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1 Introduction

The subject of this paper is the analysis and extension of an algorithm in [5]
for the approximation of reachable sets of non-linear control problems.

Reachable sets appear in various applications, e.g. in the presence of dis-
turbances of parameters in control problems, in estimates in terminal points
of all solutions of a control problem, differential inclusions, and differential
games. Specific applications can be found in population models, fish har-
vesting, collision avoidance, weather forecasts, climate models, space orbit
calculations, and many others, see [12], [17], [37].

Many properties of the reachable set are known for linear control prob-
lems with f being linear in x and u. Most importantly, it can be shown
that the reachable set for linear control problems is a convex set. Various
methods for the approximation of reachable sets for linear control problems
have been suggested, among them are set-valued integration schemes [2], op-
timal control techniques [52, 47, 4], external and inner ellipsoidal techniques
[36, 37, 38], estimation methods [23, 34, 21], see also references listed therein.

However, in the non-linear case less methods are known (for an overview
see [12]) as the reachable set is non-convex. Häckl in [29] used time dis-
cretization combined with ε-grids in state space (see also [46]), Chahma [12]
used set-valued Runge-Kutta methods for nonlinear problems with state con-
straints, in [6] the Euler’s method is studied with a detailed analysis of the
discretization error in state space.

The idea of our approach is to project grid points from an equidistant
grid onto the reachable set. Each projection requires to solve an optimal
control problem, where the optimal value yields the distance of the grid
point to the reachable set. The corresponding optimal control problems are
not solved theoretically by use of the Pontryagin’s maximum principle as in
[52] but numerically by suitable discretization methods. The resulting DFOG
method (DFOG = distance field on grids) turns out to be powerful in practice
and allows to include control and/or state constraints and even boundary
conditions. Results concerning the convergence of discretized optimal control
problems can be found in [42, 19, 30] and the references stated therein.

A similar approach using optimal control techniques was discussed in [4]
in the special case of linear control problems. Herein, the optimal value of
the optimal control problem provides the support function exploiting the
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convexity of the reachable set. In the nonlinear case this approach is not
applicable anymore, as the reachable set is in general non-convex. Hence,
we switch to the distance function which allow the description of non-convex
sets, see [13, Sect. 1].

Distance functions are a commonly used tool, both theoretically and nu-
merically. They are applied in the convergence proofs of set-valued Runge-
Kutta methods for estimating the Hausdorff distance of reachable sets (see
e.g. [18, 55, 12]), in level-set methods (see e.g. [37, 35, 44]) in exploiting
the Hamilton-Jacobi-Bellman equation for the alternative approximation of
reachable sets (see e.g. [8]), in computational geometry (see e.g. [14, 40]),
and in the proximal analysis (exemplarily we mention [13]).

We also would like to mention an interesting similar approach in [9] which
uses distance functions in the objective function of optimal control prob-
lems and a path-following idea for boundary points of the viability kernel.
The distance function penalizes infeasible states or states outside an a priori
chosen bounding box. In the DFOG method the objective function is the
squared Euclidean distance and the optimal value function is the distance
function. The approach in [9] creates nonsmooth optimization problems
which are solved by simulated annealing techniques. The use of distance
functions allows a quicker computation of viability kernels in comparison to
other approaches.

In the calculation of the value function, which plays an important role
in level-set methods, a similar approach with optimal control problems is
applied in [37, 39] to derive the Hamilton-Jacobi equations. Level sets of the
value function then determine the reachable set.

Further approaches can be found in [17] (simulation of trajectories with
piecewise constant control functions by Runge-Kutta methods), approxima-
tion schemes using Volterra series in [33] or methods based on zonotopes in
[26] for hybrid linear systems.

