscillating Integral Representations 

Paths of steepest descent for integral representations of the modified Bessel 
functions of imaginary orders and their derivatives are given in Temme [1994]. 
Apart from their application in asymptotics [Fabijonas 2002], these integrals 
are useful for building numerically stable (non-oscillating) integral represen­
tations for Kia(x) and K[a(x), as described in Gil et al. [2002a]. We complete 
here the analysis in Gil et al. [2002a] by providing analogous expressions for 
the computation of Lia(x) and L;,,Cx). Additionally, we study further transfor­
mations of the integrals that enable us to obtain integral expressions suitable 
for computation by means of the trapezoidal rule. 

2.4.l Monotonic Case (x >a). We have the following integral representa­
tions in the monotonic region Gil et al. [2002a] 

Kia(X) = e-A fo 00 
e-x<S>(r)d-c 

100 [ cosh r - 1 + 2 sin2 ~(l:l - a)] 
K[a(x) = -e-'- cosl:l + 2 e-x<t>Crldr 

o cos a ' 

(20) 
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(21) 

and () E [O, rr /2), a E (0, e]. The dominant exponential term (e-") has been 
factored out. The argument of the exponential in the integrand is 

<l>(r) = (cosh r - l)cosa + 2sin ( 8 ; a) sin ( 8 ; a)+ (a - B)sine. (22) 

This formula corrects a misprint in Gil et al. [2002a] (Eq. 33). The difference e-a 
can be computed in a stable way for small values of r by using the expression. 

(23) . sine [ r 2 J sm(e - a) = r 1 - 2 , 

COS8-- + COS<J sinh T 
sinh r 

together with the definition of a (21) and specific algorithms to compute 
cosh( r) - 1 and 1 - sinh( r )2 /r 2 for small r. 

The non-oscillating integral representations for Lia(x) and its derivative can 
be written after factoring the dominant exponential contribution as: 

Lia(X) = ~ [f-e+ir exy(a)da - (l -e-2ira)e-1 r+oo e-x<:t>(r:)da d r] 
2rr -8-rr Jo d r 

where 

y(a) = 2 sine 2 a sine~ a +(a - e) sine 

T/ = 2x[cos e + (8 - n/2) sine] = 2x ( Jl - (a/x)2 - ~ arccos(~ )) 

and using Eq. (21) 

da =tan a[~ - coth r]. 
dr r 

(24) 

(25) 

(26) 

The first integral is dominant over the second one for large values of the 
parameters and a/ x not too close to a = x. As a --+ x both integrals become of 
the same order. 

Similarly, we have the following representation for L;a (x ): 

L;a(x) = - cosaexr<alda + (1-e-2rra)e-ry e-x<t><rlh(r)dr e" [f-e+rc l+oo J 
2rr -e-rr o 

(27) 

where 

. [cosh r 1 J h(r)=sma ---~h . 
r sin r 

(28) 

These integral representations for Lia(x) and L;a(x) can be used for checking 
the computation of these functions in the monotonic region. They are not used 
by our algorithms [Gil et al. 2004] because the Airy-type asymptotic expansion 
(Section 2.3) and the expansion for large x (Section 2.2) are sufficiently accurate 
for this functions and they are faster to compute (see Gil et al. [2004], Section 2). 
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2.4.2 Oscillatory Case (x < a). The non-oscillating integral representa­
tions for the oscillatory region are more difficult to evaluate numerically than 
those for the monotonic case. Indeed, as it was discussed in Gil et al. [2002a], 
the steepest descent method leads to three integrals, which have to.be ~om­
puted separately. However, as we later discuss, for moderately large a It will be 
enough to compute a single integral. 

