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Abstract

Microvessels -blood vessels with diameter less than 200 µm- form large in-
tricate networks, functionally organized into arterioles, capillaries and venules.
In these networks, the distribution of flow and pressure drop stems in a com-
plex manner from single vessel behavior and mutual vessel interactions. In
this paper we propose a mathematical and computational model to study the
behavior of large networks of compliant microvessels. The network geometry
is simplified for computational purposes. The arteriolar and venular trees
are represented by graphs of straight cylinders, each one corresponding to
a vessel. The two trees are connected through a capillary bed. The blood
flow and pressure drop across each vessel are related via a simplified fluid-
structure interaction (FSI) model, represented by a generalized Ohm’s law
featuring a conductivity parameter. The conductivity is a function of the
vessel cross section area (shape and area), which, in turn, undergoes defor-
mations due to luminal and external pressure loads. The membrane theory
is used for the description of the deformation of vessel lumina, adapted to
consider thick–walled arterioles and thin–walled venules. An original point
of the present work is represented by the inclusion of a buckling model in
the FSI problem for venules. As a matter of fact, venules can experience
negative values of transmural pressure (difference between luminal and inter-
stitial pressure) and may assume a deformed and even collapsed configuration
due to their minimal cross-sectional bending stiffness. The complete model
including flow in distensible arterioles, capillaries and venules represents a
nonlinear coupled system of PDEs, which is approached numerically by fi-
nite element discretization and linearization techniques. As an example of
application, we use the model to simulate flow in the microcirculation of the
human eye retina, a terminal system with a single inlet and outlet. After a
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phase of validation against experimental measurements of the correctness of
the blood flow and pressure fields in the network, we compute the network
response to different conditions. Significant redistributions of the blood flow
in the network are observed, highlighting the importance of considering the
single vessel behavior along with its position and connectivity in the network.

Keywords: Regional Blood Flow; Vessel Buckling; Vascular Resistance;
Retinal Microcirculation; Distensible Blood Network; Mathematical Model

1. Introduction

Microscopic blood vessels play the vital role of locally perfusing single
body’s organs. Microcirculatory plexi include thousands of microvessels (di-
ameter less than 200 µm), functionally categorized into arterioles, capillaries
or venules. First elementary assessments of microcirculatory mechanisms on
skin or superficial organs date back at least to the 18th century [1]. At present,
techniques like positron emission tomography, magnetic resonance imaging
and contrast echography allow to study in a non–invasive manner regional
blood flow in internal organs of human patients. The information content of
such measurements is, however, far to be complete. Data as network geome-
try, fluid-dynamics pressure and flow fields -in physiological conditions or in
altered conditions/provocation studies- can be rarely collected in a coherent
and comprehensive manner in multiple locations of the network. Resolu-
tion limitations in smaller vessels and uncertainty in physical parameters
add further difficulties [2, 3]. Altogether, these issues strongly motivate the
use of theoretical and computational models to reduce the present gap in
knowledge.

Mathematical models in hemodynamics are consistently present in liter-
ature since the early 1960s. A significant part of these models address the
simulation of a limited number of vessels of major size like the aorta and
collaterals, possibly coupled with reduced–order models for the rest of the
circulatory system (see, e.g., the review works [4, 5] and the very recent [6]).
The modeling of microvessels has on its own a long history, dating back
to the pioneering work of Krogh at the beginning of the 20th century (see,
e.g. [7]). Several important features characterize the microcirculation: a)
microcirculatory networks include a huge number (> 104) of interconnected
vessels with complex behavior, so that the computational cost can quickly
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exceed available resources; b) the flow in microvessels is essentially of resistive
type [3]. The flow is essentially determined by the balance of viscous stress
and pressure gradient. The Reynolds and the Womersley numbers are smaller
(or much smaller) than 1, making -at least in a first approximation- inertia
and pulsatility negligible; c) the regulation of blood flow through a micro-
circulatory network is determined by both passive and active forces. Blood
flow creates a pressure inside the vessel lumen that distends the vessel and
contrasts the pressure exerted from the outside by interstitial fluids, organs,
and cytoskeletal structures. The difference between the internal and external
pressure, known as transmural pressure, is balanced by the circumferential
tension generated within the vessel wall. Such a tension includes two main
components, a passive tension and active tension. The passive tension - com-
mon also to larger vessels - is generated by the structural components of the
vessel wall such as collagen and elastin fibrils. The active tension is instead
peculiar to microcirculation and arises in arterioles due to the contraction of
their thick muscular walls under the influence of vasoactive agents (oxygen,
carbon-dioxide, nitric oxide, just to cite a few).

Several models of microcirculation use compartmental representations as
the milestones works by Ursino and co-authors (see e.g., [8, 9]) or use sets of
representative segments corresponding to vessels of different size (for example
regrouping large/small arterioles and venules, see, e.g., [10, 9, 11]). These ap-
proaches allow to maintain a low number of unknowns and have been used to
investigate many aspects. For example, with a similar technique Fantini has
analyzed in [12] the role of the microcirculatory network nested in the whole
brain circulation system was investigated. What is lost with these approaches
is the spatial distribution of field variables. Relevant geometrical and physi-
cal heterogeneities of the network cannot be represented, as well as complex
internal interactions (see [13] for a discussion on this topic). Spatial hetero-
geneity is taken into account in a different category of works, which consider
the network topology and use anatomically coherent geometrical data. Vessel
trees can be constructed ex-novo by means of mathematical algorithms and
relevant morphological and topological information is used to obtain realistic
physics. For example, the use of principles of fractal geometry to define the
diameter of daughter vessels sprouting from a bifurcation and build a with
a controlled degree of asymmetry has been proposed by Takahashi in [14]
and used by the authors of the present work in [15]. The network geometry
(vessel radii and lengths) can also be extracted from digitized images of ex-
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perimental measures (see the relevant works [16, 17]). While these models
include the effect of the geometrical localization of each vessel in the network,
the mechanical description is completely absent (the vessels are rigid-walled
pipes) or very limited. In this latter case, phenomenological vessel compli-
ance laws are often used. These laws reproduce selected structural behaviors
in a simplified setting derived from semi-empirical relations. Furthermore,
none of these models considers the fact that microcirculatory networks can
experience severe reductions of the luminal cross section, till collapse. As a
matter of fact, these networks are characterized by low values of the luminal
pressure that are comparable to the surrounding interstitial pressure, both in
physiological conditions and -more dramatically- in presence of pathologies.
The very few works addressing the buckling phenomenon locate themselves
at two opposites. Some of these studies consider a single vessel (or very small
networks) using complex descriptions, possibly 3D and anatomically accurate
[18, 19, 20, 21, 22, 23]. Alternatively, other studies model mid-sized/large mi-
crovascular networks including a Starling/collapsible components [24, 8, 9] or
phenomenological variations of the physical parameters (see [25] in a slightly
different context). While the first approach cannot be applied to large net-
works due to its huge computational cost, the second one is much more
efficient but it does not consider the sophisticated coupling between vessel
mechanics and pressure loads. These facts limit, from both the viewpoints,
the spectrum of phenomena which can be analyzed.

In this article, we propose a mathematical model of general microcircula-
tory districts which is capable of dealing with large compliant networks with
an affordable time of resolution. The work is inspired, but not exclusively,
from the approaches used to study relatively small vessel graphs as a collec-
tion of 1D distensible tubes described by simplified, yet physically consistent,
mechanical laws (see [26, 27, 28, 29, 30]). In the microvascular plexi object
of our analysis, blood flow regulation is obtained by variation of the vessel
diameter under the effect of both passive and active (with limitation to the
arterioles provided of a thick muscular wall) actions. In this work, we focus
our attention on the first set of mechanisms, investigating the role of geo-
metrical and structural (the so-called “physical”) factors in flow regulation.
Describing active regulation mechanisms requires a model for blood–tissue
solute exchange. These aspects are beyond the scopes of the present work.

The key point in our analysis is the effect of vessel compliance on vessel
resistivity. Compliant microvessels deform under mechanical loads. The
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shape of the luminal domain is thus altered. This implies a variation in
the resistance to flow and, in turn, a redistribution of the flow itself in the
network. To address this problem, we consider a simplified fluid–structure
interaction approach. Blood flow in each vessel is modeled by a generalized
Poiseuille’s law, featuring a conductivity parameter dependent on the area
and shape of the vessel cross section. A thick or thin–wall structural model
of membrane - chosen according to the physiological vessel wall thickness-
to-radius ratio [31, 32]- is used to compute the deformed cross section. In
addition, our approach includes a buckling model for thin–walled vessels
derived from [33]. Buckled vessels lose their original circular–shaped cross
section and assume an elliptical or dumb–bell configuration. The result is a
strong increase of vessel resistance to flow. The model can withstand partial
or total vessel blockage, providing a quantitative study of the fluid-dynamic
state of the network. Even if there is a clear connection of the present
model with a Starling resistor description, more information is obtained. The
present model can represent partial patency to flow and allows to reconstruct
a topological information.