The paper is organized as follows. In Section 1 the problem of computing
the reachable set of a non-linear control problem is introduced. Section 2 pro-
vides three discrete approximation strategies for closed sets which are rather
elementary. Their approximation accuracy depends on the gridwidth in state
space discretization and is also discussed. The strategies depend Lipschitz
w.r.t. the set which is discretized. Further properties and connections are
also included in this part. In Section 3 properties and the approximation
of reachable sets are recalled to lay the basis for the overall estimates of
the DFOG method. Section 4 discusses the numerical implementation of the
three strategies from Section 2. Here, the grid point is the parameter entering
the optimal control problems which leads to the calculation of projections to
the (unknown) discrete reachable set. Using the results of Section 3, error
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estimates w.r.t. stepsize and state-space grids are presented. In the DFOG
method the popular direct discretization of optimal control problems is com-
bined with an approximation strategy for sets based on distance functions
and best approximations. Numerical examples for various non-linear control
problems are presented in Section 5. Finally, concluding remarks and an
outlook is given in Section 6.

Let t0 < T be given and let U 6= ∅ be a convex and compact subset of
R

m. Moreover, let an initial state x0 ∈ R
n be given. Consider the following

nonlinear control problem.

Problem 1.1 For a given u ∈ U ⊂ L∞([t0, T ], Rm), i.e. u(t) ∈ U a.e. in
[t0, T ], find x ∈ W 1,∞([t0, T ], Rn) with

x′(t) = f(t, x(t), u(t)) a.e. in [t0, T ],

u(·) ∈ U ,

x(t0) = x0.

The task is to compute the reachable set at time T which is defined as
follows:

R(T, t0, x0) :=
{
y ∈ R

n | ∃ control function u(·)
and ∃ corresponding solution x(·)
of Control Problem 1.1 with x(T ) = y

}

Consider a suitable one-step discretization scheme, e.g. an explicit Runge-
Kutta method, with increment function Φ on a time grid with time points
ti = t0 + ih, i = 0, 1, . . . , N , and stepsize h = (T − t0)/N . For simplicity the
grid is chosen equidistantly. Then, using the discretization scheme, a discrete
counterpart of the continuous control problem is defined as follows.

Problem 1.2 For a discretized control function uh(·) ∈ Uh, i.e. uh : I → U
and Uh being a finite dimensional approximation of U , find a solution xh(·)
with

xh(ti+1) = xh(ti) + hΦ(ti, xh(ti), uh, h), i = 0, 1, . . . , N − 1,

xh(0) = x0,

uh(·) ∈ Uh.

In the simplest case we choose Φ(t, x, u, h) = f(t, x, u) and Uh as the
piecewise constant functions with values in U , that is Euler’s method. This
method is highly studied in the approximation of control problems, see [19]
for an overview.
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An approximation of the continuous reachable set R(T, t0, x0) is given by
the discrete reachable set defined by

Rh(tN , t0, x0) :=
{
y ∈ R

n | ∃ discretized control function uh(·)
and ∃ corresponding solution xh(·)
of Control Problem 1.2 with xh(tN) = y

}
.

Reachable sets are interesting, because they allow to study the future
development of dynamic systems under the influence of control variations and
variations in parameters. For instance based on appropriate models, changes
in climate can be studied for different environmental influence factors, like
carbondioxid concentrations or temperature, see [12, Sect. 5.3].

Another field of applications are robust control problems. Herein, a con-
trol problem with uncertain dynamics is considered:

x′(t) = f(t, x(t), u(t), p(t)), p(·) ∈ P,

where P denotes an appropriate parameter region. Let u∗ be a given control
law (e.g. an optimal control for a fixed p∗(·) ∈ P ) and let x(u∗, p)(·) denote
the solution for any p(·) ∈ P . The task is to decide whether u∗ robustly
obeys given constraints, e.g. whether

c(t, x(u∗, p)(t), u∗(t)) ≤ 0 ∀p(·) ∈ P

holds. This constraint can be checked, if the reachable set of x for a fixed u∗

and for varying p(·) ∈ P can be approximated.

2 Proximal Normals and Inner/Outer Approx-

imation of Sets

2.1 Set Representation Techniques

We want to recall basic notions from set representations in [13, Sect.1.1]
which appear in connection with proximal normals. Hereby, ‖ · ‖ denotes the
Euclidean norm in R

n.

