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Abstract

Background: Although octopamine has long been known to have major roles as both transmitter

and modulator in arthropods, it has only recently been shown to be functionally important in

molluscs, playing a role as a neurotransmitter in the feeding network of the snail Lymnaea stagnalis.

The synaptic potentials cannot explain all the effects of octopamine-containing neurons on the

feeding network, and here we test the hypothesis that octopamine is also a neuromodulator.

Results: The excitability of the B1 and B4 motoneurons in the buccal ganglia to depolarising

current clamp pulses is significantly (P << 0.05) increased by (10 µM) octopamine, whereas the B2

motoneuron becomes significantly less excitable. The ionic currents evoked by voltage steps were

recorded using 2-electrode voltage clamp. The outward current of B1, B2 and B4 motoneurons

had two components, a transient IA current and a sustained IK delayed-rectifier current, but neither

was modulated by octopamine in any of these three buccal neurons. The fast inward current was

eliminated in sodium – free saline and so is likely to be carried by sodium ions. 10 µM octopamine

enhanced this current by 33 and 45% in the B1 and B4 motoneurons respectively (P << 0.05), but

a small reduction was seen in the B2 neuron. A Hodgkin-Huxley style simulation of the B1

motoneuron confirms that a 33% increase in the fast inward current by octopamine increases the

excitability markedly.

Conclusion: We conclude that octopamine is also a neuromodulator in snails, changing the

excitability of the buccal neurons. This is supported by the close relationship from the voltage

clamp data, through the quantitative simulation, to the action potential threshold, changing the

properties of neurons in a rhythmic network. The increase in inward sodium current provides an

explanation for the polycyclic modulation of the feeding system by the octopamine-containing

interneurons, making feeding easier to initiate and making the feeding bursts more intense.

Background
Molluscan feeding, with its repetitive protraction and
retraction of the radula to ingest food, has provided a sim-

ple model system for the study of central pattern generator
neuronal networks and of the way in which the pattern is
reshaped by neuromodulators [1,2]. In the buccal ganglia
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Octopamine (OA, 10 µM) modulates the excitability of the feeding buccal neuronsFigure 1
Octopamine (OA, 10 µM) modulates the excitability of the feeding buccal neurons. In the B1 and B4 motoneurons the thresh-
old for action potential generation decreases (A, C), while the B2 motoneuron is less excitable with octopamine in the bath. 
For the B1 motoneuron the increase of the excitability with octopamine is particularly visible around threshold, while in B4 
motoneurons increase of excitability is clear throughout the whole range of the injected current. All control experiments were 
in Hi-Di saline (to which octopamine was added), and a second electrode was used to inject the constant current pulses to 
evoke bursts of action potentials. Summary graphs represent dose-response relationship: injected current values (X) versus 
the mean (± SE) number of action potentials (Y) per 0.5 s depolarizing pulse. N = 6 (Aii), N = 3 (Bii), N = 6 (Cii).
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of the pond snail, Lymnaea stagnalis, octopamine is
released by 3 octopamine-immunoreactive (called OC)
interneurons [3] onto all the identified neurons (both
interneurons and motoneurons) in the buccal feeding sys-
tem. The effects of octopamine are particularly interesting
because it has a double role: both short-term ( = neuro-
transmitter) and long-term ( = neuromodulator). The
short term effects of the OC cells are to excite protraction
phase neurons (e.g. B1 motoneurons), inhibit retraction
phase neurons (e.g. B2, B3 motoneurons), and make elec-
trical connections with the neurons which fire in the same
phase (swallowing) of feeding cycle as the OC interneu-
rons (e.g. B4 motoneurons) [4]. However, the synaptic

outputs of the OC interneurons do not account for all the
changes that these interneurons have on the feeding pat-
tern: they also produce a long lasting (polycyclic) modu-
lation of the feeding system. At the network level, the OC
interneurons make the protraction phase modulatory
interneurons (SO and N1L) much more effective in driv-
ing fictive feeding, making the feeding pattern stronger
and more robust. This effect can occur even if the OC
interneuron is stimulated 6 s (the length of two feeding
cycles) before the protraction phase neurons [5].

The network effects of the OC neurons can be accounted
for by two cellular processes. First, they produce an

A series of voltage-activated current traces of B1, B2, B4 motoneurons evoked by 5 mV depolarizing voltage steps between -60 mV and +40 mVFigure 2
A series of voltage-activated current traces of B1, B2, B4 motoneurons evoked by 5 mV depolarizing voltage steps between -60 
mV and +40 mV. A. From a holding potential of -40 mV, initial fast inward current (seen on B2 and B4) is followed by a slowly 
activating outward current (B1, B2, B4 cells) which does not inactivate during the 50 ms current step. B. The same voltage pro-
tocol starting from -80 mV holding potential evokes an additional, fast outward current component on all three motoneurons. 
C. Subtracting the two current records shows the initial transient outward current is a fast inactivating outward current during 
the course of the 50 ms voltage steps. All experiments in normal saline.
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increase in the excitability of the protraction phase
interneurons (SO, N1L), so that the same current pulse
gives more action potentials. Secondly, they increase the
strength of the synapses made between protraction phase
neurons, including the synapses from the SO and N1L to
the N1M CPG interneuron and B1 motoneuron. Both
these effects are mimicked by bath-applied octopamine in
the range 1–10 µM, which is below the threshold at which
octopamine directly depolarises the membrane potential
[4].

An increase in membrane excitability has been found to
underlie many behavioural processes, including contribu-
tions to the modulation seen during learning [6,7] and
that seen in crustacean pattern generating networks [8]. In
these systems, a variety of ionic mechanisms have been
found to be substrates of the increase in excitability [9-
11]. We now show that two of the three largest buccal
motoneurons, B1 and B4 are more excitable in the pres-
ence of octopamine. In order to explore the changes in
ionic currents by which the OC interneurons produce a
change in excitability, we have voltage clamped these cells

and examined the action of their transmitter, octopamine
on their membrane currents. As a control, we also voltage
clamped the B2 motoneuron which shows a decrease in
excitability with octopamine. We have modelled the cur-
rents seen in the B1 with a Hodgkin-Huxley style simula-
tion. We find that an increase in inward sodium current,
of the same magnitude as that recorded in the voltage
clamp, produces a lower threshold and an increase in
excitability of the B1 motoneuron. An outline of this
work, giving initial data, was recently published [12]