In Gil et al. [2002a], the following formula was obtained: 

Kia(x) = e-;ra/2 [ 100 
e-'i'(r) (cos X + sinx ~:) d -r 

+ . 1 f µ (cos x sinh p +sin x cosh p dda) d -r 
smhrra 1µ-tanhµ r 

(29) 

- . 1 13
1(

12 (cosx sinhp dr +sinx coshp)da], 
smhrra ;r da 

where x = x sinh µ-aµ, cosh µ = ~' µ > 0, 

W(r) = x cosh -r cos a+ a (a - ~:rr), p(-r) = -IJ!(-r) + a:rr (30) 

and 
. ( r - µ) cosh µ + sinh µ 

sm a= --------­
sinh r 

(31) 

Notice that each of the three integrals in Eq. (29) can in principle be in­
tegrated with respect to either of the variables a and r, taking into account 
Eq. (31) together with the fact that the integration path -r(a) is such that -r(O) = 
+ oo, r(rr /2) = µ, r(n) = µ-tanh µ > r(3rr /2); however, as discussed in Gil et al. 
[2002a] there are strong numerical reasons for the selections made. In particu­
lar, the third integral is performed with respect to a (which requires numerical 
inversion of(31)) to avoid the singularity of dO'/d rat r(3:rr /2). As explained in 
Gil et al. [2002a] the numerical inversion of (31) in the interval a E [n, 3rr/2] 
can be efficiently performed in parallel with the numerical integration. 

Similar integral representations exist for K' (x), Lia(x) and L' (x). We have: ta ia 

K:C,(x) = e-rra/2 [ 100 
e-w(rl (cos x A(r) +sin x C(r)) dr 

+ .nh1 1µ (cosxcoshpA(r)+sinxsinhpC(r))dr 
Sl rra µ-tanhµ 

(32) 

- .nh1 13
"'

12 (cos x cosh p B( -r(a )) +sin x sinh p D( r(a )) ) d a] 
SI na ;r 

where 

A(r) = -cosh rcos a+ sinh r sin a~, B(r) = A(r)*, 

C(r) = -sinh rsin a -cosh -r cos u~, D(r) = C(r)~ ur ua· 
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In addition, integral representations for Lia(x) and its derivative are: 

erra/2[1-e-2rra Joo ( da) 
= --;- 2 µ e-w(rl sinx - cosx dr: dr: 

+ -rra !µ, ( . . h h d a) d e sm x sm p - cos x cos p - r: 
µ,-tanhµ dr: 

(34) 

13rr:/2( dr: ) J -e-rra rr sin x sinh p da - cos x cosh p da 

and 

erra/2 [ 1 - e-2rra Joo 
L;a(x) =--;- 2 µ, e-wCrl(sinxA(r:)-cosxC(r:))dr: 

+ e-rra {µ (sin x coshp A(r:) - cos x sinh p C( r: )) d r: (35) 
J µ,-tanhµ, 

-e-rr:a i3
,,.

12 (sin x coshp B(r:(a)) - cos X sinhp D(r:(a))) da J. 

Notice that the dominant exponential behaviour has been factored for both 
the functions Kia(x) and Lia(x) and their derivatives, which coincides with the 
exponential behaviour of the uniform asymptotic expansion. This is an interest­
ing feature when computing scaled functions in order to avoid overflows and/or 
underflows in the computation. After factoring the dominant exponential terms 
(e±rra/2), the overflow and/or underflow problems are eliminated; notice, how­
ever, that when computing the integrals over finite intervals we should evalu­
ate sinh(p)/earr:, cosh(p)/ean for Lia(x) and its derivative and sinh(p)/sinhaJt, 
cosh(p)/ sinhaJt for Kia(x) (and KiaCx)) instead of computing the hyperbolic and 
the exponential separately (otherwise, overflows will take place for moderately 
large a). For this reason it is convenient to use the expressions 

coshp -e-1/l l+e-2P sinhp -'/! 1-e-2P 

sinhJra - 1-e-2rra' sinhna =e 1-e-2rr:a (36) 

in the evaluation of Equations (29) and (32) and to proceed in the same way 
for e-rra coshp and e-rra sinhp in Equations (34) and (35). Notice that in the 
oscillatory region p > 0 and that for large a and x both e-2P and e-2rra will 
underflow. These underflow problems can be easily avoided by neglecting these 
exponential terms for large parameters. 