We apply the proposed model to the simulation of blood flow in the reti-
nal circulation. To do this, we consider the network geometries proposed
by Takahashi and colleagues [34, 14]. The resulting network is composed of
more than 9000 vessels, with a tunable degree of asymmetry. After validat-
ing of the model against experimental measures (data from [35]), we carry
out different sets of studies: i) we globally increase the external pressure,
reaching the conditions for buckling to occur. We observe that the luminal
pressure gradually increase along all the network, till buckling, after which
a discontinuity in the behavior takes place, with a much more marked pres-
sure increase and flow redistribution; ii) we examine the system behavior in
a parametric study in which we monitor how the flow rate varies with the
overall pressure drop applied between the upstream and downstream ends of
the network; iii) we locally increase the external pressure inside a spherical
region located in correspondence of a region of the post–capillary venules.
Simulation results show how this perturbation extends its effect till four or
five vessels generations away, with important redistribution of flow and resis-
tance. An interesting, noticeable, key point emerging from the above results
is the importance of vessel localization in the network. Vessels with the same
mechanical and geometrical properties but laying in two different regions of
the network display a pretty different behavior due to their local pressure
levels and interaction with other vessels.
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The paper is organized as follows: in Sect. 2 we present our mathematical
model for microcirculatory districts. Namely, in Subsect. 2.2 we introduce
the mathematical model for blood flow in a single vessel and the generalized
Ohm’s law connecting flow rate and pressure drop via the conductivity pa-
rameter. This latter is obtained in a coupled manner from the wall structure
models as discussed in Subsect. 2.3 in pre–buckling conditions (see 2.3.1),
where a particular attention is devoted to the Young modulus choice, and
buckled conditions (see 2.3.2). In Sect. 2.4, we report a summary of the
computation of the conductivity parameter. In Sect. 2.5, we discuss the im-
portance of using a correct unloaded configuration, describing the numerical
technique applied to compute it from measurements. In Sect. 3, we introduce
the nomenclature to deal with a network and we present the conditions to
couple single vessels converging in a node. In Sect. 4, we provide a summary
of the model (see 4.1) and we discuss the numerical procedure employed to
discretized the fully coupled problem (see 4.2). Then, in Sect. 5, we first
introduce the network geometries we will use in simulations (see 5.1) along
with the physical parameters (see 5.2) then, we present the results of the
numerical simulations in different test cases (see 5.3). Eventually, in Sect. 6,
we draw the conclusions, discussing the results along with their significance,
the limitations of the model and the forthcoming work.

2. Microcirculation model

2.1. Geometrical model

The geometry, denoted in the following as the “measured geometry”, of
the network can be originally derived from digitized images or can be con-
structed in silico on a computer on the basis of anatomical data. In any case,
our starting point is the 1D skeleton of the network along with its topolog-
ical connectivity and cross sections and lengths distribution. Each segment
of the skeleton represents a blood vessel and can branch at nodal junctions.
To increase the computational accuracy, we introduce further subdivisions
into elements on each segment (see [20] for a similar approach). We estab-
lish on each element a local system of cylindrical coordinates and we let the
z-axis coincide with the element axis, arbitrarily choosing its orientation.
The vessel element is endowed of the 3D structure of a straight cylinder of
axis z, with uniform, but not necessarily circular, cross section. The r and θ
coordinates lay in the plane of the vessel cross section (see Fig. 1). Elements
belonging to the same vessel share homogeneous mechanical properties. From
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Figure 1: Schematic representation of a portion of a microcirculatory network. Each vessel
is described as a duct with straight longitudinal axis and is further partitioned into a series
of consecutive short elements of arbitrary but constant cross section shape along the axis.
The central part of the figure depicts one of such elements, of constant length Le, with
highlighted the domain Ωf occupied by the blood flowing inside the luminal space and the
wall structure. The right part of the figure represents the cross section A of the luminal
space along with the thickness h of the vessel wall. The wall is internally loaded with
pressure pl from fluid actions and externally loaded with given interstitial pressure pe.
The local system of coordinates (r, θ, z) on the element is represented as well.

this geometrical model, we proceed by computing a reference (“unloaded”)
configuration as described in Sect. 2.5. This latter geometry represents the
mathematical domain of the present model.

2.2. Blood flow model

The domain occupied by blood inside the vessel element (luminal space)
is defined as (see Fig. 1)

Ωf = A× (0, Le)

where A = (0, R(θ)) × (0, 2π), R(θ) being the position of the blood–wall
interface and where Le is the element length.
The following assumptions are introduced:
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1. blood is modeled as a Newtonian incompressible fluid with dynamic
viscosity µ;

2. the “radial” scale of motion is much smaller than the “longitudinal”
one, so that only a longitudinal velocity is considered;

3. convective terms and pulsatility are negligible, since in this region the
Reynolds and the Womersley numbers are smaller (or much smaller)
than 1. Inertia forces are less important and the flow is essentially
determined by the balance of viscous stress and pressure gradient (re-
sistive flow, [3]).

Letting p be the fluid pressure and u the axial velocity, the continuity
and momentum balance equations read:
find p and u such that

∂u

∂z
= 0, ∆rθu =

1

µ

∂p

∂z
,

∂p

∂r
=
∂p

∂θ
= 0 in Ωf , (1)

where ∆rθ(·) is the Laplace operator with respect to the (r, θ) coordinates.
No-slip conditions are considered on ∂A × (0, Le). Notice that the pressure
field resulting from Eqs. (1) has a constant gradient in the axial direction.
Moreover, the pressure is uniform on each section, so that, straightforwardly,
the fluid pressure pl acting on the internal surface of the wall structure is
equal to p.

We now proceed to obtain a form of Eqs. (1) which is amenable to be
efficiently coupled with wall structure equations in the context of a large
network of vessels. Introducing the non–dimensional variables r∗ = r/R̂ and

u∗ = (−µ
(
R̂2dp/dz

)−1
)u, R̂ being a characteristic linear dimension of the

cross section, we write the dimensionless form of Eq. (1)2 as [36]:
find u∗ such that

−∆r∗θ u
∗ = 1 in A∗, (2)

where A∗ = A/R̂2, and u∗ = 0 on ∂A∗. We use the solution u∗ of (2) to
define the conductivity parameter [33]

σ =
R̂4

µ

∫
A∗
u∗dA∗, (3)

so that the expression of the volumetric flux of fluid

Q =

∫
A

u dA = − 1

µ

dp

dz
R̂4

∫
A∗
u∗dA∗ (4)
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can be re–formulated as the generalized Ohm’s law connecting flux and pres-
sure gradient

Q = −σdp
dz
. (5)

Notice that the conductivity σ is a function of the geometry of the vessel cross
section, this latter being itself an unknown of the problem. The coupling with
a structural model for the vessel wall through the pressure loads closes the
problem.

We now go back to the original fluid balance equations (1) and we inte-
grate Eq. (1)1 on the cross section area. Gathering the resulting equation
and the Ohm’s law (5), we obtain the (equivalent) system: find Q and p such
that

dQ

dz
= 0, Q = −σdp

dz
in Ωf . (6)

Remark 1. Observe that the fluid-structure interaction coupling makes sys-
tem (6) nonlinear, since, as stated by Eq. (3), the conductivity is a function
of the vessel cross section geometry by itself and also through the expression
of the dynamic viscosity. As a matter of fact, this latter depends, among the
others, on the vessel cross section diameter (more generally speaking on the
hydraulic diameter), as detailed in Sect. 5.2.

Remark 2. From system (6), it appears that the conductivity parameter must
be constant in each vessel element, due to the linearity of the pressure and
the constancy of the flux in the axial direction. For this reason, we couple the
fluid with the structure by considering this latter to be loaded on the lumen
interface with a uniform pressure p, function of p (for example, its average
along the element length). This choice results in having σ = σ(p). We notice
that this approximation is acceptable if the pressure jump at the element is
not excessively high.