Results
Octopamine increases the excitability of the B1 and B4, 

but not B2 motoneuron

Excitability experiments were performed in Hi-Di to
decrease spontaneous synaptic inputs on the cell under
study. This made the neurons silent and only the intracel-
lular pulses were able to evoke action potentials. In Hi-Di
saline, a series of depolarising pulses of increasing ampli-
tude was used to determine the threshold and excitability
of the B1, B2 and B4 motoneurons (Fig. 1). The averaged
data show that the mean thresholds are just under 1 and

Reversal of the outward current in the B1 motoneuronFigure 3
Reversal of the outward current in the B1 motoneuron. A. Following a 400 ms step to +15 mV, activating the outward current, 
the voltage was stepped down and the amplitude of the tail current measured immediately upon settling. Upper trace: voltage 
clamp output, lower trace current. B. The tail current is approximately linear with voltage between -80 and -40 mV, with some 
rectification, and reverses at -70 mV. In 4 replicate preparations, the mean reversal potential was -67 ± 2.6 mV.
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0.5 nA (B1, B2) and between 2 – 4 nA (B4). Above thresh-
old the number of action potentials increases with stimu-
lus current, though the B1 curve starts to flatten off when
six times the threshold current is applied, indicating a sig-
moidal stimulus/response curve. (For the B2 and B4 cells,
our data only cover the lower part of the curve.)

In 10 µM octopamine, the threshold of the B1 and B4
motoneuron is reduced while the B2 threshold is
increased. For supra-threshold currents, the B1 and B4
motoneuron generate more action potentials in
octopamine than control saline, while B2 generates less.
With two to four times threshold stimulus current, these

differences are significant (comparison of individual pairs
of experimental recordings by the Wilcoxon test: B1 P <=
0.008; B2 P <= 0.008; B4 P < 0.002). With high stimulus
currents, the sigmoidal curves for control and octopamine
treatments start to merge together. The effect of
octopamine on excitability is at least partially reversed by
washing for 10 minutes.

Outward currents are not affected by octopamine

When any of the three large buccal neurons, B1, B2 or B4
are held in voltage clamp at -40 mV in normal saline,
depolarizing pulses elicit an outward current (Fig. 2A).
This outward current reaches its peak within 15 ms and is

The outward components of the voltage evoked currents are not affected by octopamineFigure 4
The outward components of the voltage evoked currents are not affected by octopamine. A. Current-voltage relationship of 
the peak values of the delayed outward currents recorded on B1 (N = 8), B2 (N = 6) and B4 (N = 8) neurons do not show any 
significant change in the presence of 10 µM octopamine. B. Peak values of the transient outward current component overlap 
suggesting no significant change of these currents when octopamine (10 µM) is added to the bath, B1 (N = 6), B2 (N = 6) and 
B4 (N = 8). Normal saline: filled symbols; octopamine: empty symbols. Mean ± SE of currents at end of a 50 ms pulse as in Fig. 
2.
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thereafter maintained for the duration of the 50 ms pulse.
(In most recordings from the B4 neuron, the smooth out-
ward current traces are interrupted by small spikes. These
occur when the large neurons in the B4 cluster, which is
electrically coupled to the B4 neuron, fire action poten-
tials.)

The sustained outward current activates at about -30 mV,
and increases as the step becomes more positive (Fig. 4A).
In the B1 neuron, its reversal potential is -67 ± 2.6 mV
(mean ± SE, N = 4) (Fig. 3). This was determined by acti-
vating the outward current with a step to +15 mV, fol-
lowed by clamping at values between -120 and -40 mV
and measuring the tail currents. Although well fitted by a
straight line, some rectification is observed. The sustained
outward current is blocked by tetraethylammonium
(TEA) (Fig. 7A), like the delayed rectifier, IKV seen in other
molluscan neurons [13]. The kinetics of the outward cur-
rent, like that of Anisodoris neurons [14], is not well fitted

by a single exponential raised to a power between 1 and 4.
While Connor & Stevens' data [14,15] was fitted with the
product of two terms, we achieved a better fit using the
sum of two processes, suggesting that the B1 cell may have
multiple outward currents. The more rapid component
(NA in our worksheet) corresponds with a steeply voltage-
activated potassium current, while the slower process
(NB) may represent one of the other potassium currents,
e.g. a calcium- activated potassium current [13,16,17].

When the B1, B2 and B4 neurons are stepped from a more
negative holding potential, -80 mV, the outward current
shows an initial peak that is not seen at -40 mV (Fig. 2B).
The steady-state current is often the same as that reached
when the holding potential was -40 mV. Subtraction of
the curves shows a rapidly activating, quickly inactivating
outward current (Fig. 2C). This current reaches its peak
after 3–6 ms and declines to 50% within 15–20 ms in the
B1 and B2 motoneurons, while the half-life is less than 10

Inactivation of the transient outward current in the B1 motoneuronFigure 5
Inactivation of the transient outward current in the B1 motoneuron. A. Holding the voltage for 800 ms at different values, and 
stepping to a fixed potential of +15 mV, determines the inactivation of the transient outward current. The transient outward 
current was measured at its peak value. B. Summary data for 11 runs from 4 preparations, showing mean ± SE total outward 
current. The solid line shows a fit of the Boltzmann equation

