1,455 research outputs found

    New developments in Functional and Fractional Differential Equations and in Lie Symmetry

    Get PDF
    Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis

    Variational Iteration Method for Partial Differential Equations with Piecewise Constant Arguments

    Get PDF
    In this paper, the variational iteration method is applied to solve the partial differential equations with piecewise constant arguments. This technique provides a sequence of functions which converges to the exact solutions of the problem and is based on the use of Lagrangemultipliers for identification of optimal value of a parameter in a functional. Employing this technique, we obtain the approximate solutions of the above mentioned equation in every interval [n, n + 1) (n = 0, 1, · · ·). Illustrative examples are given to show the efficiency of themethod

    Approximate solutions for solving nonlinear variable-order fractional Riccati differential equations

    Get PDF
    In this manuscript, we introduce a spectral technique for approximating the variable-order fractional Riccati equation (VO-FRDEs). Firstly, the solution and its space fractional derivatives is expanded as shifted Chebyshev polynomials series. Then we determine the expansion coefficients by reducing the VO-FRDEs and its conditions to a system of algebraic equations. We show the accuracy and applicability of our numerical approach through four numerical examples. &nbsp

    Preclinical validation of the advection diffusion flow estimation method using computational patient specific coronary tree phantoms

    Get PDF
    Coronary computed tomography angiography (CCTA) does not allow the quantification of reduced blood flow due to coronary artery disease (CAD). In response, numerical methods based on the CCTA image have been developed to compute coronary blood flow and assess the impact of disease. However to compute blood flow in the coronary arteries, numerical methods require specification of boundary conditions that are difficult to estimate accurately in a patient-specific manner. We describe herein a new noninvasive flow estimation method, called Advection Diffusion Flow Estimation (ADFE), to compute coronary artery flow from CCTA to use as boundary conditions for numerical models of coronary blood flow. ADFE uses image contrast variation along the tree-like structure to estimate flow in each vessel. For validating this method we used patient specific software phantoms on which the transport of contrast was simulated. This controlled validation setting enables a direct comparison between estimated flow and actual flow and a detailed investigation of factors affecting accuracy. A total of 10 CCTA image data sets were processed to extract all necessary information for simulating contrast transport. A spectral element method solver was used for computing the ground truth simulations with high accuracy. On this data set, the ADFE method showed a high correlation coefficient of 0.998 between estimated flow and the ground truth flow together with an average relative error of only 1 % . Comparing the ADFE method with the best method currently available (TAFE) for image-based blood flow estimation, which showed a correlation coefficient of 0.752 and average error of 20 % , it can be concluded that the ADFE method has the potential to significantly improve the quantification of coronary artery blood flow derived from contrast gradients in CCTA images. </p

    Discrete monotone method for space-fractional nonlinear reaction–diffusion equations

    Get PDF
    A discrete monotone iterative method is reported here to solve a space-fractional nonlinear diffusion–reaction equation. More precisely, we propose a Crank–Nicolson discretization of a reaction–diffusion system with fractional spatial derivative of the Riesz type. The finite-difference scheme is based on the use of fractional-order centered differences, and it is solved using a monotone iterative technique. The existence and uniqueness of solutions of the numerical model are analyzed using this approach, along with the technique of upper and lower solutions. This methodology is employed also to prove the main numerical properties of the technique, namely, the consistency, stability, and convergence. As an application, the particular case of the space-fractional Fisher’s equation is theoretically analyzed in full detail. In that case, the monotone iterative method guarantees the preservation of the positivity and the boundedness of the numerical approximations. Various numerical examples are provided to illustrate the validity of the numerical approximations. More precisely, we provide an extensive series of comparisons against other numerical methods available in the literature, we show detailed numerical analyses of convergence in time and in space against fractional and integer-order models, and we provide studies on the robustness and the numerical performance of the discrete monotone method. © 2019, The Author(s).Russian Foundation for Basic Research, RFBR: 19-01-00019Consejo Nacional de Ciencia y Tecnología, CONACYT: A1-S-45928The first author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second (and corresponding) author acknowledges financial support from CONACYT through grant A1-S-45928. ASH is financed by RFBR Grant 19-01-00019

    Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay

    Get PDF
    For a space-fractional diffusion equation with a nonlinear superdiffusion coefficient and with the presence of a delay effect, the grid numerical method is constructed. Interpolation and extrapolation procedures are used to account for the functional delay. At each time step, the algorithm reduces to solving a linear system with a main matrix that has diagonal dominance. The convergence of the method in the maximum norm is proved. The results of numerical experiments with constant and variable delays are presented. © 2023 by the authors.Russian Science Foundation, RSF: 22-21-00075This research was funded by the Russian Science Foundation grant number 22-21-00075

    Extracting coronary blood flow from the intensity of contrast enhanced CCTA images

    Get PDF

    Extracting coronary blood flow from the intensity of contrast enhanced CCTA images

    Get PDF

    Numerical methods for nonlinear partial differential equations of fractional order

    Get PDF
    In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order
    corecore