2.3. Vessel wall model

In order to compute the vessel conductivity from Eq. (3), we need to dis-
pose of the vessel cross section area and shape as a function of the pressure
loads. In other words, we must build via a structural model a tube law,
mathematically connecting the vessel cross section area with the transmural
pressure pt, defined as the difference between the luminal pressure p and the
interstitial pressure pe [37]. We anticipate in Fig. 2 the tube law resulting
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from the present model. Observe, in particular, the different behavior of ar-
terioles (thick-walled vessels) and venules (thin–walled vessels). Observe also
how, for these latter, there exists a physiologically plausible value of trans-
mural pressure under which the tube is not any more circular but assumes
a buckled configuration. Notice that the cross section does not need to be
completely closed for the vessel to be “functionally lost to the network”. As
a matter of fact, it suffices the section to be small enough to prevent red
blood cells passage to compromise its physiological function [29].

Figure 2: Tube laws (transmural pressure vs. area relations) for arterioles and venules
as obtained from the present model. As customary when representing this curve, the
cross section area is normalized over the cross section area at zero transmural pressure.
Characteristic cross sections are sketched for various values of the transmural pressure.
Observe in proximity of zero transmural pressure the presence of a “snap action” in venules,
i.e., a change in shape over a pressure range so small as to be considered negligible. Venules
with A/A0 < 10−2 are practically collapsed. The curves are obtained using the same data
considered for Fig. 8.

In the structural model, each vessel element is modeled as an elastic ring
made of elastic (Young modulus E) and incompressible material (ν=0.5),
assumed to be circular in undeformed conditions (radius Ru, thickness hu).
The same cylindrical coordinate system of the fluid model is considered,
if not otherwise specified. Small deformations are considered, similarly to
several works in this field, see e.g., [38, 4]. In Fig. 3, we report the notation
required for the mathematical discussion and the definition of the relevant
configurations we will consider.
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2.3.1. Structural model for pre–buckling transmural pressure

On applying the internal and external pressure loads, radial and circum-
ferential stresses arise in the ring. We assume axi-symmetry and plane stress
conditions. Let η = η(r) be the radial displacement of a point of the ves-
sel wall. Then, we establish the strain–displacement relations (refer also to
Fig. 4)

εN =
dη

dr
, εT =

η

r
, (7)

Figure 3: Characteristic configurations in the structural models. Configuration I is the
experimentally measured “in-vivo” geometry, supposed to be circular. The arrows indicate
the steps followed in the computations to obtain a certain configuration from this config-
uration. According to the different modeling chosen as a function of the wall thickness-to-
radius ratios (see Sect. 2.3.1), the left side of the figure refers to thick–walled rings (the
internal radius is indicated), while the right side to thin–walled rings (the mean fiber radius
is indicated). Configurations II and IV are the unloaded configurations, corresponding to
the stress-free geometry for the thick–walled ring and to the zero transmural pressure ge-
ometry in the thin–walled ring, respectively. Notice that in the case of a thick–walled ring
the undeformed geometry II differs from the zero transmural pressure geometry III. We re-
fer to Sect. 2.5 for a detailed discussion on the computation of the unloaded configuration.
In the last row, we represent generic deformed geometries of the thick and thin–walled
ring cross sections, respectively. In the case of the thin–walled ring, we also consider the
possibility of section buckling, so that the generic deformed cross section is circular if in
pre–buckling conditions (left) or with a non–circular shape if in buckled conditions (right).
The same terminology adopted for the radii also applies to the vessel wall thicknesses in
the various conditions.
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Figure 4: Infinitesimal wedge–shaped radial section used for the derivation of the balance
equations for ring model with circular cross section. Left: radial deformation. Right:
tangential (hoop) stress σT , normal (radial) stress σN with their increments acting on the
wedge faces, along with the pressure loads.

εN being the radial strain and εT the circumferential strain, respectively, and
the elastic constitutive equations

σN =
E

1− ν2
(εN + νεT ), σT =

E

1− ν2
(εT + νεN), (8)

σN being the principal radial stress and σT the principal hoop stress, respec-
tively, and E = E(pt) a functional representation of the Young modulus (see
Appendix B for a complete discussion on this topic). We close the problem
considering the equilibrium equation

dσN
dr

+
1

r
(σN − σT ) = 0, (9)

with boundary conditions σN(Ru) = −p and σN(Ru,e) = −pe, with Ru,e =
Ru + hu. Eq. (9) combined with (8) and (7) and the relative boundary
conditions gives

σN = B1 +
B2

r2
, σT = B1 −

B2

r2
, (10)

with B1 =
pR 2

u − peR 2
u,e

R 2
u,e −R 2

u

and B2 =
R 2
u R

2
u,e(pe − p)

R 2
u,e −R 2

u

.

A useful simplification of the expressions in Eq. (10) can be obtained
for thin–walled structures, since in this case hu, h

2
u � Rm,u, with Rm,u =

(Ru +Ru,e)/2 (virtual position corresponding to the mean fiber radius). We
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then obtain the approximations

σN ' 0, σT ' pt
Rm,u

hu
, (11)

where the second relation represents the well–known Laplace’s law. Thin–
wall models are considered admissible till γ ' 1:10 [37], γ being the ratio
between the thickness of ring with respect to the radius. As shown in Fig. 5,
the venule wall can thus be considered a thin structure, since γ is in the
range 1:20 to 1:50. Much different is the situation for arterioles, for which
γ ' 1 : 3, and thus the use of the full expressions in Eq. (10) is required.

Figure 5: Wall thickness relative to inner vessel radius (parameter γ in the model) as a
function of intravascular pressure (image adapted from [39], data obtained from a meta–
analysis of literature studies). Arterioles and venules are designed to withstand different
ranges of luminal pressure. The arteriolar wall is thus a thick membrane structure, while
the venular wall is a thin membrane structure. Further, similar, data can be found in [40,
41].

In order to derive the expression of the cross section deformed radius, we
combine Eqs. (8) with (7) and Eq. (10) (for thick rings) or Eqs. (11) (for thin
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rings), respectively, obtaining
R = Ru

(
1 +

(1− ν)

E
B1 −

(1 + ν)

E

B2

R2
u

)
thick–walled ring,

R = Ru

(
1 +

(1− ν2)
γE

pt

)
thin–walled ring,

(12)

where for thick vessels R denoted the internal radius (blood–vessel interface)
while, with a slight abuse of notation, for thin vessels R denotes the mean
fiber radius. The deformed ring thickness can be post-computed from in-
compressibility, yielding h =

√
R2 + h2u + 2huRu − R for thick vessels and

h = huRu/R for thin vessels.

2.3.2. Structural model for buckled thin–walled rings

When considering the possibility of reaching buckled configurations, the
model must also keep into account the bending actions which actually lead
to the loss of axi-symmetry. It is convenient in this context to fix a system of
Cartesian axes on the bottom point of the section (see Fig. 6, left). We let s
be the arc–length parameter describing the wall mid-line in counterclockwise
direction from the origin of the axes and we denote by ϕ = ϕ(s) the angle
between the positive direction of the x axis and the tangent to the cross
section. The Cartesian coordinates x = x(s), y = y(s) of a point P identified
by arc-length s are given by

x =

∫ s

0

cos(ϕ) ds, y =

∫ s

0

sin(ϕ) ds. (13)

Fig. 6(right) shows an element wedge of arch length ds along with the
normal stress σN , the tangential stress σT and the bending moment M arising
from the pressure loads. According to the hypothesis of thin–walled struc-
ture, internal actions have a constant average value in the radial direction.

Let K(s) =
dϕ

ds
be the local curvature of the section and K̂ = 1/Ru the cur-

vature of the circular undeformed geometry taken as reference configuration.
From the approximate theory of curved beams (see, e.g., [42]), the bending
moment M = M(s) has the constitutive form

M = EI
(
K − K̂

)
, (14)
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Figure 6: Left: coordinate system for the thin–walled ring model in buckled configuration.
Right: tangential (hoop) stress σT , normal (radial) stress σN and bending moment M
with their increments acting on the wedge faces, along with the pressure loads.

where EI is the flexural rigidity, E being the Young modulus (assumed here
to be constant and equal to the basal value one for total lack of data) and
I = h3u/12 the area moment of inertia of the cross section per unit length. The
balance of bending moments and forces on the infinitesimal wedge–shaped
radial section of ring per unit axial length is given by

dM

ds
= σNh,

dσN
ds

= KσT −
pt
h
,

dσT
ds

= −KσN . (15)

Combining Eqs. (15) with the Eq. (14) and using the definition of the cur-
vature, yields the nonlinear boundary value system

d

ds


ϕ

K
σN

σT

 =


K
σNh

EI

KσT −
pt
h

−KσN

 . (16)

Linear stability analysis of system (16) (see, e.g., [43]) shows that a buck-
led non–axisymmetric solution exists for every pressure pt < pt,b, where
pt,b = −3EI/R3

b is the critical transmural pressure corresponding to the low-
est energy mode (azimuthal wavenumber equal to 2). When pt = pt,b, the
cross section (of radius Rb in incipient buckling) loses its circular shape due
to physical instability and buckles into an elliptical shape.
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For pt < pt,b, progressively, the nearest opposite sides of the section get
close, until they touch if the contact pressure pt,c is reached. The contact
point becomes a straight line segment in contact if the pressure lowers to the
contact line pressure pt,cl. As the pressure is further decreased, the length of
the contact line increases and the associated section area tends to zero form-
ing a dumbbell–like shape (see the characteristic shapes reported in Fig. 2).