to the mean data, with a half voltage (h) of -71 mV and slope (s) of -6.6 mV.
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Analysis of the inward currents of buccal neuronsFigure 6
Analysis of the inward currents of buccal neurons. Ai. A series of voltage-steps from a holding potential of -80 mV to between 
-35 mV and +5 mV on B1 motoneuron. In normal saline an initial fast inward current is followed by outward current. Aii. In 
saline containing 50 mM tetraethylammonium (TEA) and 4 mM 4-aminopyridine (4-AP) the inward current component is 
slightly increased while both (the transient and delayed) outward current strongly inhibited. Aiii Changing to Na free saline 
with the same TEA and 4-AP concentrations shows only a small transient outward current while the inward current is blocked 
completely. B. Addition of octopamine to normal saline enhances the amplitude of the fast inward currents in B1 and B4 neu-
rons but not in the B2 motoneuron. Individual current traces of representative experiments from -50 mV stepped to -20 mV, -
10 mV and -20 mV, respectively in normal saline. The fast inward current is followed by a slower outward component (Bi). In 
the presence of 10 µM octopamine the fast inward components are increased on B1 and B4 neurons without substantial 
changes of the outward currents, while the inward current on B2 neuron is decreased (Bii). C. I-V characteristics of the volt-
age-evoked fast inward currents show increased peak values of the B1 (Ci, n = 8) and B4 (Ciii, n = 8) neurons in the presence 
of 10 µM octopamine. B2 neurons (n = 6) show decreased amplitudes of the fast inward current (Cii). D. The time at which the 
peak inward current was observed is not affected by 10 µM octopamine in the B1, B2 or B4 neurons (same preparations as C). 
In B, C and D experiments were done in normal saline (NS filled symbols) or normal saline supplemented with 10 µM 
octopamine (OA empty symbols). Mean ± SE. Asterisks mark significance levels of 5% (*), 1%(**) and 0.1% (***).
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ms in the B4 motoneuron. It activates at -50 mV and
increases as the potential becomes more positive (Fig.
4B). It is blocked by 4-aminopyridine (4-AP) but not by
TEA (Fig. 7A, B). In these characteristics, it resembles the
IA currents first recorded in molluscan neurons by Con-
nor & Stevens [15] and the two A currents reported by Ale-
kseev and Ziskin [18]. Over the first 50 ms, the rise and
fall of the IA current is well fitted with the product of a sin-
gle exponential, raised to the power 4 (rising), and a sin-
gle exponential (decaying). A linear approximation to the
time constant gave a good fit over the range -30 to +30
mV. For the inactivation of IA, we did not use the Lym-
naea data of Alekseev & Zaykin [19], because its half-inac-
tivation at -97 mV predicts that holding at -80 mV should
only give a small IA, whereas we found that holding at -80
mV gave a substantial IA (Fig 2). We therefore measured
the inactivation of IA in the B1 motoneuron, giving a half-
inactivation value of -71 mV (Fig. 5), closer to the -74 mV
determined by Connor & Stevens [14].

The summary current-voltage relationship (Fig. 4A, B)
shows that the peak outward currents are largest in the B4
neuron and smallest in the B2 neuron. The ratio of IA to
IKV (IA / IKV), measured from recordings of steps to 0 mV,
is larger (1.7) in B2 than in B1 or B4 (both 1.4).

Application of octopamine has no significant effect on the
amplitude or activation voltage of either the delayed recti-
fier or transient components of the outward current in any
of the B1, B2 or B4 neurons (Fig. 4A, B.

Fast Inward current increased by octopamine in B1 and B4 

but not B2 neurons

From a holding potential of -50 mV, the voltage clamp
traces show clear transient inward currents in normal
saline in each of the B1, B2 and B4 neurons (Fig. 6A, B).
The inward currents last less than 10 ms before they are
overtaken by outward currents. The inward current acti-
vates with the first step to -45 mV (Fig. 6C), and with the
next few steps, the amplitude increases while the latency
to the peak current decreases. In the B1 and B4 neurons,
the peak inward current is reached when the step is to
between -25 and -15 mV. We conclude from these proper-
ties that this current is a Na+ current like those in other
molluscan preparations [14]. This was confirmed by a
series of saline replacement experiments. The current was
not reduced when TEA or 4-AP was applied; instead it was
slightly increased (Fig. 6Aiii), When sodium was removed
from the saline (Fig. 6 Aii), the inward current disappears
completely.

The inward current transient was well fitted by the prod-
uct of a rising exponential raised to the third power times
a decaying exponential. The inward current activates and
inactivates more quickly than reported in Anisodoris [20]
or Aplysia [9], with lower minimum value and more neg-
ative voltage at which the time constant is half maximal
(Fig. 6C, D) compared with other Lymnaea cells [21]).

In the B2 neuron, the maximum inward current is reached
at -10 to -5 mV, and this suggests that the B2 inward cur-
rent is different from the inward current measured on B1
and B4.

Bath applied octopamine, 10 µM, increases the size of the
fast inward current in the B1 and B4 neurons, but no
increase is seen in the B2 neuron (Fig. 6). This is clear
from the individual steps (Fig. 6B) where the size of the
control inward current spike is shown by the dotted line:
the B1 and B4 neurons respond to octopamine with a
larger inward current. This is also reflected in the summa-
rised current-voltage graphs (Fig. 6C). For the B1 neuron,
the peak inward current is seen with steps to -15 mV and
octopamine increases this from -96 ± 13 nA to -128 ± 15
nA (a 33% increase). Paired t-tests show that the increase

Octopamine selectively enhances the pharmacologically sepa-rated fast inward current on B4 neuronFigure 7
Octopamine selectively enhances the pharmacologically sepa-
rated fast inward current on B4 neuron. Ai. In the saline con-
taining 50 mM tetraethylammonium (TEA) and 50 µM 
cadmium, the maintained outward current is reduced and the 
trace is dominated by a fast inward and transient outward 
current during five replicate depolarising voltage steps from -
80 to -10 mV. (The small inward currents are caused by 
incomplete voltage clamp because of the high spontaneous 
activity of electrically coupled B4 cluster neurons). Aii. After 
10 µM octopamine is added to this saline the fast inward 
component is increased without changing the outward com-
ponent. Bi. In medium containing 50 mM TEA, 4 mM 4-ami-
nopyridine (4-AP) and 50 µM cadmium,, and stepping from -
50 to -20 mV, the outward components disappear leaving the 
fast inward component current (10 replicates). Bii. After add-
ing 10 µM octopamine to the saline, the fast inward current 
is increased, and a smaller increase is seen in a sustained 
inward current.
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Simulation of ionic currents under voltage clamp in the B1 motoneuronFigure 8
Simulation of ionic currents under voltage clamp in the B1 motoneuron. A. Transient currents from a holding voltage of -80 
mV, showing a series of steps starting at -30 mV and increasing in 5 mV increments. Ai. Sustained outward current, the sum of 
two (increasing) components; compare the B1 data from Fig. 2A. Aii. Transient outward current, rapidly activating and then 
decaying; compare to data from Fig. 2C. Aiii. Inward current, showing more rapid activation and inactivation as the steps 
increase; compare to B1 data in Fig. 6. B. Total current in simulation (bold dotted line) from -50 mV to -25 mV, -15 mV, -5 mV 
and +5 mV, compared with current recordings from 2 different preparations (thin solid lines). At -25 mV the real data show 
the effects of an action potential propagated from the contralateral cell, starting about 1.5 ms into the recording (so only one 
preparation is shown at this step). The bold line in black shows the zero current level. C. Simulated Current – Voltage plot, 
showing the steady-state outward current (IK) the inward current (INa) the leak current (ILeak) and total current (ITotal). The 
steady state value of the transient outward current is too small to show on this scale. The steady state total current crosses 
the x-axis at -52 mV with a positive slope, giving this as the calculated stable resting potential.
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in fast inward current is significant for steps in the range -
20 mV to -5 mV (P << 5%). For B4, the inward current at
a step to -15 mV increases from -121 ± 32 to -173 ± 39 nA
(45%) and the paired t-tests indicate a significant increase
over most of the steps to -30 to -20 mV. The time for the
inward current to reach its peak is not altered by the appli-
cation of octopamine (Fig. 6D).

