
The Performance of Approximating Ordinary
Differential Equations by Neural Nets

Josef Fojdl and Rüdiger W. Brause
Goethe-University, 60054 Frankfurt, Germany

Abstract—The dynamics of many systems are described by
ordinary differential equations (ODE). Solving ODEs with stan-
dard methods (i.e. numerical integration) needs a high amount of
computing time but only a small amount of storage memory. For
some applications, e.g. short time weather forecast or real time
robot control, long computation times are prohibitive. Is there a
method which uses less computing time (but has drawbacks in
other aspects, e.g. memory), so that the computation of ODEs gets
faster? We will try to discuss this question for the assumption that
the alternative computation method is a neural network which
was trained on ODE dynamics and compare both methods using
the same approximation error.
This comparison is done with two different errors. First, we
use the standard error that measures the difference between
the approximation and the solution of the ODE which is hard
to characterize. But in many cases, as for physics engines
used in computer games, the shape of the approximation curve
is important and not the exact values of the approximation.
Therefore, we introduce a subjective error based on the Total
Least Square Error (TLSE) which gives more consistent results.
For the final performance comparison, we calculate the optimal
resource usage for the neural network and evaluate it depending
on the resolution of the interpolation points and the inter-point
distance.
Our conclusion gives a method to evaluate where neural nets are
advantageous over numerical ODE integration and where this is
not the case.

Index Terms—ODE, neural nets, Euler method, approximation
complexity, storage optimization.

I. INTRODUCTION

The control and prediction of the dynamics of systems is
a important issue in technical, medical, biological and eco-
nomical applications. In the standard approach, these systems
or their control are modeled by ordinary differential equations
and implemented either by hardware (analog electronic for
small problems) or by software based simulation. For most real
world applications, there does not exist an analytical solution
but simulation is used, based on numerical integration.

There are many applications where excessive simulation
computation times hinders or prohibits the application. Ex-
amples are short-term weather forecast or the ballistic control
of robot movement in real time. In general, for the simulation
of physical laws in real time special software modules called
“physics engines” are used. A physics engine uses variables
such as mass, velocity, friction and wind resistance and can
simulate and predict effects under different conditions that
would approximate what happens in either real life or a
fantasy world. Physics engines are increasingly relevant to
more and more to video games, in addition to their use in

scientific simulations and animation movie generation. The
physics engine gives the ability to reach unprecedented levels
of realism in modeling physical rules of the real world, letting
you focus on the logic of your application and not on the
physical laws effecting the simulated object. Physics engines
are made either in software[Bou01](e.g. Open Dynamics En-
gine ODE.org, Envy SDK, Havok SDK, PhysX SDK) or
migrated in hardware, called a Physics Processing Unit (PPU).
Certainly, the latter should be faster, but is more expensive.

The problem of accelerating the computations in physics
engines has not been addressed in literature, up to now.
Although the performance of standard iterative methods for
approximating the solution of ordinary differential equations
(ODE) which are the base for the computations done in physics
engines is well known [Pol02] the accuracy of physics engines
is only sparsely considered (see e.g. Choi et al. [Choi04]).

What do we have as fast alternatives to numerical integration
methods? As alternative approach let us consider in this
paper artificial neural networks. Coupled linear differential
equations can be modeled by feed-back neural networks
[Bra03], especially Hopfield networks [Lee90], for modeling,
and implemented in hardware [Yen96]. The local and global
minima of the network energy provide the stable solutions of
the system. It is also well known that feed-forward two-layered
neural networks can approximate every function arbitrary well,
e.g. [Hor89]. For the approximation of a function we can use
simple feed-forward networks combined with piecewise-linear
approximation [Mea94] or general nonlinear kernels [Lag98].