The buckled configurations have a two-fold symmetry (since they are
related to the wavenumber 2), which allows for solving system (16) just in
a fourth of the domain. The approach to solve system (16) depends on the
value of the transmural pressure, and namely:

i) for pt,cl < pt < pt,b, we compute numerically the solution under the
hypothesis of isoperimetrical transformations (see also [44] for a similar
assumption) using the boundary conditions given in [33]. We refer to
Appendix A for more details of this computation;

ii) for pt < pt,cl, the solution of (16) can be found from that for pt = pt,cl
by the similarity transformation [33]

ϕ(s) = ϕcl(scl), K(s) = (pt/pt,cl)
1/3Kcl(scl),

σN(s) = (pt/pt,cl)
2/3σN,cl(scl), σT (s) = (pt/pt,cl)

2/3σT,cl(scl),
(17)

with the coordinate transformation s = (pt,cl/pt)
1/3scl, where 0 < scl <

s1, s1 being the arc–length of the point of contact in the configuration
corresponding to pt = pt,cl.

Once the solution of system (16) has been computed, the non–circular buck-
led geometry of the section is reconstructed in Cartesian coordinates from
Eqs. (13).

The following case study shows an application of the above described
model and the hemodynamic consequences of vessel buckling. We consider
a single thin–walled vessel (venule) with inlet pressure pin = 40 mmHg and
pe = 18 mmHg and we study the flux for outlet pressure pout decreasing
monotonically in the range [20, 10] mmHg. The vessel has undeformed ra-
dius equal to 30 µm and length equal to 370 µm. Simulations are run dividing
the vessel into Ne = 800 consecutive elements, with progressively smaller el-
ements as the end of the tube is approached. In Fig. 7(left), we show the flux
as a function of the outlet pressure. When this latter is decreased, blood flow
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Figure 7: Buckling of a single thin–walled distensible vessel. Left: blood flow in the
vessel as a function of pout. As long as pout > pe (dark gray region), the flux in the
tube increases as pout is decreased. When pout < pe (light gray region), the downstream
portion of the tube enters into buckling instability and the flow reaches a plateau, becoming
independent of pout. Right: 3D configuration assumed by the tube for pout = 10 mmHg.
A selected number of cross section shapes (black lines) are highlighted. Notice the very
small dumbbell-shaped cross sections formed at the end of the vessel.

increases till pout > pe. When pout = pe, the downstream portion of the tube
enters into buckling. The flow reaches then a plateau value and it does not
depend any more on pout. This trend is in qualitative accordance with the
predictions of the Starling resistor model. However, in this latter model only
two situations are possible, fully patent or fully closed vessel cross section.
The distensible behavior simulated in the present work is more complex, since
the conductivities are consistently coupled with the transmural pressure. In
Fig. 7(right), we show as an example the 3D configuration of the tube when
pout = 10 mmHg. Notice the narrow deformed cross sections in the very
downstream portion of the vessel where the low outlet pressure acts. A simi-
lar configuration was also observed in [45], where a more complex structural
shell model coupled with fluid lubrication theory were used to simulate the
experimental setting of the Starling resistor device (notice that in [45] the
upstream and downstream cross sections of the tube are maintained fixed).

2.4. Computation of the conductivity vs. transmural pressure curve

The knowledge of the geometry of the deformed luminal cross section as a
function of the pressure loads allows for computing the element conductivity
from relation (3). In detail, we proceed as follows:
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- if the deformed section remains circular, relations (12) explicitly give
the radius of the blood-wall interface. The solution of problem (2) can
be then found analytically, and yields the usual parabolic Poiseuille ve-
locity profile [36], from which the conductivity can be straightforwardly
computed by integrating (3);

- if the section is buckled, problem (2) is numerically solved with finite
elements on a triangulation of the deformed section. Vessel conduc-
tivity is then obtained by 2D numerical quadrature of the integral (3).
Observe that in our procedure, the buckled configuration is numerically
computed only for a finite number of transmural pressure values. We
then reconstruct a continuous conductivity curve by interpolation of
such discrete values.

Tab. 1 summarizes the different expressions/techniques which give the
conductivity parameter for thick and thin–walled ring elements, respectively.

pre–buckling post–buckling

thick–walled
ring σ(p) =

πR4
u

8µ

(
1 +

(1− ν)

E
B1(p)− (1 + ν)

E

B2(p)

R2
u

)4

/

thin–walled
ring σ(p) =

πR4
u

8µ

(
1 +

(1− ν2)

γE
(p− pe)

)4 numerical
solution

see Sect. 2.3.2

Table 1: Summary of the different expressions and techniques to obtain the conductivity
for thick and thin–walled ring elements. Only positive transmural pressure are considered
for the thick–walled rings. The quantities B1 and B2 are the linear functions of the pressure
loads defined in Sect. 2.3.1. Notice that here we have made explicit the dependence on
the pressure indicator p.

Fig. 8 depicts an instance of the computed vessel conductivity as a func-
tion of the transmural pressure considering a representative arteriole with
γ = 0.32 and venule with γ = 0.05, both with Ru = 40 µm. We choose the
Young modulus as discussed in Sect.2.3.1 and we set pe = 15 mmHg. The red
curve with circular markers represents the conductivity parameter of the ar-
teriole, the continuous blue curve the conductivity of the venule. The dashed
blue curve in the region of negative transmural pressures represents, for com-
parison, the conductivity of the venule obtained from the second relation in
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Tab. 1 (thin–walled ring) considering a circular cross section with the same
area of the non-circular deformed geometry.

Figure 8: Vessel conductivity curve (log scale) plotted against the transmural pressure
obtained for a representative arteriole (red continuous curve) and venule (blue continuous
curve) with radius Rd = 40 µm. The external pressure is set to pe = 15 mmHg, the
Young modulus is chosen as discussed in Sect.5.2. The blue dotted curve represents the
conductivity for a circular cross section with the same area of the buckled configuration
at the same value of transmural pressure. Significant discrepancies arise as pt decreases in
the negative half–plane.

Notice how this latter curve significantly differs from the one obtained
with the non–circular geometry, especially in the critical area around the
onset of the buckling. This motivates us to the explicit computation of the
buckled geometry.

2.5. Recovery of the unloaded configuration

We conclude the description of the model for a vessel element by deal-
ing with the problem of recovering the unloaded configuration. We assume
that the vessel configurations obtained from experimental measurements are
circular. Since they do not correspond, in general, to unloaded conditions
(configuration II or IV in Fig. 3), we have to solve an inverse problem, whose
unknowns are the unloaded configuration itself and the stress field under
which the measured deformed configuration is in equilibrium. Let

[Rd, hd] = S(Ru, hu; p, pe) (18)
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be the generic expression of the structural operator, corresponding to the
thick or thin–walled ring models (direct problem). If the undeformed config-
uration were known, the operator S would compute the measured geometry
under given pressure loads. In this context, we have to solve the inverse
problem, where the unknowns are the unloaded configuration and the stress
field under which the measured deformed configuration is in equilibrium. As,
in general, the operator S cannot be analytically inverted, we resort to the
fixed–point procedure described in Algorithm 1.

Algorithm 1 : computation of the undeformed geometry

given Rd, hd, pl, pe;
fix toll, ωr, kmax;
set k=0, R

(0)
u =Rd, h

(0)
u =hd;

while and(err ≥ toll, k ≤ kmax) do

X(k) = S(R
(k)
u , h

(k)
u ; pl, pe);

u(k) = X(k) −R(k)
u ;

R
(k+1)
u = ωr(Rd − u(k)) + (1− ωr)R(k)

u ;

compute h
(k+1)
u from R

(k+1)
u using wall incompressibility;

err= ‖R(k+1) −R(k)
u ‖/‖R(k)

u ‖;
k = k + 1;

end while
Ru=R

(k)
u , hu = h

(k)
u

Algorithm 1 is similar to the ones proposed in the computational frame-
works of [19, 46] in biomedical applications, with the introduction in the
present case of a relaxation parameter ωr. We have found in our compu-
tations that the number of iterations that are actually needed to converge
is related to the parameter values, being in particular affected by the wall
thickness-to-radius ratio and by the Young modulus basal value.