In contrast, for the B2, the inward current in octopamine
is not increased; rather it is less than in the control. At the
peak current, seen with steps to -5 mV, the current in
octopamine is 73% of the control; over the range -25 to +5
mV the inward current in octopamine is 77% of the con-
trol (Fig. 6Cii). However, only at the steps to -5 and +5 mV
is the reduction statistically significant (P < 0.05).

In molluscan neurons, the inward current may be carried
not only by sodium but also by calcium ions [22]. In the
experiments shown in Fig. 7, we used salines containing
50 µM cadmium to block the calcium component. In the
presence of 50 mM tetraethylammonium (TEA), the
delayed outward current is blocked (Fig. 7Ai). Addition of
10 µM octopamine to this saline still increases the peak
inward current, but leaves the size of the outward current
unchanged (Fig. 7Aii). In another preparation, we
blocked both transient and delayed outward currents, and
any calcium current by using 50 mM TEA, 4 mM 4-AP and
50 µM cadmium (Fig. 7Bi). Addition of 10 µM
octopamine to this saline still increases the fast inward
current, confirming that the main effect of octopamine is
on the fast inward Na+ current (Fig. 7Bii). In this saline the
increase is 20%, in the same range as seen in normal
saline for the -20 mV voltage step (23 ± 7%).

Basic physiology of the B1 motoneuron

The resting potential of the B1 motoneuron was 55 ± 1.7
mV (mean ± standard error, SE, N= 16 preparations).
Action potentials had a threshold of 1.76 ± 0.23 nA (mean
± SE; N = 15). The mean (± SE) time constant for hyper-
polarising pulses was 54 ± 5 ms (N = 11 trials in 7 prepa-
rations).

Simulation

In voltage clamp simulations, the membrane potential
was stepped from a holding voltage of -80 mV to -30 mV,
and the simulation repeated, incrementing the step poten-
tial by 5 mV. The calculated sustained and transient out-
ward currents (Fig. 8Ai, Aii) closely resemble the forms of
the observed currents (Fig. 2A, C). Over the range -30 to
+10 mV, the sustained outward current tracks the IV curve
(Fig. 4, normal saline) within one standard error at zero
mV. The calculated IA current increases more slowly below
0 mV than the observed data, but becomes larger than the
observed current thereafter. Simulations run from -40 mV
(instead of -80 mV) show the IA reduced from 260 to 3 nA

peak for the step to +10 mV. Under voltage clamp, the cal-
culated inward current (Fig. 8Aiii) is transient, with both
the onset and decay becoming faster as the steps become
more positive.

We have compared the calculated voltage clamp response
with that from two representative preparations which had
a holding potential of -80 mV (Fig. 8B). With a step to -25
mV, the calculated and actual currents agree well for the
first 1.5 ms, but thereafter the actual inward current is
much larger. The sudden inflection in the trace suggests
that this is the result of an action potential in the
(unclamped) contralateral B1 motoneuron. With steps to
-15 to +5 mV the agreement between calculated and actual
traces is similar to the variation between preparations.
There is a good match for both the time of peak inward
current, and also for the zero crossing mark. At 6 ms, the
total current for the -15 mV and -5 mV is slightly lower
than expected, but at +5 mV the calculated trace falls
between the two observed traces.

Solving the current clamp equations for the resting poten-
tial gave a stable value of -52.5 mV (Fig. 8C). In the region
-80 to -60 mV, the maintained outward current, IK, and
the leak current dominate. The resting conductance of 88
nS, is the same as the value measured in seven prepara-
tions using a series of 6–8 hyperpolarising pulses 1 to 3
nA, 1 to 3 s in duration, which gave a mean B1 conduct-
ance of 87 ± 12 nS (equivalent to 13.7 MΩ). The capaci-
tance of the cell was set at 3.5 pF (estimate from
hyperpolarising pulses: 4.2 ± 0.4 pF).

In current clamp simulations, positive currents led to
depolarisation of the cell membrane. Above 1.55 nA
action potentials were produced 25 ms in duration, rising
to +20 mV, with a noticeable after-hyperpolarisation (Fig.
9A). Comparison of the shape with recorded action
potentials indicates the model is good, though the peak
depolarisation is not quite matched. The 1.55 nA thresh-
old is within 1 standard error of that recorded in normal
saline (1.76 ± 0.23 nA). Increasing the stimulus current
increases the number of action potentials seen in each 1 s
of simulation (squares and dotted line in Fig. 9C).

To mimic the effect of 10 µM octopamine, the simulation
was run with the maximal sodium conductance ( Na)
increased by 33% (from 7.0 to 9.3 µS), and this reduces
the threshold to 1.25 nA. For each stimulus current, the
simulation now produces more action potentials (Fig.
9C), e.g. at 1.6 nA the action potentials increase from 4 to
7 in the 500 ms run (Fig. 9A, B). Reducing the inward con-
ductance to 70% of its control value, to 4.9 µS, raised the
threshold and made the firing rate of the simulated cell
slower.

g
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Simulation of constant current injection into the B1 motoneuron in normal saline and with octopamineFigure 9

Simulation of constant current injection into the B1 motoneuron in normal saline and with octopamine. A. A current pulse of 

1.6 nA with Na at 7 µS, the normal values, depolarises the B1 motoneuron from its resting value of -52 mV and generates 

four action potentials during the 1 s of simulation. B. Comparison of the action potential generated by simulation with one 

recorded in a constant current experiment in normal saline (initial resting potential -48 mV, slightly depolarised compared to 

the mean B1 resting potential, -55 mV). C. The same current pulse as A, but with Na increased by 33% to simulate the effect 

of 10 µM octopamine and generates 7 action potentials. D. A plot of the firing rate of the simulated B1 motoneuron with dif-

ferent parameters reflecting octopamine action. The squares and dotted line represent the firing rate of the normal model. The 

triangles show the effect of increasing the maximum sodium conductance ( Na) by 33% simulating 10 µM octopamine, reduc-

ing the threshold and increasing the firing rate. The crosses show the effect of modelling the increased maximum sodium con-

ductance plus a 0.5 nA octopamine current to simulate the depolarising effect of a higher concentration of octopamine, 100–