All these approaches show that ODEs can be transfered into
the activity of neural networks, but do not answer the question:
What should we prefer in practice? ODE simulation or neural
networks? There are also some rumors about the performance
of neural networks like small computation time and augmented
use of memory. How do these features evolve if we use the
network to approximate ODEs? Can we compare the two
methods by resource requirements like computation or storage
complexity? In a previous work, Brause [Bra89] has shown
that the error of a two-layer neural network approximating
a robot manipulator position can be optimized using only a
restricted amount of storage. This corresponds to the error-
bounded descriptive complexity of the neural network approx-
imation [Bra93]. There, the neural network approximation can
be done very fast by using linear splines set up at their grid
points which corresponds to a fast table lookup procedure.
Therefore, we have to consider two different resources of a
neural network approximation in this paper: the approximation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14507921?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

error of the kernel functions, determined by the number of
entries in a function table, and the approximation resolution,
measured in bits per weight. Both resources are restricted for
the same fixed amount of given storage. Certainly, there is
a trade-off between these two resources: more entries at less
resolution may give a smaller error, but also the contrary may
be true, depending on the parameters. Here, a compromise
have to be found for the best performance of the network.

Now, comparing ODEs and neural networks, what should
we take? Before we can answer this question, we first have to
calculate the error of both the ODEs and the neural network.
Then, assuming the same error for both methods, a comparison
is made between the necessary resources of the ODE approxi-
mation and the storage-optimized approximation network. The
answer is given by a decision procedure presented in this paper
and depends on all available resources.

II. COMPUTING ODES

For the sake of clarity in our investigation let us regard only
a very restricted class of differential equations: that of ordinary
equations of order one.

A. Dynamic modeling by ODEs

An ordinary differential equation contains the variable y(t)
and its derivatives y′(t), y′′(t), y′′′(t), Let us concentrate
on differential equations of order one, i.e. equations with y(t)
and the first derivative y′(t).

Differential equation of order 1

dy(t)
dt

= f(t, y(t)) (1)

with the arbitrary function f(t, y(t)) of t and y(t).
As solution, we have in the interval [t0, T]

y(t) = y(t; t0, y(t0)) (2)

with the starting values t0 and y(t0).

B. Example: The frictional rigid body motion

Let us introduce now a simple example for a physical ODE,
the rigid body movement with friction (decoupled for each
direction) for a body of mass m. Within the context of gravity
acceleration g, the coefficient of the flow resistance cW , the
density of the fluid ρ (in our case: the air density), and the
reference area A of the body in the moving direction y we
define the constant k = 1

2ρcWA which we will use later on.
Now, the body dynamics is described by (see[Arn89])

a) movement upwards

dyO(t)
dt

= v∞tan(arctan
v0
v∞
− g

v∞
t) (3)

with

v∞ =
√
mg

k
(4)

and
tU =

v∞
g
arctan

v0
v∞

(5)

where tU is the point of return of the body.
The solution of the dynamics is also well known for t ≤ tU :

yO(t) =
v∞
g

(
ln cos

g(tU − t)
v∞

− ln cosgtU
v∞

)
(6)

By this, the movement of the body against gravity is well
described. For the movement back to the ground we have

b) movement downwards

yU (t)
dt

= −
(
v∞ −

2v∞
1 + ep(t−tU)

)
t ≥ tU (7)

with
p = 2

k

m
v∞ (8)

As solution of this ballistic equation we get for t ≥ tU

yU (t) = yO(tU)−v∞(t−tU)−m
k
ln

(
1
2
e−p(t−tU) +

1
2

)
(9)

Using both solutions in combination we can sketch the
picture of the whole movement. Fig. 1 shows us the hight of a
body, e.g. a bowling ball of mass 7.275kg, with a diameter of
0.12m and an initial speed of v0 = 1000m

s . For the friction we
assume that the air temperature was 0o C with an air pressure
of 1013 hPa, i.e. ρ = 1.293 kg

m3

Fig. 1. Height of body course with eqs. (3),(7) and m = 7.275kg

Each state if this analytical solution at time t has to be
approximated by a simulation. Please note that we have indeed
two tasks: first to find approximation values for the analytical
solution of the ODE at different time points, and then, in-
dependently of this sample rate, resample the approximation
function for the simulation task. Both sample and interpolation
procedures are independent of each other. In this paper, we will
only consider the first one, the approximation of the solution.