An example of the application of Algorithm 1 is the following. We start
from the deformed geometry (configuration I) of an arteriole with circular
cross section of radius Rd = 40 µm, thickness hd = 12.8 µm, luminal pressure
pd = 40 mmHg and external pressure pe,d = 15 mmHg (data from [34]). The
Young modulus is modeled as in Sect. 2.3.1. From Algorithm 1, we obtain
the unloaded configuration II represented in Fig. 9(left). Convergence till
tolerance 10−6 is achieved after less than 20 iterations with ωr = 0.3. To
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give an idea of the importance of reconstructing the unloaded configuration,
we also compute configuration III (zero transmural pressure) from II setting
p = pe = 15 mmHg and configuration IV, which is the unloaded geometry
computed from I using the thin–walled ring model (see again Fig. 9(left)).
Observe that configuration IV is only considered for comparison purposes,
since the use of the thin–walled ring model is not appropriate with the present
value γ = 0.32.

We now apply to configurations I to IV, successively considered as un-
deformed geometries, the loads p = 20 mmHg and pe = 10 mmHg. In
Fig. 9(right), we show the resulting deformation and hoop stress fields.

A significant discrepancy in the stress fields is evident. Configuration I
yields stresses which differ of about 1 mmHg with respect to the ones from
configuration II (measured vs. unloaded geometry). More significant differ-
ences arise if configuration IV is used instead of II (thin vs. thick structure
model). The discrepancies are an increasing function of the magnitude of the
transmural pressure, of the individual internal and external pressures, and of
the Young modulus (data not reported). Tab. 2 summarizes the geometrical
features of each configuration and the percentage difference in results with
respect to the ones obtained from configuration I. We conclude this section
by noting that in the present work we do not consider the existence of pre–
stresses (residual–stresses). It is well know that, if cut radially, vessels spring

Figure 9: Left: configurations I-IV used as unloaded geometries in the numerical ex-
periment described in the text. The red dotted-line represents the mean radius of the
configuration. Right: distribution of the hoop stress obtained loading configurations I
to IV with p = 20 mmHg and pe = 10 mmHg. Stresses color code the corresponding
deformed configurations.
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Configuration
Row I II III IV

1 R [µm] 40 38.9 38.5 38.0
2 ∆rR [%] / 2.8 3.5 5.3
3 h [µm] 12.8 13.1 13.2 13.5
4 ∆rh [%] / -2.2 -3.0 -5.6
5 ∆rσT [%] / 9.1 11.9 19.5

Table 2: Geometrical data and stress values for configurations I to IV and percentage
variations with respect to values of configuration I. Data refer to the example presented
in Sect. 2.5. Row 1 and 3: mean radius and wall thickness of the initial configurations as
in Fig. 9(left); rows 2 and 4: percentage variation of the mean radius and wall thickness
in the deformed configuration as in Fig. 9(right); row 5: percentage variation of the hoop
stress σT at the mean radius of the deformed configuration as in Fig. 9(right). The
percentage variation is defined as ∆rG := (G−Gd)/Gd.

open releasing the residual stress and approaching the zero-stress state which
is a circular sector [3]. This aspect is rather delicate and deserves further
future analysis.

3. Extension to a network of microvessels

We now consider the study of the fluid field in a complete compliant
microcirculatory network, organized into incoming arterioles, an intermediate
capillary bed and draining venules. Referring to Fig. 1, the network T is
split into Nc vessels V , such that T =

⋃Nc

i=1 Vi. Each vessel Vi, in turn, is

partitioned into N i
e short consecutive elements E i, such that Vi =

⋃N i
e

j=1 E i,j.
Notice that each element in a vessel has its own cross section area and the
number of elements for each vessel may vary but it has its own cross section
area. Denoting by Ωi,j

f the luminal space of the element E i,j, the fluid domain

is given by ΩF =
⋃Nc

i=1

(⋃N i
e

j=1 Ωi,j
f

)
.

Junctions between vessel elements and different vessels are simply mod-
eled as nodal points. Let Nint be the number of junction nodes. For each
node nk, k = 1, . . . , Nint, we denote by Ik the set of elements which converge
in that node. Moreover, we denote by I−k the subset of Ik for which nk is the
first endpoint of the element, i.e., an element belongs to I−k if its local axis
coordinate is such that z = 0 in nk. Similarly, we denote by I+k the subset
of Ik for which nk is the second endpoint of the element, i.e., an element
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belongs to I+k if its local axis coordinate is such that z = L in nk. At each
node nk, k = 1, . . . , Nint, we impose continuity of pressure and conservation
of flow (analogue of the electric Kirchhoff’s law)∑

i,j∈I−k

−Qi,j +
∑
i,j∈I+

k

Qi,j = 0. (19)

At the inlet and outlet nodes nin and nout (physiologically, more than one
inlet/outlet can be present in the network, for a total of Nbdr boundary
nodes), we can apply inlet and outlet pressure values (that is, we impose an
overall pressure drop, as in the simulations presented in this work), or an
inlet flux and an outlet pressure (or viceversa).

4. Solution procedure

4.1. Model summary

Gathering all the above points, we obtain a nonlinear boundary value
system of PDEs in the compliant domain ΩF . Summarizing, we must solve
the following

Problem 1. (Blood Flow Model in Compliant Microvessels): given the
connectivity of T , the external pressure, the unloaded configuration and
the mechanical properties of the vessels (including the conductivity laws),
find the piecewise constant function Q satisfying conditions (19) and the
continuous–piecewise linear function p such that in each element it holds

dQ

dz
= 0, Q = −σ(p)

dp

dz
, (20)

where the conductivity σ(p) is determined as summarized in Tab. 1. Prob-
lem 1 represents a system of nonlinear PDEs on the network graph.

4.2. Numerical approximation

To approximate the solution of Problem 1, it is convenient to think that
its discrete counterpart stems from the adoption of a primal mixed finite
element [47]. In this framework, T represents the “triangulation” of the
domain, with elements E . Specifically focusing on the case of prescribed inlet
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and outlet pressures, we introduce the finite dimensional spaces (see [48] for
a similar procedure, albeit in a different context):

Wh := {wh ∈ L2(ΩF) : wh|Ωf
∈ P0(Ωf ), ∀Ωf ⊂ ΩF},

Vh;(g1,g2) := {vh ∈ C0(ΩF) : vh|Ωf
∈ P1(Ωf ), ∀Ωf ⊂ ΩF ,

vh(nin) = g1, vh(nout) = g2}.
(21)

In Fig. 10, we show the shape function vh,i = vh,i(z) ∈ Vh;(g1,g2) relative to
node i. Notice that functions belonging to Vh;(g1,g2) are: 1) globally continuous
on the network; 2) linear on each element in I+i ∪ I−i ; 3) such that vh,i = δi,r,
r = 1, 2, . . . , Ntot, where we have set Ntot = (Nint +Nbdr).

In order to introduce the discrete weak formulation of Problem 1, we
let R(p) = 1/σ(p) be the non–negative tube resistance per unit length (ob-
serve that σ(p) > 0 in the physiological range) and ∀Qh, wh ∈ Wh, vh ∈
Vh;(g1,g2), ph ∈ Vh;(pin,pout), we define

A(Qh, wh; ph) =

∫
T
R(ph)Qhwh dz, B(vh, Qh) =

∫
T

dvh
dz

Qh dz. (22)

The FE discretized version of Problem 1 reads:
Problem 2: find (Qh, ph) ∈ (Wh × Vh;(pin,pout)) such that, ∀wh ∈ Wh,∀vh ∈
Vh;(0,0)

A(Qh, wh; ph) +B(ph, wh) = 0,

B(vh, Qh) = 0
(23)

Problem 2 is still non-linear, due to the dependence of the conductivity on the
pressure in the FSI problem. We linearize it by introducing the fixed point
iteration detailed in Algorithm 2. Notice that in order to achieve conver-
gence in the internal iteration a relaxation procedure is necessary. We have
empirically observed that satisfying a convergence criterion on the pressure
but also on the fluxes improves the overall solution.

We observe that the solution of system (24) can be carried out by formal
elimination of the flux variables as a function of the sole pressure variables.
This procedure yields at each internal iteration the linear algebraic system:
find the vector of nodal pressures P ∈ RNtot×1 such that

MP = F, (25)

where F ∈ RNtot×1 is the right–hand side andM∈ RNtot×Ntot is the stiffness
matrix.