200 µM, [39]. A further increase in excitability is seen. Decreasing the maximum sodium conductance reduces the number of 

action potentials (diamonds). Compare these figures with the data shown in Fig. 1A.
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In the snail feeding system, prolonged depolarisation may
occur through the tonic release of octopamine, serotonin,
peptides or other neuromodulators. Although this might
be expected to increase the firing of the cell, this is not
always the case. In Hodgkin-Huxley simulations, addition
of steady depolarising currents can lead to a reduction in
activity, because the sodium channels become inacti-
vated. We therefore modelled the effect of a continuous
0.5 nA depolarising current into the B1 on the number of
action potentials produced by sharp current pulses. This
changes the resting potential to -47 mV; it also lowers the
threshold and increases the firing rate (Fig. 9C).

We also tested the effects of increasing the sodium chan-
nel conductance in two publicly available models of other
molluscan neurons. The simplest model is the space-
clamped Hodgkin-Huxley model of a squid axon which
has only a single inward and single outward current. Run-
ning the implementation by Bezanilla [23] the threshold

to a 30 ms stimulus is reduced from 0.47 to 0.3 µA when
the maximum sodium conductance ( Na) is increased by

33%. This also increases the excitability from 2 to 3 action

potentials in the 30 ms, 2 µA pulse. We chose a model of
the abdominal sensory neuron [9] because this models a
range of calcium and potassium currents and the calcium
levels inside the cell and therefore treats more factors than
our Maple simulation. This is a good choice from the
range of published SNNAP models because it seems pos-
sible that some of our potassium current may be calcium
dependent. Starting from the implementation down-
loaded in the SNNAP package, increasing Na by 33%

decreased the threshold from 0.6 to 0.54 nA (a 10%
reduction). It also increased the excitability, for example
with a 1.6 nA stimulus, the number of action potentials in
a 2 s pulse increased from 2 to 3.

Discussion
Octopamine enhances the excitability of B1 and B4 

motoneurons

We have extended our previous observations that low
concentrations of octopamine increase the excitability of
buccal feeding interneurons [24] to show that
octopamine has the same effect on the B1 and B4 motone-
urons. Their action potential threshold is reduced, and
supra-threshold stimuli evoke more action potentials in
octopamine than normal saline. This is a specific cellular
response, not some general effect, because the B2 motone-
uron becomes less, not more, excitable. The behavioural
consequence of this increase in excitability will be to make
the motoneurons that drive feeding movement (protrac-
tion phase – B1, retraction phase B4) more responsive to
CPG input. Their additional action potentials will serve to

make the contractions of the muscles they innervate (B1:
salivary duct; B4 the anterior jugalis muscle of the buccal
mass) more powerful. The effects on excitability work in
conjunction with the synaptic effects, since the
octopamine-containing (OC) interneuron chemically
excites B1, and has an electrical synapse with B4 [4]. The
next sections of the Discussion address the cellular and
ionic mechanism of this increase in excitability.

Overview of the voltage activated currents in B1, B2 and 

B4

The ionic currents in large molluscan neurons have been
extensively analysed ever since the 2 microelectrode volt-
age clamp technique was introduced in the 1960s [25].
Although the network connections of the Lymnaea buccal
neurons have been extensively analysed [1,26], their ionic
currents have not been described previously. Each of the
B1, B2 and B4 motoneurons shows a transient and a
delayed outward potassium current and an inward
sodium current. These currents are similar to the accumu-
lated data from other neurons in Aplysia, Helix and Lym-
naea [9,16,27,28].

Outward currents

Both transient (IA) and delayed outward potassium cur-
rents (IKV) are present in all three buccal motoneurons
(B1, B2 and B4). IA and IKV activate at -45 and -30 mV
respectively and are blocked separately by 4-AP and TEA.
The transient current is inactivated at a holding potential
of -40 mV. The delayed potassium current has two kinetic
components, one fast and steeply voltage dependent, and
a slower one, which may be due to a calcium-activated
potassium current. This would fit with both the kinetics
and with the I-V curve from three neurons. In these, the IV
curve was extended to +120 mV (data not shown) and it
sagged above +80 mV. A 30 ms prepulse to 0 mV abolishes
the sag, and this suggests a role for a calcium-activated
potassium current [16].

Each cell type has its own typical shape to its outward cur-
rent trace. The most characteristic difference is that the
transient current in the B4 motoneuron inactivates more
quickly than that of the B1 or B2 neurons, and this may
indicate differences in the IA subtypes expressed in the
buccal motoneurons [18]. Secondly, the magnitude of the
current differs between cells, with the B4 neuron having
more current in steps to, for example, 0 mV, than B1 or
B2. As the B4 neuron is smaller than B1, this means that
the channel density must be higher in B4. Thirdly, the
shape of the outward current trace reflects the ratio of IA /
IKV and this is larger in B2 than B4, implying that expres-
sion of the channels are controlled independently.

We have no data suggesting the presence of two other
common channel types, either S-channels or inward recti-

g

g
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fiers, though Straub & Benjamin [29] had predicted an Ih

current in B4 from current clamp recordings. Hyperpolar-
izing steps to -100 to -150 mV showed no activating cur-
rents in any of the B1, B2 or B4 motoneurons under our
conditions.

Inward currents

An inward transient sodium current (INa), is the main
inward current in the B1 and B4 cells, with the peak cur-
rent seen in steps to -25 to -15 mV. However, the fast
inward current in the B2 neuron differs, with the peak cur-
rent occurring at less negative potentials, (-10 to -5 mV).
This suggests that the B2 inward current may be a mixture
of INa and a high-voltage activated (HVA) Ca++ current.
HVA Ca++ currents have been reported from isolated buc-
cal neurons [30] and from other Lymnaea neurons, includ-
ing the CGC [27] and caudo-dorsal cells [31].

Effect of octopamine

At 10 µM, octopamine does not affect the resting mem-
brane potential of the buccal neurons B1 and B4 although
this concentration is enough to modulate their excitabil-
ity. 10 µM octopamine is also enough to produce signifi-
cant changes in the ionic currents evoked by voltage steps
in the B1 and B4 motoneurons.

