6 research outputs found

    Hemodynamic simulations in the cerebral venous network: A study on the influence of different modeling assumptions

    No full text
    International audienceBlood flow computations in complex geometries are of major interest in various cardio-vascular applications. However, deriving an appropriate computational model is still an open issue and a central question is how to incorporate and quantify uncertainties due to different modeling assumptions. The present work is intended as a first step in this direction, in the particular case of blood flow in the cerebral venous system. After a careful evaluation of the influence of the computational methodology, the study investigates the impact on the velocity field and the wall shear stress of three inflow boundary conditions, two strategies for treating the outflow boundary condition and two different viscosity models. The results demonstrate that the effect of setting the inflow boundary condition on the forces created by blood flow, is likely greater than for other modeling assumptions, the other important factor being the blood viscosity model, especially in wall shear stress computations. They suggest that improvements on the one hand on the mathematical and computational approach, and on the other hand on available data for their treatment are needed

    Mathematical modeling of local perfusion in large distensible microvascular networks

    Get PDF
    Microvessels -blood vessels with diameter less than 200 microns- form large, intricate networks organized into arterioles, capillaries and venules. In these networks, the distribution of flow and pressure drop is a highly interlaced function of single vessel resistances and mutual vessel interactions. In this paper we propose a mathematical and computational model to study the behavior of microcirculatory networks subjected to different conditions. The network geometry is composed of a graph of connected straight cylinders, each one representing a vessel. The blood flow and pressure drop across the single vessel, further split into smaller elements, are related through a generalized Ohm's law featuring a conductivity parameter, function of the vessel cross section area and geometry, which undergo deformations under pressure loads. The membrane theory is used to describe the deformation of vessel lumina, tailored to the structure of thick-walled arterioles and thin-walled venules. In addition, since venules can possibly experience negative transmural pressures, a buckling model is also included to represent vessel collapse. The complete model including arterioles, capillaries and venules represents a nonlinear system of PDEs, which is approached numerically by finite element discretization and linearization techniques. We use the model to simulate flow in the microcirculation of the human eye retina, a terminal system with a single inlet and outlet. After a phase of validation against experimental measurements, we simulate the network response to different interstitial pressure values. Such a study is carried out both for global and localized variations of the interstitial pressure. In both cases, significant redistributions of the blood flow in the network arise, highlighting the importance of considering the single vessel behavior along with its position and connectivity in the network

    Modelos para la disipaci贸n de energ铆a en uniones de vasos sangu铆neos

    Get PDF
    Revisi贸n de los m茅todos de simulaci贸n de fluidos unidimensionales y estudio de las perdidas energ茅ticas dadas en uniones de vasos (arterias y venas) y su dependencia con la viscosidad del fluido, el caudal introducido en la uni贸n y los 谩ngulos relativos entre los vasos, utilizando el m茅todo de simulaci贸n unidimensional.<br /

    Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short-term transient and stationary hemodynamic simulation of postural changes

    Get PDF
    When modeling complex fluid networks using one鈥恉imensional (1D) approaches, boundary conditions can be imposed using zero鈥恉imensional (0D) models. An application case is the modeling of the entire human circulation using closed鈥恖oop models. These models can be considered as a tool to investigate short鈥恡erm transient and stationary hemodynamic responses to postural changes. The first shortcoming of existing 1D modeling methods in simulating these sudden maneuvers is their inability to deal with rapid variations in flow conditions, as they are limited to the subsonic case. On the other hand, numerical modeling of 0D models representing microvascular beds, venous valves or heart chambers is also currently modeled assuming subsonic flow conditions in 1D connecting vessels, failing when transonic and supersonic flow conditions appear. Therefore, if numerical simulation of sudden maneuvers is a goal in closed鈥恖oop models, it is necessary to reformulate the current methodologies used when coupling 0D and 1D models, allowing the correct handling of flow evolution for both subsonic and transonic conditions. This work focuses on the extension of the general methodology for the Junction Riemann Problem (JRP) when coupling 0D and 1D models. As an example of application, the short鈥恡erm transient response to head鈥恥p tilt (HUT) from supine to upright position of a closed鈥恖oop model is shown, demonstrating the potential, capability and necessity of the presented numerical models when dealing with sudden maneuvers

    Numerical Simulation of Blood Flow in an Anatomically-Accurate Cerebral Venous Tree

    No full text

    Gesti贸n, simulaci贸n y comparaci贸n de un mapa del flujo en el sistema cardiovascular del cuerpo humano

    Get PDF
    El presente proyecto consiste en la generaci贸n de una amplia base de datos hemodin谩mica, recogiendo valores de caudales y velocidades de sangre (valores promedios y m谩ximos), as铆 como las 谩reas de los diferentes vasos sangu铆neos que hay en el cuerpo humano. Estos valores, que son los datos experimentales fueron obtenidos de diferentes art铆culos de investigaci贸n publicados. En la base de datos quedan representados los valores obtenidos para cada vaso sangu铆neo y por diferentes regiones: cerebro, cuello, t贸rax, coraz贸n, abdomen o espl谩cnica, extraespl谩cnica y m煤sculo. Adem谩s, hay una clasificaci贸n por diferentes t茅cnicas de medici贸n: doppler, imagen por resonancia magn茅tica (MRI), imagen por resonancia magn茅tica con fase de contraste (PCMRI) o incluso por tomograf铆a computarizada (CT). Y por maniobras de respiraci贸n: respiraci贸n normal, con respiraci贸n sostenida durante la inspiraci贸n, con respiraci贸n sostenida durante la expiraci贸n, inspiraci贸n continua, expiraci贸n continua y maniobra de Valsalva. Todos estos m茅todos de medici贸n son t茅cnicas no invasivas que no alteran el flujo de sangre durante la obtenci贸n de datos a excepci贸n del doppler. Por tanto, se descart贸 recoger informaci贸n de publicaciones realizadas con t茅cnicas invasivas quir煤rgicamente ya que no son fiables porque alteran el flujo de sangre y por tanto las mediciones. Por ejemplo, por cateter. Para poder entender las diferencias entre los tipos de medidas seleccionadas (no invasivas) se expone una breve introducci贸n de cada una de ellas, en el cap铆tulo 3, distinguiendo sus caracter铆sticas m谩s relevantes. Una vez generada la base de datos hemodin谩mica y realizada la simulaci贸n obteniendo diferentes resultados para cada vaso sangu铆neo, hab铆a que unir ambas partes que facilitara a posteriori obtener las conclusiones correspondientes. Toda esa informaci贸n totalmente num茅rica hab铆a que representarla gr谩ficamente para poder entenderla con mayor claridad. Este paso era fundamental, debido a la extensa recogida de datos que se fue elaborando conforme se avanzaba con el proyecto. Para realizar esta transformaci贸n, surgi贸 la necesidad de automatizar la informaci贸n con el fin de evitar un proceso rutinario y mon贸tono en la gesti贸n de la base de datos. Para ello, se hizo uso de archivos batch de procesamiento por lotes sofisticados con MS-DOS. Tambi茅n se utiliz贸 un lenguaje de programaci贸n llamado FORTRAN y una herramienta gr谩fica (Gnuplot) para las representaciones gr谩ficas. Finalmente, todo el trabajo de edici贸n y presentaci贸n se realiza con un programa espec铆fico, LaTeX, apropiado para redactar art铆culos cient铆ficos. Hacer uso de todas estas herramientas ha requerido aprender una serie de conocimientos espec铆ficos para la elaboraci贸n de este proyecto
    corecore