1,178 research outputs found

    Rigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath

    Get PDF
    We present a new open source implementation in the SageMath computer algebra system of algorithms for the numerical solution of linear ODEs with polynomial coefficients. Our code supports regular singular connection problems and provides rigorous error bounds

    A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis

    Full text link
    A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Its aim is to model ultrafiltration of water combined with inflow of glucose to the tissue and removal of albumin from the body during dialysis, and it does this by finding the spatial distributions of glucose and albumin concentrations and hydrostatic pressure. The model is developed in one spatial dimension approximation and a governing equation for each of the variables is derived from physical principles. Under certain assumptions the model are simplified with the aim of obtaining exact formulae for spatially non-uniform steady-state solutions. As the result, the exact formulae for the fluid fluxes from blood to tissue and across the tissue are constructed together with two linear autonomous ODEs for glucose and albumin concentrations in the tissue. The obtained analytical results are checked for their applicability for the description of fluid-glucose-albumin transport during peritoneal dialysis.Comment: 28 pages, 8 figures. arXiv admin note: text overlap with arXiv:1110.128

    Dark Energy or Apparent Acceleration Due to a Relativistic Cosmological Model More Complex than FLRW?

    Full text link
    We use the Szekeres inhomogeneous relativistic models in order to fit supernova combined data sets. We show that with a choice of the spatial curvature function that is guided by current observations, the models fit the supernova data almost as well as the LCDM model without requiring a dark energy component. The Szekeres models were originally derived as an exact solution to Einstein's equations with a general metric that has no symmetries and are regarded as good candidates to model the true lumpy universe that we observe. The null geodesics in these models are not radial. The best fit model found is also consistent with the requirement of spatial flatness at CMB scales. The first results presented here seem to encourage further investigations of apparent acceleration using various inhomogeneous models and other constraints from CMB and large structure need to be explored next.Comment: 6 pages, 1 figure, matches version published in PR

    Octopamine increases the excitability of neurons in the snail feeding system by modulation of inward sodium current but not outward potassium currents

    Get PDF
    Background: Although octopamine has long been known to have major roles as both transmitter and modulator in arthropods, it has only recently been shown to be functionally important in molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis. The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the feeding network, and here we test the hypothesis that octopamine is also a neuromodulator. Results: The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising current clamp pulses is significantly (P << 0.05) increased by (10 mu M) octopamine, whereas the B2 motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons had two components, a transient I-A current and a sustained I-K delayed-rectifier current, but neither was modulated by octopamine in any of these three buccal neurons. The fast inward current was eliminated in sodium - free saline and so is likely to be carried by sodium ions. 10 mu M octopamine enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P << 0.05), but a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1 motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the excitability markedly. Conclusion: We conclude that octopamine is also a neuromodulator in snails, changing the excitability of the buccal neurons. This is supported by the close relationship from the voltage clamp data, through the quantitative simulation, to the action potential threshold, changing the properties of neurons in a rhythmic network. The increase in inward sodium current provides an explanation for the polycyclic modulation of the feeding system by the octopamine-containing interneurons, making feeding easier to initiate and making the feeding bursts more intense

    The performance of approximating ordinary differential equations by neural nets

    Get PDF
    The dynamics of many systems are described by ordinary differential equations (ODE). Solving ODEs with standard methods (i.e. numerical integration) needs a high amount of computing time but only a small amount of storage memory. For some applications, e.g. short time weather forecast or real time robot control, long computation times are prohibitive. Is there a method which uses less computing time (but has drawbacks in other aspects, e.g. memory), so that the computation of ODEs gets faster? We will try to discuss this question for the assumption that the alternative computation method is a neural network which was trained on ODE dynamics and compare both methods using the same approximation error. This comparison is done with two different errors. First, we use the standard error that measures the difference between the approximation and the solution of the ODE which is hard to characterize. But in many cases, as for physics engines used in computer games, the shape of the approximation curve is important and not the exact values of the approximation. Therefore, we introduce a subjective error based on the Total Least Square Error (TLSE) which gives more consistent results. For the final performance comparison, we calculate the optimal resource usage for the neural network and evaluate it depending on the resolution of the interpolation points and the inter-point distance. Our conclusion gives a method to evaluate where neural nets are advantageous over numerical ODE integration and where this is not the case. Index Terms—ODE, neural nets, Euler method, approximation complexity, storage optimization
    corecore