In the B1 and B4 neurons, low concentrations of
octopamine, affect the inward, but not the outward cur-
rents. The mean value of the inward Na+ current is
increased by 33% (B1) – 45% (B4), and the difference is
significant at the 0.5% level for one and two data points.
The octopamine I-V curve appears as an amplified version
of the control, with similar maximal activation voltage.
Our simulations show that the effects produced by low
concentrations of octopamine on the voltage activated
currents will be synergistic to the effects of high (100–500
µM) concentrations of octopamine on membrane poten-
tial, a depolarisation of about 10 mV [32]. At the B1
motoneuron, as octopamine arrives, it will increase excit-
ability though an increase in the transient inward current;
as the concentration increases, the membrane will depo-
larise so that the cell is closer to its threshold and fires
faster in response to the same input.

In the B2 neuron, 10 µM octopamine has no effect on the
voltage-activated outward currents. However, the B2
motoneuron differs from the B1 and B4 neurons, in that
low concentrations of octopamine do not increase the fast
inward current. In fact, octopamine reduces the fast
inward current in the B2 motoneuron, though this is only
just significant at the 5% level at two data points.

The effects of high concentrations of octopamine (100 –
500 µM) on the B2 motoneuron are also different to their
effect on the B1 and B4 cells [4,32]. High octopamine con-

centrations hyperpolarize the B2 cell, which will supple-
ment the initial decrease in excitability seen at low
concentrations of octopamine.

Simulation of B1

We have modelled the voltage-activated currents of B1
motoneuron using a Hodgkin-Huxley style simulation,
with a view to confirming that the 33% increase in inward
sodium current confers an increase in excitability. In this
model, we included a sustained outward current (with
two kinetically separate components) and a transient out-
ward current as well as the inward current. The architec-
ture of this model resembles those devised by Connor &
Stevens [20] and those implemented using SNNAP [9]. As
with these models it generates typical voltage clamp cur-
rents, a stable resting and action potential, which resem-
ble the B1 data in shape and size. When positive current is
applied, the difference between our data (Fig. 1) and the
simulation (Fig. 9) is small: with the default parameters
the threshold current modelled in silico (1.55 nA) is
within one standard error of the average recorded in vivo
(1.7 ± 0.23 nA, mean ± se).

The main purpose of the simulation is to test in a quanti-
tative manner the effects of increasing the inward sodium
current on excitability. The simulation clearly shows that
a 33% increase the maximum inward sodium reduces the
threshold and enhances the firing rate in response to the
same constant current stimulus. This increase in excitabil-
ity when the inward sodium conductance is increased is
preserved in our simulation when it is started with differ-
ent parameters, for example when the maximum sus-
tained outward current is reduced. When a small
depolarising current is added to the simulation, a further
increase in excitability is seen.

A decrease in threshold and increase in the spikes elicited
by constant current pulses when the inward sodium cur-
rent is increased is also seen in two other molluscan action
potential simulations, of a gastropod sensory neuron and
of the squid giant axon. Thus an increase in inward
sodium current seems to be a general mechanism for an
increase in excitability, as it is seen in all 3 models we have
used. Conversely, a 33% reduction in the inward sodium
conductance reduces excitability and increases the thresh-
old.

Mechanism(s) for octopamine to increase B1 and B4 

excitability

The octopamine – induced increase in the fast inward cur-
rent means that depolarizing synaptic inputs will open
more Na+ channels and so be more likely to generate an
action potential in the presence of octopamine. This pro-
vides a straightforward explanation of the increase in
excitability, which was manifested in B1 and B4 as more
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action potentials were evoked for the same depolarising
stimulus. We have confirmed this effect using in a quanti-
tative simulation. Our observation of octopamine-
induced increase in INa in two cell types suggests that a
similar cellular mechanism may underlie the increase of
excitability of the SO, N1L and N1M. Our simulation also
supports the idea that the decrease in excitability in the B2
motoneuron may result in part from the small decrease in
inward current.

Comparison with other mechanisms to increase 

excitability

A very wide range of neuromodulators have been shown
to control the excitability of neurons in snails, crustacea
and vertebrates. Among these, modulation of inward cur-
rents has been demonstrated by amines [33] and peptides
[34]. Changes in excitability may also arise from modula-
tion of outward currents. In many cases, the behavioural
context or endogenous source of the modulator is not
clear, but this is not the case with the serotonergic modu-
lation of gill-withdrawal in Aplysia. In classical condition-
ing, reduction in IKS underlies the increase in excitability,
but an independent reduction in IKV increases spike width
– for review see [6]. In another well-established model,
Hermissenda type B photoreceptors, an increase in excita-
bility is produced by reduction in IA and the calcium-acti-
vated K+ current during conditioning [35].

As well as changes during conditioning, modulation of
neuronal excitability plays a fundamental part of the
reconfiguration of neuronal networks. Again, in many
model systems, control of voltage activated channels
occurs in synchrony with effects on resting membrane
potential. This has been extensively explored in the sto-
matogastric ganglia of crustacea [8], but these are hard to
put in a behavioural context. Voltage clamp data has been
obtained from many neurons in molluscs, but in most
cases the functional role is again missing.

Conclusion
We have shown that low concentrations of octopamine
modulate the excitability of motoneurons in the snail
feeding system. The changes in the inward sodium current
quantitatively account for the increased excitability of the
B1 motoneuron. Thus, for the first time in molluscs, we
are able to relate voltage clamp data using a quantitative
simulation to a rhythmic network where we have a good
data on how behavior is changed by the modulatory effect
of octopamine [32]. The increase in inward sodium cur-
rent provides an explanation for the polycyclic modula-
tion of the feeding system by the OC interneurons. A
similar effect on the SO and N1L interneurons would well
account for neuromodulation by the OC interneurons,
making feeding easier to initiate and making the feeding
bursts more intense [5,24].

Methods
Snails

Pond snails, Lymnaea stagnalis were collected from the Kis-
Balaton region of Hungary, and maintained in aquaria
with flowing filtered Balaton lake water. They were fed ad
libitum with lettuce.

Dissection

Experiments were done at room temperature to which the
snails had been acclimatised for > 24 hours. The CNS,
including the buccal ganglia was dissected free of other tis-
sue and pinned out in a Sylgard dish through which saline
could be pumped. The outer (white spotted) layers of con-
nective tissue were removed from the buccal ganglia with
forceps, and the inner layers digested for 2–5 minutes
with 0.1% Sigma Protease XIV.