Definition 2.1 Let S ⊂ R
n be closed and nonempty, x ∈ R

n.
dist(x, S) := infs∈S ‖x − s‖ is the distance of x to the set S. The (metric)
projection is the set of all closest points of x in S, i.e.

ΠS(x) := {s ∈ S : ‖x − s‖ = dist(x, S)}.
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If needed, we use the notation πS(x) for one element of ΠS(x).

The (one-sided Hausdorff) distance of one set S ⊂ R
n to another one S̃ and

the Hausdorff distance between both are given by

d(S, S̃) = sup
s∈S

dist(s, S̃),

dH(S, S̃) = max{d(S, S̃), d(S̃, S)}.

The set of closest points is compact and nonempty, see [49, Example 1.20]
or [32, Section 3] and the corresponding map is upper semi-continuous. As a
consequence ΠS(·) is continuous on the complement of S, if the closest point
is unique there.

The following lemma leads to a characterization of (parts of) a set by the
complement of open balls whose radii are given by the distance function.

Lemma 2.2 Let S ⊂ R
n be closed and nonempty.

Then,

S = R
n \

{ ⋃

x∈R
n

ŝ∈ΠS(x)

ŝ6=x

int B‖x−ŝ‖(x)
}

= R
n \

{ ⋃

x∈Rn

int Br(x)(x)
}

,

where r(x) = dist(x, S).

Proof: The representation follows immediately from [13, § 1, Corollary 6.2].
Please notice that the case ŝ = x, i.e. x ∈ S, can be safely ignored in the
union above, since r(x) = ‖x − ŝ‖ = 0 and the interior of the ball is empty.

�

The Hausdorff distance can be expressed not only by the Minkowski du-
ality, but more general for closed sets by the distance function, which imme-
diately results in regularity properties for the distance function.

Proposition 2.3 Let S, S̃ ⊂ R
n be closed and nonempty. Then,

dH(S, S̃) = sup
x∈Rn

∣∣∣ dist(x, S) − dist(x, S̃)
∣∣∣ = sup

x∈S∪eS

∣∣∣ dist(x, S) − dist(x, S̃)
∣∣∣ (1)

Proof: cf. [49, Example 4.13] or [1, Lemma 3.7] �

Obviously, the Lipschitz continuity of the distance function dist(x, S)
w.r.t. the set argument S measured by the Hausdorff distance follows imme-
diately. Furthermore, it is well-known that it is Lipschitz continuous with
modulus 1 w.r.t. the first argument x, see [15, Chapter 4, Theorem 2.1] or
[49, Example 4.13].
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2.2 Inner/Outer Approximation of Sets

If not otherwise specified, let ρ · Z
n be a grid with grid size ρ > 0. For a

given set S ⊂ R
n we denote by Sρ the slightly enlarged set S restricted to

the grid, i.e.

Sρ :=

(
S +

√
n

2
· ρ · B1(0)

)
∩ ρZ

n . (2)

The strategy (2) to extend a set depending on the distance of grid points in
one coordinate before restricting it to the grid is commonly used in set-valued
analysis, especially in viability theory, see e.g. [50, 48], as well as [16, 12, 6].
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Figure 1: bad approximation of the dark colored set without extension

We explain the need to extend sets by an example that Lars Grüne pro-
vided to us, compare also [28, Section 2.3]. In Figure 1 the dark colored
set S (a small ball with an attached horizontal line segment with irrational
x2-coordinate) is not well approximated by its grid projection S ∩ ρZ

n for
rational figures ρ. Only one element of S, the origin, is hit by grid points
(marked with black diamonds) for the values ρ = 2, 1, 1

2
. Thus, the Hausdorff

distance remains constant and no point of the line segment with irrational
coordinate is ever hit by grid points.
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Figure 2: better approximation of the light colored set with extension (dark
colored set)

In contrary, Figure 2 shows that the extension Sρ of S (dark colored set)
yields a better approximation of S. Now, 2, 3 or 5 grid points lie in the dark
colored shaded extension for ρ = 2, 1, 1

2
respectively. Here, the Hausdorff

distance between S and its (shrinking) extension Sρ is proportional to ρ.
The following lemma suggests that this extension provides a first strategy

to approximate a closed set via grid points. Although the result is well-
known, we provide the proof for the convenience of the reader.

