5 research outputs found

    Approximation of reachable sets using optimal control algorithms

    Get PDF
    To appearInternational audienceNumerical experiences with a method for the approximation of reachable sets of nonlinear control systems are reported. The method is based on the formulation of suitable optimal control problems with varying objective functions, whose discretization by Euler's method lead to finite dimensional non-convex nonlinear programs. These are solved by a sequential quadratic programming method. An efficient adjoint method for gradient computation is used to reduce the computational costs. The discretization of the state space is more efficiently than by usual sequential realization of Euler's method and allows adaptive calculations or refinements. The method is illustrated for two test examples. Both examples have non-linear dynamics, the first one has a convex reachable set, whereas the second one has a non-convex reachable set

    Using the Sum of Roots and Its Application to a Control Design Problem

    Get PDF
    scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder. Parametric Polynomial Spectral Factorizatio
    corecore