Current clamp

The large buccal neurons were identified visually from
previous maps [36] and impaled gently with two elec-
trodes. These were pulled from borosilicate glass, filled
with a solution of 4 M potassium acetate and 0.3 M potas-
sium chloride, and were dipped in Rotring Ink P to aid vis-
ibility. Their resistance was 12–14 MΩ. One electrode was
used to record voltage data, the other to inject current.
Recordings were stored using DasyLab (version 5) run-
ning on a PC through a National Instruments PC-6035E
interface card.

Voltage clamp

Two-electrode voltage clamp was performed as described
for other Lymnaea preparations [27], using an AxoClamp
2-A or 2-B amplifier. Electrodes were made as described
for current clamp, but the puller settings were adjusted so
that the resistance of the electrodes was 3–4 MΩ for cur-
rent electrodes and 12–14 MΩ for voltage electrodes
respectively. An aluminium foil barrier was used to reduce
capacitance between the electrodes. The large buccal neu-
rons were identified as above and impaled gently with
both electrodes under current-clamp conditions. After
switching to voltage clamp mode, the gain was increased
to 90–100x while observing a 20 mV depolarizing test
pulse. The holding potential and voltage clamp protocols
were determined using the Strathclyde Electrophysiologi-
cal software package, versions 2.26 and 3.5.5, running on
PC-compatible computers through National Instruments
PC-6035E interface cards. Data were sampled at 0.5 to 3
kHz, using the P/N subtraction protocol, with high fre-
quencies removed in software.

Our voltage clamp analysis is restricted by the way that
many buccal neurons are electrically coupled. This
includes the B4 neurons, which are coupled, not only to
their contralateral partner, but also to the B4 cluster neu-
rons that surround them. This has a major impact under
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voltage clamp, with traces being contaminated with
action potentials from the surrounding cells (e.g. Fig 2
and 4A: bottom rows), and we have therefore not ana-
lysed the kinetic data from the B4 neurons nor attempted
to simulate their activity. The left-right B1 neurons con-
nect in the buccal commissure [36], well away from the
cell body, so that this does not impact on the voltage
clamp data any more than the presence of the axonal/den-
dritic branches. The B2 neurons have not been reported to
make electrical synapses, either with each other or other
buccal neurons.

Saline solutions

Under control conditions, standard Lymnaea saline was
pumped through the bath at about 1 ml/min. Current
clamp and control voltage clamp recordings were rou-
tinely made in normal Lymnaea saline, but the current
clamp threshold data (Fig. 1) was obtained in Hi-Di saline
which reduces synaptic potentials and rhythmic activity.
Once voltage clamp was established in normal saline,
potassium, sodium and /or calcium currents were blocked
by pumping in a replacement saline. The exact composi-
tions of the salines are given in Table 1.

Once a stable recording had been reached, 10 µM
octopamine was added to the saline being pumped into
the bath and the measurements repeated.

All chemicals were from Sigma.

Modelling

A Hodgkin-Huxley simulation of the membrane currents
in the B1 motoneuron was implemented in the computer
algebra package Maple (version 8) [37] based mainly on
the data from our voltage clamp recordings. Maple pro-
vides a convenient way to input and display the equations
relating voltage to current for both the Boltzmann equa-
tions and Ordinary Differential Equations (ODEs), and to
plot their algebraic or numerical solutions [38]. Appendix
2 shows the Maple output from one simulation run,
where the B1 neuron was stimulated with 1.6 nA current.
The Maple worksheets (in MPL and MWS format), and
typical output (as PDF) are included as Additional Files.
Maple was run on a PC or Sun workstation. Unlike a pre-
vious Maple simulation of neuron R15 in Aplysia [38],
there was no need to call an external C-program to solve
the ODEs laid out in the Maple worksheets. The Adams
integration routine within Maple (lsode default method)
was sufficient to deal with these ODEs, even though they
are numerically stiff.

Hodgkin-Huxley simulations assume that the proportion
of channels open (through activation and inactivation by
gates) follows the Boltzmann distribution, regulated by a
first order ODE, and that the current flowing through each
kind of channel is given by Ohm's law (see Appendix 1).
We used this set of equations in the voltage clamp work-
sheet. In the current clamp worksheet, another ODE, the
Capacitor Equation, determines the voltage change from
the total current and the membrane capacitance, is added.
Our worksheets follow formulation of these equations
laid out by Connor & Stevens [20] and Baxter et al. [9].

Table 1: Final concentrations (mM) of Lymnaea salines

Normal saline Hi-Di saline TEA+ 4-AP Na-free TEA + 
4-AP

TEA + Cd TEA + 4-AP + 
Cd

NaCl 24 24 24 -- 24 24

KCl 2 2 2 2 2 2

CaCl2.2H2O 4 14 4 4 4 4

MgCl2.6H2O 2 8 2 2 2 2

NaH2PO4.2H2O 0.1 0.1 0.1 -- 0.1 0.1

NaOH 35 35 35 -- 35 35

KOH -- -- -- 40 -- --

HEPES 50 50 50 50 50 50

Tetraethyl-
ammonium (TEA) 
chloride

-- -- 50 50 50 50

4 amino-pyridine 
(4-AP)

-- -- 4 4 -- 4

N-methyl-D 
glucamine

50

CdCl2 0.05 0.05

Composition of the Lymnaea salines (pH = 7.9).
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Our worksheets contain two outward currents (sustained
and transient) and an inward current because our Results
(see below, Figs. 2, 3, 4, 5, 6, 7) suggest that these are the
major currents in the B1 motoneuron. We also include a
small linear leak current.

The parameters for our equations were estimated by
extracting the voltage clamp data into Excel (Microsoft,
Seattle, USA).

The time constants of the outward currents were estimated
by fitting exponential curves (raised to integer powers) to
the voltage clamp data using the least squares method and
the Solver tool. The Solver tool was also used to fit the
Boltzmann models (Equations 1 and 3), to give the volt-
age dependence of the open probabilities of the channels
and time constants. For the outward currents a linear
approximation of the Boltzmann equation relating the
time constant to membrane potential (Equation 3) was
valid over the physiological range of membrane poten-
tials. For the inward sodium current, the time constants of
Connor & Stevens [20] provided a starting point, and
more realistic values for the B1 motoneuron were esti-
mated iteratively, comparing the output of Maple integra-
tion with the total (inward + outward) currents recorded
at the same membrane potential.