C. The Euler approximation
Standard iterative methods for approximating the solution

of ordinary differential equations, like Euler or Runge-Kutta
methods, have the handicap of using much computational
time when a small error is demanded. The more accurate the
method performs, the more computation time is needed. To
inspect this in more detail, let us regard the error of the Euler
method as simple but representative method. Our differential
equation has the form

dy

dt
= f(t, y), y(t0) = y0 (10)

with y0 as initial starting value. We define the solution of
this differential equation at time t with starting value y0
by y(t; t0, y0). Let the upper time limit of t be T . Then,
the interval [t0, T] can be partitioned in N equal sized sub-
intervals [tn, tn+1] with

t0 < t1 < ... < tN = T (11)

and tn+1 − tn = h.
The Euler method is based on the idea of approximating the
exact solution by one step from the initial starting value and
then building the next approximation step on the previous one:

ỹn+1(h) = ỹn(h) + f(tn, ỹn(h))h (12)

The approximation error corresponds to the non-linear higher
terms in a Taylor expansion of the exact solution which we
neglect. Here, we have to distinguish between the local and
the global error of approximation [Sch89][Klo08]. The local
one is obtained after each step, the global one results by
accumulating the local errors of all approximating steps. Let
us first focus on the local one.

1) The local Euler approximation error: The local error
Ln+1(h) is the difference between the approximation and the
solution at time tn+1. We are only interested in the error of the
last step and assume all steps before to be exact. Therefore,
we start with the approximation value ỹn(h) as initial value,
solve the differential equation y(tn+1; tn, ỹn(h)) for time tn+1

and compare the exact solution to the approximation value
ỹn+1(h):

Ln+1(h) = |y(tn+1; tn, ỹn(h))− ỹn+1(h)| (13)

This results in the following relations, see [Klo05].

Ln+1(h) ≤ KTh
2 (14)

with
KT = max t0≤ti≤T

∣∣∣∣f ′(ti, ỹi(h))
2

∣∣∣∣ (15)

The maximal local error is given by

Lmax(h) = KTh
2 (16)

This means with h2 that the local error is of order two and
depends only on the step width h and the first derivative
contained in KT .

2) The global Euler approximation error: The global ap-
proximation error Gn(h) is the difference between the exact
solution of the ODE y(tn; t0, y0) and our step-wise approx-
imated value ỹn(h) at time step tn after n steps with width
h

Gn(h) = |y(tn; t0, y0)− ỹn(h)| (17)

The upper limit for the global error Gn(h) is (see [Klo08])

Gn(h) ≤ CTh (18)

with
CT = eL(T−t0)

KT

L
(19)

and L as Lipschitz constant for which we have

|f(t, y(a; t0, y0))− f(t, y(b; t0, y0))| ≤ L |y(a; t0, y0)− y(b; t0, y0)|
(20)

for all a, b ∈ [t0, T] and all t ∈ [t0, T].
This means, our global error is of order 1 and, with the

maximal error CTh within the interval T and step width h,
becomes

Gmax(h) = CTh (21)

III. NEURAL NETWORK APPROXIMATION

The most simple form of neural networks is a feed-forward
net, like the one shown in (2). For the function once learned
by the network, the acyclic feed-forward nets have the big
advantage of constant computing time.
Let us use as non-linear function the activation function

Fig. 2. One input feed forward network

yi(t) =

 1 t ≥ t1i

t t0i ≤ t < t1i

0 t < t0i

(22)

and
ỹ(t) =

∑
i

wiyi(t) (23)

This results in the approximation of a non-linear function
by splines. The i-th spline is produced by neuron i in the
interval [t0i, t1i] by eq.(22). In this case, we can interpret a
weight of the network as the gradient of a spline between the
two interpolation points y(tn) and y(tn+1). We might compute
every approximation between two sample points by a simple
linear interpolation

ỹn(t) = y(tn) +
y(tn+1)− y(tn)

tn+1 − tn
(t− tn) (24)

if the weights have been set by the interpolation points and
the associated solution (2) of the ODE.

The network of one input unit is sufficient for a ordinary
differential equation of one variable. The appropriate grid
points t0i, t1i and the network weights wi can be set by using a
very good approximation of the ODE solution created with the
Runge-Kutta method or learned iteratively using some learning

rules [Sim08] and stored into a table. When the input for
the network is given, the output can be computed very fast
by determining the proper neuron, i.e. interval, and compute
the output by using the proper weight. Therefore, the neural
network works like a function lookup-table where its accuracy
is determined by the number of table entries.
For the rest of the paper, we will assume a perfectly converged
network. This means that errors are only due to the setup of
parameters like number of neurons, but not due to a not perfect
convergence.