Lemma 2.4 Assume that S is closed and nonempty, ρ > 0, and ρ · Z
n be

the (infinite) grid.
Then, the distance of a point s in S to a grid point can be estimated by

dist(s, ρ · Zn) ≤
√

n

2
· ρ .

Denote the first strategy by

M1
ρ(S) :=

⋃

gρ∈ρ·Zn

dist(gρ,S)≤
√

n

2
·ρ

{gρ} , (3)

then Sρ = M1
ρ(S) and the following estimate holds:

dH(S,M1
ρ(S)) ≤

√
n

2
· ρ

Proof: Let s ∈ S. We define the grid point gρ ∈ ρZ
n componentwise with

the Gauss bracket ⌊·⌋ for the biggest integer not exceeding a real number:

gρ,i :=

{
⌊si

ρ
⌋ · ρ , if 0 ≤ si

ρ
− ⌊si

ρ
⌋ < 1

2
,

(⌊si

ρ
⌋ + 1) · ρ , else
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Clearly, gρ ∈ ρZ
n and |si − gρ,i| ≤ ρ

2
. Hence,

‖s − gρ‖2 ≤
n∑

i=1

|si − gρ,i|2 ≤ n · ρ2

4
.

Since dist(gρ, S) can be estimated by ‖gρ − s‖, we found a bound for the
one-sided Hausdorff distance d(S,M1

ρ(S)).
On the other hand, choosing gρ ∈ M1

ρ(S) we know the existence of s ∈ S
with

dist(gρ, S) = ‖gρ − s‖ ≤
√

n

2
ρ ,

so that the estimate follows. The equality of the first strategy with the
extension Sρ is clear by the equivalence of dist(gρ, S) ≤

√
n

2
ρ and gρ ∈ S +√

n

2
ρB1(0). �

A second elementary strategy is described in the following lemma and is
based on best approximations of grid points.

Lemma 2.5 Assume that S is closed and nonempty, ρ > 0 and ρ ·Zn be the
(infinite) grid. Let us denote the second strategy by

M2
ρ(S) :=

⋃

gρ∈ρ·Zn

ŝρ∈ΠS(gρ)

{ŝρ}. (4)

Then,

dH(S,M2
ρ(S)) ≤

√
n · ρ.

Proof: Clearly, d(M2
ρ(S), S) = 0, since all best approximations are elements

of S. On the other hand, for any gρ ∈ M1
ρ(S) there exists s ∈ S with

‖s − gρ‖ = dist(s,M1
ρ(S)) ≤

√
n

2
· ρ

by Lemma 2.4. For this grid point gρ let us choose ŝρ ∈ ΠS(gρ). Then,

‖gρ − ŝρ‖ = dist(gρ, S) ≤ ‖gρ − s‖.

Moreover,

dist(s,M2
ρ(S)) ≤ ‖s − ŝρ‖ ≤ ‖s − gρ‖ + ‖gρ − ŝρ‖ ≤ 2 · ‖s − gρ‖ ≤ √

n · ρ,

d(S,M2
ρ(S)) ≤

√
n · ρ.
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The following lemma provides an approximate set representation via the
complement using only finitely many open balls instead of infinitely many
ones as in Lemma 2.2.

Lemma 2.6 Let S ⊂ R
n be closed and nonempty, ρ > 0 and ρ · Z

n be the
(infinite) grid. Define the third strategy by

M3
ρ(S) := R

n \
⋃

gρ∈ρ·Zn

int Br(gρ)(gρ) (5)

with r(x) = dist(x, S). Then,

dH(S,M3
ρ(S)) ≤

√
n · ρ.