24



Algorithm 2 : fixed point iteration to compute the fluid-dynamical
field on the network

given pstart;
fix toll, ωp, ωQ, kmax;

set p
(0)
h = pstart, k=0;

while and(err ≥ toll, k ≤ kmax) do

compute p
(k)
h = mean(p

(k)
h ) on each vessel;

compute for each vessel the cross section geometry under
the load p

(k)
h ;

update σ
(k)
h = σh(p

(k));
solve the following linearized version of Problem 2

A(Q
(k+1)
h , wh; p

(k)
h ) +B(p

(k+1)
h , wh) = 0,

B(vh, Q
(k+1)
h ) = 0

(24)

set p
(k+1)
h = ωpp

(k+1)
h + (1− ωp)p(k)h ;

set Q
(k+1)
h = ωQQ

(k+1)
h + (1− ωQ)Q

(k)
h ;

err= max{‖Q(k+1)
h −Q(k)

h ‖/‖Q
(k)
h ‖, ‖p

(k+1)
h −p(k)h ‖/‖p

(k)
h ‖ };

k=k+1;

end while
set Qh = Q

(k)
h , ph = p

(k)
h .

To provide an example of the resulting equations, we refer again to Fig. 10,
omitting for brevity the k superscripts of the internal iteration procedure.
We explicitly write the rows involving node ni, with converging vessel ele-
ments E l, Ek, Em (here, again for brevity, we have used a shortened notation
for vessel elements):

Rl(pl)QlLl + (pi − pi−1) = 0, (26)

Rk(pk)QkLk + (pi+1 − pi) = 0, (27)

Rm(pm)QmLm + (pi+2 − pi) = 0, (28)

−Ql +Qk +Qm = 0. (29)

Notice that we make implicit use of the fact that functions in Vh;(g1,g2) are
piecewise linear continuous over T , so that they ensure the automatic satis-
faction of the pressure coupling condition. The value of the pressure for all
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Figure 10: Bifurcation of the network including the joining node ni and the converging
vessel elements E l, Ek, Em. On each element, the arrow indicates the positive direction of
the local z axis. This choice implies that I+i = {l}, I−i = {k,m}. The linear “web–like”
shape function vh,i ∈ Vh is also represented.

the vessels converging in the node ni is thus uniquely identified by pi. Sub-
stituting Eq. (26),(27),(28) (generalized Ohm’s laws) in Eq. (29) provides a
reduced relation in the sole nodal pressure unknowns. Gathering together the
resulting relations for all the internal nodes gives a system of the type (25).

5. Numerical simulations

5.1. A practical instance of “measured” geometry of a microcirculatory net-
work: the case of eye retina vessels

The methodology described in the previous sections can address the so-
lution of general unstructured networks. In this work we specifically focus
on a model which represents the structure of the eye retina microcirculation.
This is a so-called terminal district, meaning that it has a single input (the
central retinal artery) and a single output (the central retinal vein). We ob-
serve, however, that in other microcirculatory districts it is normal to have a
redundancy of inputs and outputs pathways for blood flow. This latter issue
is very delicate, since there is a big question on how to enforce boundary
conditions in every terminal branch, in lack of data, and we are not dwelling
into it in the present work. We consider arteriolar and venular networks with
a mirrored organization, according to the structure proposed in [34] for the
same district. In general, the topological organization of the venular network
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Figure 11: Schematic representation of the structure of the vascular networks considered
for the numerical simulations. The generation numbers denotes the hierarchical position
of a certain vessel in the network. For simplicity, all the vessels are represented as having
the same diameter, but asymmetric networks are considered as well.

is recognized to be similar to that of the arteriolar network [49], although the
venule network organization has not been studied as extensively as the one
on the arterial side. Venules are generally more numerous than arterioles at
the same level of the network (we do not keep into account this point) and
the diameter of venous vessels is substantially greater than the arteriole at
the same level of the network (we consider here a diameter of the venules 30%
greater than the one of the corresponding arterioles). Terminal arterioles and
venules are connected one-to-one through four parallel capillaries.

In Fig. 11, we provide a schematic representation of the structure of the
vascular networks we consider. Whilst representing an evident idealization
of the real anatomy, this model allows us to carry out a more systematic
discussion on the results, filtering out the effects of the local irregularity and
complexity of the geometry.

Arterioles and venules are supposed to branch with Y–shaped bifurcations
and the vessel diameters at the branching points are defined according to a
modified Murray’s Law [50]: letting Df be the diameter of the larger (father)
vessel in a bifurcation and Dd1 , Dd2 the diameters of the smaller (daughter)
vessels, the following relation is assumed

Dm
f = Dm

d1
+Dm

d2
, (30)

where m = 2.85 is the fractal bifurcation exponent. We assume, as described
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in [14], that the daughter vessels have (possibly different) diameters, given
according to

Dd1 = cd1/fDf , Dd2 = Df (1− cmd1/f
)1/m, (31)

where cd1/f is a given proportionality coefficient and where Dd2 has been
obtained enforcing (30). The generation of the network is continued as long
as the vessel diameter is greater than 6 µm. Observe that cd1/f = 2−1/m =
0.784 yields a symmetric dichotomic network with a constant number of
branchings leading from the root to each leaf. The length L of each vessel is
chosen to be a fractal function of the diameter, according to L = 7.4D1.15,
as in [34]. Capillaries have diameter 6 µm and length 500 µm [34].

In Fig. 12 we show an example of network obtained setting cd1/f = 0.7.
Notice that, whilst the above described fractal networks do not possess, per
se, a spatial structure, we endow the network of 3D geometrical coordinates
by orienting in the space each daughter branch with respect to the father
with elevation and azimuthal solid angles chosen in a range which respects
anatomical features. This procedure, on the one side, facilitates the visualiza-
tion of the network and its physical fields. On the other, more importantly,
this allows to locally modify vessel properties or external conditions in a cer-
tain 3D spatial region to reproduce physiological and pathological alterations
of the baseline values.

Assessment of the in silico generated networks: comparison with exper-
imental measures. To assess the fact that the above considered networks
can compute physiologically coherent fluid-dynamical fields, we compare the
blood flow we obtain from model simulation with the experimental measures
in humans performed by different authors in the same diameter range. The
external pressure is set to pe = 15 mmHg, corresponding to the intraocular
pressure of a healthy subject. The results are shown in Fig. 13, which favor-
ably compares volumetric blood fluxes. Blood velocities (not represented)
are also coherent.

5.2. Physical and numerical parameters

If not otherwise specified, simulations are run considering coupled arterio-
lar and venular networks geometrically described on each side as in Sect. 5.1
with cd1/f = 0.7. This value yields a non-symmetric dichotomic network
whose anatomical features are relevant to the retinal circulation [14]. The
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other parameters are chosen as follows according to the simulation results car-
ried out by Takahashi [34], which were able to reproduce physiologically co-
herent velocity and flow fields. We set the network inlet pressure to 42 mmHg
and the outlet pressure to 18 mmHg, respectively. The inlet arteriole has ra-
dius equal to 62µm, the outlet venule equal to 72.5 µm. We set γ equal to
0.32 for arterioles and 0.05 for venules, which are reasonable values accord-
ing to the metadata collected in [39]. The first half length of each capillary
is considered to belong to the arteriolar network, and thus described as a
thick–walled ring, with γ = 0.2. The second half length is considered to
belong to the venular network, and thus is described as a thin–walled ring,
with γ = 0.08.

Blood viscosity is described according to the model of [51], where it is

Figure 12: Example of a network (arterial side only) considered in the following simu-
lations, represented in the pseudo–3D space. The network is asymmetric (cd1/f = 0.7),
as is evident from the colors mapping the value of the radii and the different branching
structure. To improve the readability of the figure, the smallest vessels are not shown.
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Figure 13: Comparison of blood flow computed by the present model on a network gener-
ated by fractal branching and experimental data measured in humans by different authors.

considered to be a function of plasma viscosity (= 1cP ), blood hematocrit
(= 45%) and vessel diameter. In this representation, the viscosity decreases
as the vessel diameter decreases till a diameter of about 40 µm, then it
starts to increase again with high steepness for smaller vessels. We choose to
account for non–circular shapes by using the concept of hydraulic diameter
defined as four times the ratio between the vessel cross sectional area and
the wetted perimeter of the cross-section [52].