A. The approximation error

For the approximation with neural networks we will in-
troduce two different kinds of approximation errors. Let us
begin with the standard one, the difference between the
approximation of the solution and the solution itself in an
interval [tn, tn+1]:

En(h) = max tn≤t≤tn+1 |y(t)− ỹn(t)| (25)

How can we relate this to the ODE? Let us assume that we
regard a sufficient small interval where the solution of the ODE
is concave or convex between two interpolation points tn and
tn+1. The mean value theorem says that there exists one time
point t = a with tn < a < tn+1 and the same gradient y′(a)
as the linear interpolation between y(tn) and y(tn+1):

y′(a) =
y(tn+1)− y(tn)

tn+1 − tn
(26)

There, the error is maximal, see fig. 3. Let us regard the

Fig. 3. Error of linear approximation to the exact ODE solution

tangent y′(a) at a through y(a), having the slope (gradient)
of our approximation curve in fig. 3. The tangent has at point
C(tn+1) the same difference C − y(tn+1) as y(a) to our
approximation curve ỹ(a). Therefore, we get the following
equation for the network error using eq.(26)

En(h) = |y(a)− ỹ(a)| = |C(tn+1)− y(tn+1)| (27)

The value C(tn+1) is just the linear extrapolation

C(tn+1) = y(a) + y′(a)(tn+1 − a) (28)

If we expand the second term y(tn+1) into a Taylor series up
to order two, being aware of the limitation to scalar ODE, we
get

y(tn+1) = y(a) +
y′(a)

1!
(tn+1−a) +

y′′(a)
2!

(tn+1−a)2 (29)

Now, the error becomes

En(h) = |y(tn+1 − C(tn+1))| =
∣∣∣∣y′′(a)

2!
(tn+1 − a)2

∣∣∣∣ (30)

This becomes with the definition eq.(1) of the ODE

En(h)) =
∣∣∣∣f ′(a, y(a))

2!
(tn+1 − a)2

∣∣∣∣ (31)

and, like for eq.(13), we get for the estimation of the upper
limit

En(h) ≤ KT (tn+1 − a)2 (32)

and for the special case of equidistant samples with h

(tn+1 − a) ≤ (tn+1 − tn) = h (33)

we have

En(h) ≤ KT (tn+1 − a)2 ≤ KT (h)2 (34)

So, the maximal error for the approximation in the whole
interval [t0, T] is

Emax(h) = KTh
2 (35)

As result we get an analytic expression for the error that
only depends on h.

B. The observed simulation error

In the last section we got an estimation of the upper error
limit En(h). How realistic is this estimation? Let us validate
the analytic expression by the observed error Ela(h) of linear
approximation in a simulation:

Ela(h) = max t0≤t≤T |y(t)− ỹn(t)| (36)

The computation takes the solution of the differential equa-
tion which we already got by a Runge-Kutta numerical integra-
tion and test for an interval width h all approximation values
within the interval for very small steps ∆tF = 0.0001. On
each step we encounter an error |y(t)− ỹn(t)|. The maximum
of all error values is Ela(h).

Let us do this for our example of section 2.2. The hight of
the ball flight, given by the ODE of (3) and (7), and performed
for different intervals 0 < h < 3, is plotted in fig.4. In contrast
to this, the maximal observed error Ela(h) for a ball with the
smaller mass m = 0.275 in fig.5 shows us that both behaviors
are completely different. There is a huge difference between
the analytically obtained maximal error and the observed error:
The analytically obtained expression for Emax(h) in eq. (35)
and its actual behavior for h in fig.5 are not compatible.
Why? How can we explain this difference? Comparing the
actual error Ela(h) of a lightweight ball with mass m =
0.275kg to that of a heavy one with m = 7.275kg related
to the maximal error maxt0≤t≤T |yt − 0|, we remark that

Fig. 4. Ela(h) for the height of the ball course, eqs.(3),(7) and m =
7.275kg

Fig. 5. Ela(h) for the height of the ball course, eqs.(3), (7) and m =
0.275kg

the maximal absolute error Eabs is obtained already for the
lightweight ball with m = 0.275kg for very small step width.
The error has nearly obtained its maximum and can not grow
exponentially by h any more. In other words, the maximal
error Ela(h) does not become bigger, independently of all
sampling points. The behavior of the observed error changes
and is difficult to estimate. Therefore, we have to introduce
another way to describe the error of the approximation by
neuronal nets.