Proof: From Lemma 2.2,

S = R
n \

⋃

x∈Rn

int Br(x)(x) ⊂ M3
ρ(S)

obviously holds.
Each v ∈ M3

ρ(S) cannot lie in the interior of the ball Br(gρ)(gρ) for all
gρ ∈ ρZ

n due to (5). Hence, the inequality ‖v − ĝρ‖ ≥ dist(ĝρ, S) holds for
ĝρ ∈ ΠρZn(v). Furthermore,

dist(ĝρ, S) ≤ ‖v − ĝρ‖ ≤
√

n

2
· ρ

is valid by Lemma 2.4. Hence, there exists ŝ ∈ S with

‖ĝρ − ŝ‖ = dist(ĝρ, S) ≤
√

n

2
· ρ,

dist(v, S) ≤ ‖v − ŝ‖ ≤ ‖v − ĝρ‖ + ‖ĝρ − ŝ‖ ≤
√

n · ρ ,

d(M3
ρ(S), S) ≤ √

n · ρ .

�

Surprisingly, all above estimates of the three discretization strategies
Mi

ρ(S), i = 1, 2, 3, do not depend on the set S and the regularity of its
boundary.

Let us specialize these results to compact sets S to be able to restrict our
discretization to a finite set Gρ of grid points. Although we change the set of
grid points slightly, we stick to the old notation Mi

ρ(S) to avoid additional
notation.
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Corollary 2.7 Let S ⊂ R
n be compact and nonempty with a (compact)

bounding box G ⊂ R
n, i.e. S ⊂ G. For a given grid size ρ > 0 we use

the extension Gρ ⊂ ρZ
n in (2) with finitely many grid points.

If we replace ρ · Zn by Gρ in the three strategies, the following holds:

(i) dH(S,M1
ρ(S))≤

√
n

2
· ρ with M1

ρ(S) =
⋃

gρ∈Gρ

dist(gρ,S)≤
√

n

2
·ρ

{gρ} ,

(ii) dH(S,M2
ρ(S))≤ √

n · ρ with M2
ρ(S) =

⋃
gρ∈Gρ

ŝρ∈ΠS(gρ)

{ŝρ} ,

(iii) dH(S,M3
ρ(S))≤ √

n · ρ with M3
ρ(S) = R

n \ ⋃
gρ∈Gρ

int Br(gρ)(gρ)

Proof: Let us check the three strategies separately, since only small modifi-
cations of the proofs of Lemmas 2.4–2.6 are necessary.

(i) If we take s ∈ S, it is obvious that the constructed grid point gρ in

Lemma 2.4 lies in Sρ ⊂ Gρ, since ‖gρ − s‖ ≤
√

n

2
ρ.

On the other hand, each grid point gρ in Gρ with distance to S not exceeding√
n

2
ρ lies in S +

√
n

2
ρB1(0) so that the rest of the proof remains unchanged.

(ii) We only need to adapt the second part of the proof slightly. The
best approximation gρ of an element s ∈ S to the set M1

ρ(S) has distance

smaller or equal to
√

n

2
ρ. Now, the same reasoning as in (i) shows that

gρ ∈ S +
√

n

2
ρB1(0) ⊂ G +

√
n

2
ρB1(0) which means that gρ is an element of

Gρ. The proof can be finished as in Lemma 2.5.

(iii) Similar to (ii) one shows that ĝρ ∈ Gρ for a chosen v ∈ M3
ρ(S) in

Lemma 2.6. The rest of the proof remains unchanged. �

The next proposition compares the three strategies. The first strategy
(restricted to grid points in S) is included in the second one1, the latter is
a subset of the third strategy2 and this strategy is contained in the original
set S. The first two strategies consist only of finitely many points, the third
one will later allow an adaptive modification of the approximation.

Proposition 2.8 Let S ⊂ R
n be closed and nonempty and let ρ > 0 be the

grid size.
Then,

S ∩M1
ρ(S) ⊂ M2

ρ(S) ⊂ S ⊂ M3
ρ(S) .

1The second strategy additionally collects the best approximations.
2The best approximations of grid points in S and thus, the grid points inside of S

themselves, cannot lie in the union of open balls given by the distance function.
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If S is compact and G is a compact bounding box and we substitute ρ ·Zn by
Gρ in all three strategies, we will have the same inclusions.