For computation purposes, each vessel is then split into equal–sized ele-
ments with radius and wall thickness equal to that of the vessel itself. The
undeformed geometry is recovered according to the Algorithm 1. Notice that
in this latter configuration the radius of elements of the same vessels may be
different due to nonuniform pressure load.

We have studied the influence on the results of the number of element
into which each vessel is partitioned. This difference is extremely small when
considering the physiological range of typical external and internal blood
pressures. It is clear that, were the external pressure be significantly higher
than the internal one, using a greater number of elements -eventually with
an appropriate adaptive refinement - allows to obtain a more accurate de-
scription of the buckling phenomenon. In the following, we set Ne = 3 in
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each vessel.

5.3. Simulation results

In the following, we present the results obtained in different test cases
which highlight significant network behaviors.

Pressure field in the network as a function of the interstitial pressure.
We computationally solve the mathematical model choosing a uniform in-
terstitial pressure. We set successively pe = [15, 18, 20, 22] mmHg. observe
that, in the application we have in mind, the eye retina microcirculation,
We notice that, in this context, the interstitial (external) pressure essentially
corresponds to the so–called intraocular pressure (IOP), which is a param-
eter largely independent from the systemic blood pressure. Normotensive
individuals (healthy or medicated) may present elevated IOP values, as well
as hypertensive individuals may present normal values of IOP. We refer to
our work [53] for a comprehensive study of the sensitivity with respect to the
blood flow boundary conditions in a generic microcirculatory network.

For ease of presentation, in the following we report separately the re-
sults for arteries and veins, even if the simulations are run on the coupled
model. We have binned the vessel into classes according to their reference
diameters. Class boundaries are obtained by partitioning the range between
the minimum and maximum diameter into 20 classes using log10 spacing.
Class 1 corresponds to larger vessel, 20 to smaller ones. For each class, we
plot the bars whose heights represent the relative number (with respect to
the total number of arteries and veins, respectively) of vessels displaying an
average pressure in the color–coded range. Colored continuous curves link
the height of the bars belonging to the same pressure range. Fig. 14 shows
the histogram plots for arteries, Fig. 15 for veins. Observe as, for increasing
external pressure, peaks for each pressure range shift towards smaller vessels
(larger vessels in the venular network), thus indicating a global increase in
blood pressure. Lower pressure ranges progressively tend to disappear. This
phenomenon is to be ascribed to the presence of buckled vessels in veins. In
the two bottom panels of Fig. 15 we also observe a much more sharp compart-
mentalization of lower pressure ranges in class 1. Again, this phenomenon
is to be ascribed to the presence buckled vessels. This is also the cause of
the larger spreading in pressure ranges attained over the diameter classes for
increasing pe. These differences are more evident in the step pe=20 to 22
mmHg (pe=18 to 20 mmHg for the venous network) than in the previous
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steps. Elbow–like turns or “holes” in the enveloping curves are instead due
to the asymmetry of the network and the specific bin classification of each
vessel.

Observe that the pressure shift in the network is due to the concurrence
of several mechanisms. The networks we consider in our simulations have a
single input/output vessel. This implies that the network could be reduced
to an equivalent resistive vessel. This lumped vessel behaves similarly to a
Starling resistor (elastic-walled version of Hagen-Poiseuille flow). Typically,
when a uniform external pressure is applied to a vessel, only the very last part
of it participates in the non-axisymmetric buckling. As the external pressure
increases, the buckling point moves towards the very end of the vessel and
a stronger pressure drop occurs in the buckled vessels. This behavior is also
observed in experiments (see also e.g., Fig.8.5 in [22] for a long single vessel).
When one comes back to the topologically organized network, this amounts
to say that the buckling will always occur in the very last vessels.

Impact of boundary conditions
We examine the impact of the boundary conditions on the network be-

havior. A sensitivity analysis on this aspect had already been object of study
in our recent works [15] and [53]. In the first work we performed this type of
analysis on a large unstructured rigid network, while in the second we focused
on a simple bifurcation of converging or diverging compliant vessels. Here,
we consider the large compliant network described in Sect. sec:geo-ne and
we monitor how the flow rate varies with the overall pressure drop applied
between the upstream and downstream ends of the network. To do this, we
keep the inlet pressure fixed at 40 mmHg and we progressively decrease the
outlet pressure. The flow is thus driven by “downstream suction”. We carry
out this analysis for external pressure equal to 15 and 20 mmHg, respec-
tively. If the external pressure is lower than the outlet pressure, then all the
vessels in the network are in pre–buckled axi-symmetric configuration. As
the external pressure approaches the value of the pressure in a vessel, this
adds compressive load on the vessel wall. However, as long as the compres-
sion remains small, the tube resistance changes minimally. This results in
an approximately linear pressure-drop/flow rate relationship (see Fig. 16).
As the compressive loads further increases, the flow rate/pressure drop curve
saturates, till when the most downstream vessel, where the pressure is the
lowest, enters into buckling. At this point, a net increase of flow resistance
occurs. Notice that for pe = 15 mmHg this corresponds to a pressure drop
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Figure 14: Histogram plots for relative frequencies of blood pressure in the arterial part of
the network binned according to diameter class. Colored continuous curves link the height
of the bars belonging to the same pressure range.
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Figure 15: Histogram plots for the relative frequencies of pressures in the venous part of
the network binned according to diameter class. Colored continuous curves link the height
of the bars belonging to the same pressure range.
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of 25 mmHg, while for pe = 20 mmHg this corresponds to a pressure drop
of 20 mmHg. From this point on, a “negative effort dependence ”appears in
the flow rate/pressure drop , where an increase in the driving force/pressure
drop leads to a reduction in flow rate due to the higher resistance. Increasing
the external pressure reduces the pressure drop range for which the flow is
increasing, shifting the curve to the left. A similar behavior was obtained
for the model of Starling resistor proposed in [22]. In this work, the authors
analyzed (between the others) the flow rate in a single long vessel for varying
outlet pressure. The more complex structural model they used also allowed
to reveal the hysteretic behavior of the vessel when the external load is in-
creased and then decreased. This latter point cannot be described with the
present simplified structural model.

Figure 16: Flow rate as a function of the overall pressure drop applied between the up-
stream and downstream ends of the network. The inlet pressure is kept fixed at 40 mmHg
and the outlet pressure is progressively decreased. The analysis is carried out for external
pressure equal to 15 and 20 mmHg, respectively. Notice that for pe = 15 mmHg the
pressure drop of first buckling is 25 mmHg, while for pe = 20 mmHg is 20 mmHg.

Network response to local increases of interstitial pressure. We artificially
increase the external pressure to pe = 20 mmHg (elsewhere being equal to
15 mmHg) in a delimited portion of the network, located at the interior of
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a sphere with center in the venous post–capillary zone and radius chosen to
include a sufficient number of vessels (gray–shaded region in Fig. 17(bottom
row)). This setting simulates, for example, the presence of an edema. In
Fig. 17, we plot color–coded net variation ∆p of blood pressure in the arterial
and venous networks along with a zoom of the affected regions. In Tab. 3 we
report the maximal (with sign) percentage variation along the arteriolar and
venular network of blood pressure, blood flux, cross section area and vessel
resistance. Albeit no vessel properly enters into buckling instability due to
the chosen parameters, a strong increase in resistance is observed in veins
due to the combination of area variation and consequent high rise of blood
viscosity, strongly diameter depended in that region. Observe also how blood
pressure and flow variations are instead similar, this being connected to the
continuity conditions enforced at the artero-venous interfaces. This generates
strong flux diversion and “flux stealing” from other vessels [53, 54], localized
in the four or five generations surrounding the sphere. Observe that, whilst
no arterial vessel is actually included in the sphere, there exists a region of
the arterial network which is also affected by perturbations.

arterioles venules

mean blood pressure +6.46 % +7.10 %

flow rate -15.07 % -15.14 %

cross section area -15.20 % -55.47 %

conductance -31.84 % -91.64 %

Table 3: Maximal (with sign) percentage variations of the arteriolar and venular networks
in the specified vessel parameters subsequent to a local increase of external pressure in the
spherical region depicted in Fig. 17.

6. Conclusions

The ability of single body’s organs to bring about large selective vari-
ations in the rate of blood perfusion relies on the sophisticated regulatory
mechanisms of the peripheral circulatory districts. Blood flow regulation is
obtained by variation of the vessel diameter, under the effect of both passive
and active actions. In this work, we have focused our attention on the first
set of mechanisms, investigating the role of geometrical and structural (the
so-called “physical”) factors in flow regulation. The key point in this pro-
cess is compliance: elastic microvessels subject to mechanical loads undergo

36



deformations of their wall, altering the shape of the domain offered to blood
and, ultimately, resistance to flow. This implies, in turn, a redistribution of
the flow itself in the network.