C. The subjective error

In many applications of ODE’s, like physics engines for
computer games, the shape of the approximation curve per-
ceived by the player is important and not the exactness of the
approximation values. This is reflected by introducing another
error, let’s call it ”subjective error”, which is the distance
between the original curve and the approximation. This is
build upon the total least mean squared error (TLMSE)[Xu92],
also called eigenvector line fitting [Dud73]. By this, the
distance between a point ~z and our approximation curve can
be described as follows:

g(~z) = ~zT ~u

|~u|
− c = d Hesse normal form (37)

The vector ~u in our case is the normal vector of our
approximation curve with

~u =

(
1

−y(tn+1)−y(tn)
tn+1−tn

)
(38)

For the distance c between the approximation curve and its
origin we get

c = ~S T
n+1

~u

|~u|
(39)

with ~Sn+1 =
(

tn+1

y(tn+1)

)
as interpolation point vector.

Using eqs.(37) and (39) we can describe the difference
d between a point ~z and the approximation as

d = ~z T ~u

|~u|
− ~S T

n+1

~u

|~u|
(40)

Now we know to calculate the difference between a point
and our approximation. With these results we can define the
maximal error between two interpolation points as

ESE(~Sn, ~Sn+1) = max |d| subjective error (41)

over all

~z T ∈
[(

t
y(t)

)
| tn,1 ≤ t ≤ tn+1,1

]
(42)

and for the whole interval T as

Ela
SE(h) = max ESE(~Sn, ~Sn+1) (43)

Contrary to the standard mean error computed in the previ-
ous section in fig. 5 this time the error behavior for low masses
is consistent to those with higher mass, see fig. 6 and fig. 7

Fig. 6. Ela
SE(h) for the height of the ball course, eqs.(3),(7) with m =

7.275kg

Fig. 7. Ela
SE(h) for the height of the ball course, eqs.(3),(7) with m =

0.275kg

It should be noted that both axis had to be normalized before
computing the error. Without this precaution, the Eigenvector
depends on the scaling and small changes makes the total error
oscillate.

After computing the subjective error for the neural network
we might also use this idea for the case of Euler approxi-
mation. In this case, the maximal subjective error is computed
over all samples and corresponds to the global error of eq.(21)

EEuler
SE (h) = max ESE(~SEuler

n , ~SEuler
n+1) (44)

with

~u =

(
1

− ỹn+1(tn+1−tn)−ỹn(tn+1−tn)
tn+1−tn

)
and

~SEuler
n+1 =

(
tn+1

ỹn+1(tn+1 − tn)

)
In fig. 8 this is shown.

Fig. 8. EEuler
SE (h) for the height of the ball course, eqs.(3),(7) with m =

7.275kg

D. The storage-optimal neural network

Up to now, we assumed that the table of approximation
values for the neural network provide numbers of unlimited
precision. This is not realistic. The more function values we
store, the more storage we need. Certainly, if we choose all
numbers to be of low resolution, we can enlarge the function
lookup table and get more interpolation points. This might also
decrease the approximation error, depending on the resolution.
Therefore, we have to reflect that the error Emax does not
only depend on the exactness of the approximation, but also
on the numerical resolution of the interpolation points which
contributes a resolution error Eres to the general error

Emax = Ela
SE(h) + Eres (45)

The resolution error depends on the storage which is used
for representing the numbers. Certainly, there is a trade-
off between the number of interpolation points and their
resolution. For a given amount of storage, the optimum in
this trade-off have to be found. Therefore, before comparing
the ODE performance with that of the neural network, we
have to optimize the storage requirements of the network. For
this, we will first calculate the maximal error for our example
ODE and then find the optimal number and the resolution of
the interpolation points for a given amount of storage.