The leak conductance and membrane capacitance was
estimated from fitting a single exponential hyperpolaris-
ing -1 to -2 nA current clamp stimuli.

The exact equations used and numerical constants are
shown in Appendix 2, copied from Maple rtf format out-
put.

We also tested the effects of numerical changes to the
inward sodium current on threshold and firing rate in two
other publicly available models: the space-clamped squid
giant axon [23] using as control values the web-defaults,
and an Aplysia abdominal neuron implemented in
SNNAP [9], using as initial values those in the down-
loaded files.

Appendix 1 Outline of Simulation
Hodgkin-Huxley style simulations are based on the idea
that ions cross the membrane by flowing though channels
controlled by independent gates. The Boltzmann equa-
tion gives the steady state proportion of gates (Ainf), which
will be open at a particular transmembrane voltage (V):

where the parameters h and s provide the half-activation
voltage and an indication of the slope of the sigmoidal
curve. The proportion of gates open (A) will tend towards
this according to an ordinary differential equation (ODE):

In this equation, the time-constant, τ(V), is a Boltzmann-
like function of the membrane voltage (normally with dif-
ferent h and s):

In a neuron, the summed conductance (g) of this kind of
channel is determined by the maximum conductance
(gMax) and the proportion of channels open. In the sim-
plest case, a channel with n uniform gates would follow:

g = gMax* An Equation 4

while for a channel controlled by multiple types of gates
(like the inward sodium or transient outward currents)
gMax would be multiplied by the product of their open
probabilities raised to integer powers. The current flowing
through the channel (I) is then

I = (V – E)* g Equation 5

where E is the equilibrium reversal potential for the ion
which flows through the channel.

This set of equations, replicated for each kind of channel,
is sufficient for a voltage clamp simulation, but to calcu-
late a current clamp response, a further ODE is required,
the Capacitor equation, which gives the rate of change of
voltage from the capacitance (C) and overall current:

where the overall current is the sum of those flowing
through each channel (Σ I) less the stimulus current (Istim).

These equations were implemented in Maple (typical out-
put in Appendix 2). The Additional Files show worksheets
(in mws [Maple worksheet] and mpl [Maple input] for-
mats) and further output (in pdf format).

Appendix 2 Maple Output for simulation of B1
This output shows the exact constants and equations used
for the simulation shown in Fig. 9A. In this a zero stimu-
lus current was applied for 0.1 ms followed by a stimulus

A
V h

s

inf
exp

=
+

−







1

1
Equation 1

dA

dt

A A

V
=

−
( )

inf

τ
Equation 2

τ τ
τ τ

V
V h

s

( ) = +
−

+
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min
max min

exp1
Equation 3

dV
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I I

C

stim=
−
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∑
Equation 6
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current of 1.6 nA. The full worksheet is available for
download in the additional files.

Constants

Stimulus current, in nA, at 0.1 ms goes from zero to
1.6 nA

60

Istim := if(t < 0.100, 0, 1.600)

Octopamine ligand gated current

I_OA := 0.000

Capacitance in microF

Cm := 0.004

Equilibrium voltages, mV

Sodium, Potassium, Leak

28

vNa := 35

vK := -67

vLeak := -20

Fixed leak conductance

gLeak := 0.020

Sodium current

maximum conductance, m and h components

with max value and time constant as functions of
voltage

gbarNa := 7.000

Sustained Potassium current

maximum conductance, NA and NB components

with max value and time constant as functions of
voltage

gbarKA := 1.440

tauNA := v → 0.038 - 0.000 v

gbarKB := 2.880

tauNB := v → 0.006 - 0.000 v

Transient Potassium current

maximum conductance, a and b components

with max value and time constant as functions of
voltage

gbarA := 12

taua := v → 0.002 - 0.000 v

taub := v → 0.026 + 0.000 v

Initial conditions, start from equilibrium voltage 
(-52.5 mV)

v0 := -52.500

Sodium current

m0 := 0.028

h0 := 0.998

minf  : = 
 

v
v

→
+ − −

1

1 3 1 8
e

( / )

taum v
v

 :=
  20.000)

→ +
+ +

0 000
1

125
1

1 0 500
.

( .
e

h v
v

inf  :=
(7.632 + 0.263 

→
+

1

1 e
)

tauh v
v

 :=
(0.263  + 6.395)

→ +
+

0 002
3

200
1

1
.

e

NAinf  :=
  0.060 

v
v

→
+ −

1

1 0 898
e

( . )

NBinf  :=
  0.068 

v
v

→
+ −

1

1 0 589
e

( . )

ainf  :=
  0.071 

v
v

→
+ − −

1

1 0 879
e

( . )

binf  :=
  + 10.758)

v
v

→
+

1

1 0 152
e

( .
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Sustained Potassium current

NA0 := 0.017

NB0 := 0.015

Transient Potassium current

a0 := 0.055

b0 := 0.057

Current equations

Sodium current

Sustained Potassium current

Transient Potassium current

Leak current

Total ionic current

INa := 7.000 (v(t) - 35) m(t)3 h(t)

IK := (v(t) + 67) (1.440 NA(t)2 + 2.880 NB(t))

IA := 12 (v(t) + 67) a(t)4 b(t)

ILeak := 0.020 v(t) + 0.0400

ITotal := 7.000 (v(t) - 35) m(t)3 h(t) + (v(t) + 67)
(1.440 NA(t)2 + 2.880 NB(t))

+12 (v(t) +67) a(t)4 b(t) + 0.020 v(t) + 0.400

Differential equations

ODEs for Sodium current

ODEs for Sustained Potassium current

ODEs for Transient Potassium current

ODE for Voltage as function of current

Stimulus and octopamine ligand gated currents
included here

odev :=  v(t) = 285.714 if(t < 0.100, 0, 1.600) -

114.286

- 2000.000 (v(t) - 35) m(t)3 h(t)

- 285.714 (v(t) + 67) (1.440 NA(t)2 + 2.880 NB(t))

- 3428.571 (v(t) + 67) a(t)4 b(t) - 5.714 v(t)

Solve system of ODEs

sol100 := proc(x_lsode) ... end proc

Plotting...

Setup plot

maxT := 1.100

mazPT := 2000

"'if(t <. 1,0,1.6)"

"7.0"

sHead :="Stimulus: 'if(t < 1,0,1.6) gNaMax: 7.0"

odem
d
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Plotting voltage vs time

[odeplot]

{Fig. 9A is generated and shown here}

>
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