The modeling strategy we have proposed in this work uses a simplified
description of blood flow and vessel wall-to-flow interaction in order to make
feasible computations on large networks. At the same time, important fea-
tures - peculiar characteristic of these networks- are retained. Blood flow
and pressure drop in each vessel element have been connected by a gener-
alized Ohm’s law including a conductivity parameter, function of the area
and shape of the tube cross section. These latter have been determined in a
consistent way by a thin or thick–wall structural model loaded by the inter-
nal and external pressure loads. A buckling model is considered in the case
of venules, which can experience low/possibly negative values of transmural
pressure.

Simulations carried out using the mathematical model show that globally
increasing the external pressure causes a global increase in luminal pres-
sure. This process is gradual till buckling occurs somewhere, typically at
the outflow, in the venous district. At this point the process has a sort of
discontinuity with a much more marked pressure increase. Locally increasing
the external pressure, on the other side, has an influence which can be esti-
mated to extend till four or five vessels generations away from the perturbed
area. One important point emerges from the above results. Vessels of the
same size may experience different intravascular pressure values due to their
different location in the network. Hence, even though the vessels embedded
in a certain tissue can be classified according to size or branching order, the
hemodynamic phenomena which are associated with changes in intravascular
pressure should be analyzed and interpreted with caution, especially when
considering asymmetrically branching systems.

The present model can be used to investigate alterations in microcir-
culatory beds due to pathological conditions. Hyperglycemia in diabetes
mellitus is known to cause important structural, biochemical and functional
changes in the peripheral circulation [55]. Alzheimer’s disease, atheroscle-
rosis or vascular dementia can change vascular stiffness. Elevated systolic
pressure (hypertension) increases the zero pressure lumen area and the buck-
ling pressure, so that an hypertensive vessel is more likely to collapse than
a normal one [56], with many possible hemodynamic consequences. To ad-
dress these points in a proper way, the following issues should be taken into
account in the future:
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i) inclusion of a more realistic and detailed blood rheology. In our work [15],
we have represented blood as a mixture of two fluids, plasma and red
blood cells, considering the effects of red blood cell partition at the bi-
furcations and blood viscosity depending on vessel geometry and vari-
able hematocrit. A similar approach could be extended without too
many difficulties to the present model;

ii) inclusion of a more realistic model of capillary beds and coupling with
the surrounding tissue. If, on the one side, capillaries show a pretty
regular mesh–like organization almost ubiquitous in the body, on the
other, it is not feasible to face their complete description. Dual mesh
techniques as discussed in [57] for cerebral microvasculature can be
used to study the dialog between the hemodynamic network and the
surrounding tissue. Alternatively, homogenized models for porous me-
dia can also be used to effectively face this problem as done in [58] for
pulmonary alveoli circulation;

iii) inclusion of “acute autoregulation” capabilities in arterioles, which ac-
tively respond to stimuli to maintain an adequate blood supply and
nutrient delivery to tissue. This topic is naturally founded on having a
disposal a model for blood–tissue interaction as described in point ii).
Possible regulatory laws could be borrowed from the works by Ursino
and co–authors (see, e.g., [59] and references therein) in the case of
compartmental models, and from the works by Arciero and co-authors
(see, e.g., [60, 61]) in the case of a simplified representative 1D/segment
model of large/small arteries/veins and capillaries. In these works, the
vasoactive response of the arterioles is modeled via “regulatory vari-
ables” which depend on myogenic and metabolic stimuli according to
phenomenological laws. Similar approaches have been recently adopted
to simulate vessel recruitment by David and co-authors (see, e.g., [62]
and references therein) for realistic network of the cerebral microcir-
culation, and by Secomb and co-authors (see, e.g., [29] and references
therein).

Appendix A. Numerical computation of the buckled cross sec-
tion for pt,cl < pt < pt,b

The shape of the buckled cross section in the range pt,cl < pt < pt,b is per-
formed by numerically solving the boundary value problem (16) by means of
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the Matlab function bvp4c. This function requires to provide an initial guess
of the solution, an appropriate choice of which is of fundamental importance.
As matter of fact, if the guess solution corresponds to a perfectly circular
shape, the solver will stagnate on that same shape (see [21] for a similar
observation). To kick in the instability, we provide a guess shape with a cur-
vature which is a small perturbation (with parameter ε� 1) of the curvature

of the reference circle of radius Ru, namely we set Kε =
1

Ru

(
1 + ε cos

s

Ru

)
.

We have found that the value of ε must be tuned accordingly to the imposed
transmural pressure: the more buckled is the expected shape of the cross
section, the more we need to use a strong perturbation in order to obtain
a physically coherent solution. Alternatively, we have also tried - once we
have computed the first buckled shape - to directly provide it to the solver
as a guess and this also provided the correct solution. As a final remark, one
should observe that, as already noticed by Fung in his book [3], there exists a
conceptual parallel between the need of providing to the solver a guess shape
which is not exactly circular -a need purely connected to start the numerical
procedure- and the existence in nature of imperfections in the vessel (in the
material composition, in the geometrical shape or in the load disposition)
which actually trigger the instability.

Appendix B. Functional representation of the Young modulus.
Whilst for large blood vessels, especially the carotid, much work has been
done, based on experimental measures possibly supported by the use of math-
ematical models (see, e.g., [3],[63]), there is a substantial paucity of data and
models for the representation of the Young modulus in microvessels. Given
these premises, if one considers for simplicity E=const, then relations (12)
become linear in the pressure, but the corresponding relation transmural
pressure vs. cross section area exhibits two non–physiological features: (i)
concave form and (ii) absence of saturation at a maximal cross section area
for high transmural pressures. It seems then necessary to use a more complex
description than a constant, also in view of the different reaction to loads of
the components of the vessel wall (collagen, elastin). In this work, we use a
linear functional dependence of Young modulus with respect to transmural
pressure. This relation is obtained by fitting data from the measurements
obtained in [64] by wire myography in small deactivated arteries and veins of
the rat mesenteric circulation. The computed steepness of the linear relation
is such that the Young modulus passes from a basal value Eb at zero transmu-
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ral pressure to roughly its double when the transmural pressure is increased
to 50 mmHg. In the present example of application of the model to the reti-
nal circulation, we set Eb = 0.022 MPa for arterioles and Eb = 0.066 MPa
for venules (basal values chosen as in [65] for the same microcirculatory dis-
trict). Analogous trends can be obtained also considering different sets of
measurements, for example the ones in [63] for human coronary arteries.

Appendix C. Influence of the asymmetry degree of the network
To assess the influence of the asymmetry degree of the network, we con-
sider four different networks with progressively increasing symmetry (that is,
with increasing index cd1/f ), till reaching a symmetric dichotomic network
cd1/f = 0.784. In Tab. A.4, we report the values of different features of these
networks (total number of vessels, min and max route distance of the leaves
of the tree, total cross section and equivalent resistance of the network in the
measured configuration) for the considered values of cd1/f . Shown data refer
to the arterial side. The trend of the parameters is due to the increasing
homogeneity of the network, which affects the relation between radius and
vessel length, and to the constraint of not trespassing the minimum diameter.
These elements combined together result into an equivalent resistance which
is more than doubled passing from cd1/f = 0.5 to cd1/f = 0.784.

Asymmetry index cd1/f trend

Parameter 0.5 0.6 0.7 0.784

total number of vessels 15252 12415 9664 8191 ↘

min route distance [µm] 1.65 ·103 1.84·103 2.36·103 3.13·103 ↗

max route distance [µm] 1.23·104 7.17·103 4.49·103 3.13·103 ↘

total cross section [µm2] 9.65 ·105 7.33·105 5.85·105 5.17·105 ↘

eq. resistance [cm3/s/mmHg] 7.84·10−7 1.14·10−6 1.43·10−6 1.7 ·10−6 ↗

Table .4: Characteristic values of parameters of networks (arterial side only) generated by
different degrees of asymmetry in branching (increasing symmetry moving to the right,
0.784=symmetry). The last column indicates the trend of each parameter for increasing
symmetry. Data correspond to a minimal diameter of 6 µm, inlet pressure 40 mmHg,
outlet pressure 20 mmHg (values chosen as in [34]).
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Figure 17: Effect of a local increase of external pressure. The gray shaded region represents
the sphere inside which the external pressure is set to pe = 20 mmHg, being elsewhere
equal 15 mmHg. Colors code the net variation ∆p of blood pressure in the arterial and
venous networks. Insets on the right part show zoomed view of the affected network
regions.
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