There is also one important point to mention. The subjective
error is computed from the correct value perpendicular to
the approximation, but the approximated value is computed
along the ordinate axis. Thus, the resolution error is not
computed in the same direction as the subjective error, see fig.
9. Nevertheless, we might take the upper bound of this error
which is, according to the inequality of Schwarz for distance
measures, just the sum of both errors presented in eq.(45).

Fig. 9. The maximal error is smaller than the sum of subjective and resolution
error

Let us first evaluate the first term in eq.(45), the approxi-
mation error. For simplicity, let us take the resolution of the
interpolation values ỹ(tn) in the direction of the standard error,
not in the changing direction of the subjective error. Then,
if we logarithmize the observed error of the simulation, our
example ODE with eqs. (3, 7), we remark in fig. 10 that it
depends approximately linearly on the logarithm of h:

ln(Ela
SE(h)) ∼ ln(h) (46)

Fig. 10. The logarithm of the maximal error vs. the logarithm of the step
width

Additionally, in fig. 10 we can see that the proportional
constant is approximately two and the line has a bias of
roughly −7.5. Using this information, we render eq. (46) more
precisely

ln(Ela
SE(h)) = 2ln(h)− 7.5 (47)

or
Ela

SE(h) = h2e−7.5 (48)

Now, let us evaluate the resolution error Eres. Let us assume
that the resolution error gets halved with every additional bit.
For a given resolution of b bits, this means

Eres ∼ 2−b (49)

The whole value range of our approximation is divided
into 2b intervals. Let the range be represented by an original

resolution of, say, 16 bits. So, we have 216/2b intervals to
represent a number. The average error for uniformly distributed
values is just half of one resolution interval. So, we get as
resolution error from eq.(49)

Eres =
216

2b2
= 2−(b−15) (50)

Using equations (48) and (50) in eq.(45) results in

Emax = h2e−7.5 + 2−(b−15) (51)

Therefore, we get an equation which describes the maximal
error in dependence of h and b.

What are the associated storage requirements of the neural
network approximation for this error? The storage usage M
of a linear approximation depends within the whole approx-
imation interval T by the step width h or the number of
interpolation points S

S = T/h (52)

The resolution of b bits for a number representation for
every interpolation point gives us a storage requirement of the
approximation by

M = S · b [Bit] (53)

Given the inter-point distance h, with the methods developed
in the previous sections we can calculate the approximation
error, and then calculate directly S for a given resolution b.

Now, how can we choose the optimal h for the lowest
possible error, given the restriction of limited storage? What
optimal resolution b should have the approximation points? By
reformulating eq.(53) for b we get

b =
M · h
T

(54)

and put this in eq.(51). So we have

Emax = h2e−7.5 + 2−(M h
T −15) (55)

The smallest error is obtained by a network which distributes
its storage between resolution and number of interpolation
points in such a way that no change in neither direction will
decrease the error any more (principle of optimal information
distribution, see [Bra93]). The optimal information distribution
is reached, when

∂Emax

∂h
=

∂(h2e−7.5 + 2−(Mh
T −15))

∂h
= 0 (56)

∂Emax

∂h
= 2he−7.5

+
(
−M
T
ln(2)− (

Mh

T
− 15)

)
2−(Mh

T −15)) = 0

(57)

Solving eqs. (56) and (57) for M = 30 kBit and T = 60
seconds by a symbol manipulation program (e.g. Maple) gives
us the optimal positive inter-point distance and resolution

hopt = 0.07419
bopt = 37.0988

The optimal storage distribution for a given amount of
storage determines the error of the network approximation.
Now, we have all elements to compare the performance of
a standard numerical ODE approximation with that of neural
network approximation.

IV. COMPARING THE RESOURCES

In section 2 we have evaluated the error made by a simple
numerical integration method, the Euler approximation, which
depends on the integration step width h. Afterward, the eval-
uation of a simple neural network approximation scheme also
gives us an approximation error, depending not only on the
interval length (step width) h for different kind of errors, but
also on the numerical resolution of the network interpolation
points (or weights) b. The storage optimization in section 3
gave us for each error an optimal value for the necessary
storage needed.