In addition, when both exponentials become negligible, the integral over 
sigma becomes negligible and the remaining two integrals can be approximated 
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by only one integral. We can write 

Kia(X) ~ e-na/2 [Loo e-lj/(r) (cos X +sin X ~:) d r: + O(e-ira/2 ) J 

K;a(x) ~ e-na/2 [L00 e-lj/(r) (cos x A(r:) +sin x C(r:)) dr: + O(e-ll'a/2)] 

Lia(X) ~ e;~2 [{
00 

e-lj/(r} ( sinx - cos x ~:) dr + oce-ll'a/2 )] 

L~(x) ~ e;~2 [{'" e-lj!(rl (sinx A(r)- cos x C(r:)) dr + O(e-ll'a/2)] 

where 

ro = µ - tanhµ. 

(37) 

These approximations can be used for moderately large a, which is the region 
where integrals for the oscillatory case are employed in the code [Gil et al. 2004]. 

It is useful however to have the complete expressions for testing the rest 
of the methods. The computation through quadrature using Equations (20), 
(24), (27), (29), (32), (34) and (35), provides a way for computing the functions 
in the whole (x, a) plane, except close to a = x, where the integrands become 
nonsmooth. For this reason, they have been used for checking the algorithm, 
although in the oscillatory region only Equation (37) is necessary when building 
the numerical algorithm. [Gil et al. 2004]. 

2.4.3 Quadrature Rule. As reported in Goodwin [1949), the trapezoidal 
rule is a very efficient method of computation of integrals r::: f(x)dx for 
rapidly decaying integrands f (x ); in particular, it is know that the error decays 
as exp(-(n/h)2) for integrals of the type r~:: e-X2 g(x)dx with g analytic in 
{z e C: l~zl < n/h}. After appropriate changes of variable, similar arguments 
follow for integrals over finite intervals with a smooth integrand [Schwarz 1969; 
Tak.ahasi and Mori 1973, 1974). 

The semi-infinite integrals in this Section are appropriate for their computa­
tion by using the trapezoidal rule, because they decay as a double exponential 
as r ~ +oo. On the other hand, the integrals over finite intervals show abrupt 
variations as a ~ x, particularly in the oscillatory case, but under an adequate 
change of variables they can be also computed efficiently by means of the trape­
zoidal rule. For finite integrals, we consider a change of variable in order to map 
the finite interval [a, b] into (-oo, +oo) and a successive change to improve the 
convergence of the trapezoidal rule [Tak.ahasi and Mori 1973, 1974]; namely, 
we consider the following transformation: 

l b j+oo (b- a)cosht 
I = f(x)dx = g(t)dt, g(t) = f(x(t)) 2 , 

a -oo 2 cosh (sinh t) 
b+a b-a . 

x(t) = - 2- + - 2-tanh(sinht). 
(38) 
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And the integral is discretized by means of the trapezoidal rule with equal 
mesh size: 

l +oo +oo 

g(t )dt = h L g(nh) + E, 
-oo n=-oo 

(39) 

where the error E is expected to decay very quickly as the mesh size is decreased 
because the integrand is analytic and its decay is doubly exponential. We use 
a trapezoidal rule that halves the mesh size until the prescribed precision is 
reached; the same rule controls that the truncation of the infinite series (39) 
gives an error well below the accuracy claim. 

Regarding the semi-infinite integrals, we use a change of variable to trans­
form the integration interval [a, +oo) to (-oo, oo). We consider the following 
change of variables to perform this map. 

(40) 

The additional change x = sinht improves the convergence of the trapezoidal 
rule. 

It is observed that, typically, no more than 8 iterations of the trapezoidal 
rule are needed, which means that the integrands are evaluated at 28 + 1 = 
257 points in the worst cases. This is the typical number of iterations for the 
evaluation of J~::; e-x2dx by means of a recursive trapezoidal rule when double 
precision accuracy is demanded. This fact confirms that the above mentioned 
changes of variable are adequate for the computation of the integrals for the 
modified Bessel functions. 