The basic context is the same for both approximation
methods: A demand for one sample is given to the procedure
and the approximation result for the ODE is returned. For this,
the Euler method has to compute all intermediate values from
the last time t = t0 to the desired time point using small
steps of width h, whereas the neural network just picks the
appropriate weights from the stored function table and gets
the desired value by one interpolation step.

A. The resources of the Euler approximation

The computational needs of the Euler approximation are
high: for each step of eq.(12) with width h within the interval
T , we have one computation of the function (10) in constant
time τ and one multiplication and one addition. The overall
computing time is characterized by the number of computation
steps and becomes with S approximation steps (see eq.(52))

REuler
CPU = S(2 + τ) =

T

h
(2 + τ) (58)

Figure 11 illustrates this behavior: the smaller we choose the
step width h for a small error, the more computing time we
have to spend. It should be noted that for our example eqs.(3)

Fig. 11. The computing resources REuler
CPU vs. step width for T = 60,τ1 = 1

and (7) the constant τ is much bigger than one computational
time step: the transcendental functions take a long time to
be computed since they are approximated by truncated Taylor
series themselves.

Additionally, each step width h determines an error of the
approximation, see fig. 8. Following the approach of eq.(46)
we plot the dependency

ln(EEuler
SE (h)) ∼ ln(h) (59)

Fig. 12. The logarithm of the maximal error vs. the logarithm of the step
width

Additionally, in fig. 12 we can see that the proportional
constant is approximately one and the line has a bias of
roughly −4.5. Using this information, we render eq. (59) more
precisely

ln(Ela
SE(h)) = ln(h)− 4.5 (60)

or
Ela

SE(h) = he−4.5 (61)

If we plot the computing resources REuler
CPU as function of

the obtained subjective error, we get fig. 13.

Fig. 13. The computing resources REuler
CPU vs. maximal subjective error.

Contrary to this, the storage requirements are only modest:
Since we store the approximated value of one approximation
step as starting value of the next one, all what we have to store
is just this value. Additionally, the constants of the formula
(10) (in our case: v0, v∞, g) and the step width h. The number
of memory units (e.g.floating point numbers) is independent
of the step width h

REuler
M = const = 5 (62)

It should be remarked that the Runge-Kutta method does
not change the scene much: both qualitative arguments of high
computational resources and low memory needs are valid here,
too.

B. The resources of the neural network approximation

In contrast to the Euler approximation, the computational
needs of the neural network approximation are much more
decent. The approximation by eq.(24) is made by three sub-
tractions, one addition and one multiplication beside the fast
lookup of the values of y(t) in the table.

RNet
CPU = const = 7 (63)

According to eqs.(54) and (55) the storage resource RM =
M and the optimal step width hopt determine the optimal
resolution bopt and the resulting error Emax. Therefore, we
can plot how the storage resource RM depends on the maximal
subjective error in fig.14.

Fig. 14. The storage resources RNet
M of the optimized net vs. the maximal

subjective error.

If we plot both figures 13 and 14 in one plot, we get fig.15.
Each configuration point (RNet

M , REuler
CPU) is associated with

Fig. 15. The storage resources RNet
M vs. REuler

CPU .

the same error level Emax(RNet
M) and Emax(REuler

CPU) where
the network approximation uses constant computations and
the Euler approximation uses constant memory. The set of all
configuration points is shown as curve in the figure: The lower
the resources, the higher the error Emax.

Now, which method should we choose if we have a com-
puter with the computation resource RCPU , the storage RM

and an acceptable error Emax? The resource data are drawn
as dotted lines within the figure, one for the storage in parallel
to the CPU axis and one in parallel to the storage axis. The
crossing of each line with the curve of the configuration set
determines the error using the associated resource.
The decision tries to minimize the error obtained by the
approximation method. So, we have to take the approximation
method which has a crossing with the highest distance (the
lowest error) to the origin. In the example, the configuration
of the Euler method has an advantage over the neural network
method, but when the storage resources are augmented, the
neural network configuration may produce a smaller error.
Thus, the decision for one of the two methods depend on the
given resources and may even change in time.

V. DISCUSSION AND CONCLUSION

In this paper we compared characterized the performance
of approximating ordinary differential equations by neural
networks implemented by fast lookup-tables. Here, cheap
memory resources may be advantageous over high compu-
tational needs of the standard approach.

Although our comparison is made just for one representative
example of rigid body movement, we can see some typical
problems and features of both methods, the standard numerical
integration for ODE, and neural networks. Certainly, there
are more sophisticated approximation schemes for ODE like
Runge-Kutta which uses three interpolation samples instead of
two like Euler, or even more accurate ones using more than
three points, but the main characteristics remain: the solutions
depend highly on the interpolation distance and, with small
distances h, are very computational intensive.

Additionally, for the neural network there are many more
complicated approximation schemes known in the literature.
The more general they are (e.g. by using nonlinear splines or
kernel functions) the more complicated the analysis becomes.
Even in the simple linear scheme, we have seen that the
analytical expression are only valid for some cases and yield
good results only in the limit.

Nevertheless, our work has shown that it is possible to
compare the two approaches of standard numerical integration
of ODE and the alternative approach of optimized, information
balanced neural networks and find a strategy of taking the best
system according to the actual machine resources.

REFERENCES

[Arn89] Arnold V.: Mathematical Methods of Classical Mechanics,
Springer Verlag, Berlin 1989

[Bou01] Bourg D.M.: Physics for Game Developers, O’Reilly, Se-
bastopol CA 95472 USA, 2001

[Bra89] Brause R.: Performance and Storage Requirements of
Topology-conserving Maps for Robot Manipulator Control,
Interner Bericht, JWG-Universitt Frankfurt a.M., 1989

[Bra93] Brause, R.: The error-bounded Descriptional Complexity of
Approximation Networks, Neural Networks, Vol.6, pp.177-
187, 1993

[Bra03] Brause,R.:Adaptive modeling of biochemical pathways,
IEEE 15th Int. Conf on Tools with Art. Intell. ICTAI-2003,
IEEE Press 2003, pp.62-68, 2003

[Choi04] Choi J., Shin D., Heo W., Shin D.: Performance Eval-
uation of Numerical Integration Methods in the Physics
Engine, Proc. First International Symposium, LNCS 3314,
Springer-Verlag, Heidelberg/New York, 2004, pp. 238-244

[Dud73] Duda R., Hart P.: Pattern Classification and Scene Analy-
sis, John Wiley & Sons, New York 1973

[Hayo8] Haykin S.: Neural networks, a comprehensive foundation
Prentice Hall, New York, 2008

[Hor89] Hornik K., Stinchcombe M., White H.: Multilayer Feed-
forward Networks are Universal Approximators, Neural
Networks, Vol 2, pp. 359-366, Perg. Press 1989

[Klo08] Kloeden P.E.: Numerical Methods for Differential
Equations, see http://www.math.uni-frankfurt.de/ nu-
merik/lehre/Vorlesungen/NMDE/ (Accessed June 1st
2008)

[Lag98] Lagaris I.E., Likas A., Fotiadis, D.I.: Artificial Neural
Networks for Solving Ordinary and Partial Differential
Equations, IEEE Transactions on Neural Networks, Vol-
ume 9, Issue 5, 1998, pp. 987 - 1000

[Lee90] Lee H.,Kang I.: Neural algorithms for solving differential
equations, J. Computational Physics, vol.91,pp.110-117,
1990

[Mea94] Meade A,Fernadez A: Solution of nonlinear ordinary dif-
ferential equations by feedforward neural networks, Math.
Comput. Modelling, Vol.20, No.9, pp.19-44, 1994

[Pol02] Polyanin A., Zaitsev V., Moussiaux A.: Handbook of First
Order Partial Differential Equations, Taylor & Francis,
London, 2002

[Sch89] Schwarz H.R., Waldvogel J.: Numerical Analysis, John
Wiley, London, 1989

[Xu92] Xu L., Oja E., Suen C.: Modified Hebbian Learning
for Curve and Surface Fitting, Neural Networks, Vol. 5,
pp.441-457 (1992)

[Yen96] Yentis R.,Zaghoul M.E.:VLSI implementation of locally
connected neural networks for solving partial differential
equations, IEEE Trans. Circuits and Systems-I, vol.43(8),
pp.687-690,1996