2.5 Continued Fraction Method 

As discussed in Gil et al. [2002a] both Kia(x) and Kia can be computed for mod­
erate a by means of a continued fraction method, similar to the corresponding 
method for Bessel functions of real orders (see Temme [1975] and [Press et al. 
1992, pp. 239-240]). We refer to Gil et al. [2002a] for a full description of this 
scheme. 

As numerical experiments show, this method is competitive in speed with 
asymptotic expansions for large x (Section 2.2) and the range of application is 
larger. Therefore, the continued fraction method substitutes the use of asymp­
totic expansions for large x. 

3. RANGE OF COMPUTATION AND SCALED FUNCTIONS 

As described in previous sections, the integral representations that were de­
veloped indicate that the dominant behaviour for the functions when the pa­
rameters are large is of exponential type. This means that the computations 
can only be carried for not too large values of a and x in order to avoid over­
flows/underflows in the computation. For instance, from Equations (29) and 
(32) it is seen that for large a (a > x), we have Kia(x) ~ e-arr/2 and similarly for 
the derivative, while for Lia(x) and its derivative (Equations (34) and (35)) the 
asymptotic behaviour is ~ earr/2 • This means that to avoid overflow/underflows 
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Fig. 1. Computable range for the evaluation of Kia(x), Lia(x) and their derivatives. 

in the computation, we must restrict the range of a in the oscillatory region to 

(41) 

where N is either the inverse of the underflow number (when computing Kia(x) 
or its·derivative) or the overflow number (for Lia(x) and its derivative); ion is 
a safety factor (in the program, we take n = 8). For processors using the IEEE 
standard in double precision this will approximately limit a to a < 440. On 
the other hand, for the monotonic region (x > a) the integral representations 
show that the dominant exponential behaviour is Kia(x) ,..., e-A, Lia(x) '"" eH 
where J,.(x, a)= x(cos ()+a sin()), sine = a/x (e E [O, n /2]), and similarly for the 
derivatives. This means that, in order to avoid overflows/underflows, the range 
of computation must be restricted to: 

/...(a, x) = Jx2 - a2 +a arcsin(a/x) < ln(ion N). (42) 

Figure 1 shows the computable range for ion N = io300 (typical value for 
IEEE standard double precision) 

Given that all our expressions have the dominant exponential contributions 
factored out, exponentially scaled functions can be defined that are computable 
in wider ranges. Namely, we define: ----:- -j eJ,.(x,a)Kia(x) x ~a -: l eJ,.(x,a)Kia(x) X ~a 

K1a(x) - Kia(x) = 
earr/2 Kia(X) x <a earr/2 K[a(x) x <a 

(43) 

and 

(44) 

Note that, as in the rest of the article, we are considering positive a because 
Kia(x) and Lia(x) are even functions of a. Of course, when applying the scaling 
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factors for negative a, we should replace a by !al in the exponential scaling 
factors of Equations (43) and (44). In this way, the scaled functions are also 
even functions of a. 

The definitions in (43) and (44) eliminate exactly the front exponential factor 
in the oscillatory region (a > x) from the series and the Airy type asymptotic 
expansion and in all the (x, a) plane for the the integral representations. In 
other cases, there remains an exponential factor with soft variation. For ex­
ample, when using Airy-type expansions in the monotonic region (neglecting 
non-exponential factors), we have 

Kia(x) ~ eA.-arr:J2 =/I· (45) 

where 

3:' = x(cos e + (8 - JC /2) sinB) = J x2 - a2 + a(arcsin(a/x) - :rr/2), 

which is small for x ::::= a (B ::::= JC /2); loss of accuracy in the computation of 'i for 
x ::::= a can be reduced by expanding 'i in powers of e - :rr /2. 

Similarly, an exponential factor remains when rescaling the asymptotic ex­
pansions and the same happens when applying the continued fraction method. 
In this case, we have for x >a; 

(46) 

where 

5:. = x((cose - 1) + e sine)= x - Jx2 - a2 -a arcsin(a/x), 

which goes to zero as a/x -+ 0 (B -+ 0). Loss of accuracy in the computation of 
5:. for small e (a/ x small) can be avoided by expanding 5:. in powers of e. 
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