Proof: A grid point gρ that lies in S ∩ M1
ρ(S) coincides with its best ap-

proximation in S and thus is contained in the second strategy.
Take a best approximation ŝρ ∈ S of a grid point gρ ∈ ρ · Z

n. Let us
assume that there exists g̃ρ ∈ ρ · Z

n with ‖ŝρ − g̃ρ‖ < dist(g̃ρ, S). This grid
point g̃ρ could not lie in S, since we would get the contradiction ‖ŝρ−g̃ρ‖ < 0.
Its best approximation s̃ ∈ ΠS(g̃ρ) fulfills

‖g̃ρ − ŝρ‖ < r(g̃ρ) = dist(g̃ρ, S) = ‖g̃ρ − s̃‖
which would be a contradiction to the optimality of ŝρ. Hence, such a grid
point g̃ρ cannot exist and ŝρ is an element of the set of the third strategy.

The last inclusion is already shown in the proof of Lemma 2.6, while the
reasoning is the same for the three strategies using finitely many points in
Gρ instead of infinitely many in ρ · Z

n. �

We end this section with a perturbation result for the three discretization
strategies. Except a fixed error of term O(ρ) each of the three strategies
behaves Lipschitz continuous w.r.t. the change in the set. Furthermore, all
three strategies differ only in Hausdorff distance by O(ρ).

Lemma 2.9 Let S, S̃ ⊂ R
n be closed and nonempty and ρ > 0 be the grid

size.
Then,

dH(Mi
ρ(S),Mi

ρ(S̃)) ≤ dH(S, S̃) + ci

√
nρ ,

dH(Mi
ρ(S),Mj

ρ(S)) ≤ 2
√

nρ

for all strategies i, j = 1, 2, 3, where c1 = 1 and c2 = c3 = 2.

Proof: The first estimate follows immediately from Lemmas 2.4–2.6, since

dH(Mi
ρ(S),Mi

ρ(S̃)) ≤ dH(Mi
ρ(S), S) + dH(S, S̃) + dH(S̃,Mi

ρ(S̃)) .

The second one is clear by the estimate

dH(Mi
ρ(S),Mj

ρ(S)) ≤ dH(Mi
ρ(S), S) + dH(S,Mj

ρ(S)) .

�

The application of these three strategies to reachable sets is obvious. Since
we know that the discrete reachable sets are close to the continuous one under
appropriate assumptions, we will apply the three discretization strategies to
the discrete reachable set and we will still have a good approximation of the
reachable set in Problem 1.1.
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3 Convergence Analysis

3.1 Properties and Approximations of Reachable Sets

Proposition 3.1 Let the set-valued mapping F : I × R
n ⇒ R

n be locally
Lipschitz w.r.t. x with integrable Lipschitz bounds LR(·) on balls BR(0) and
have closed, nonempty images.
Assume that F is of linear growth with integrable bound C(·), i.e.

‖F (t, x)‖ ≤ C(t) · (1 + ‖x‖).

Then, the closure of the reachable set for the right-hand side F equals the
reachable set for the convexified (relaxed) right-hand side coF .

Proof: cf. [22, Theorem 2.3] �

In our problem setting we need to ensure that the reachable set is closed
and nonempty, for the numerical computations the compactness is essential.
Both is guaranteed by the following proposition.

Proposition 3.2 Let f : I × R
n × Rm → R

n be continuous w.r.t. all ar-
guments, continuously differentiable w.r.t. x and U : I ⇒ R

m be continuous
with compact, nonempty images.
Consider F : I × R

n ⇒ R
n defined as

F (t, x) =
⋃

u∈U(t)

{f(t, x, u)}.

Assume that F has convex images and is of linear growth, i.e.

‖F (t, x)‖ ≤ C · (1 + ‖x‖).

Then, the reachable set is compact and nonempty.

Proof: To apply [31, Theorem 20.1] we only have to show that

〈x, f(t, x, u)〉 ≤ C ·
(
1 + ‖x‖2

)
(t ∈ I, x ∈ R

n, u ∈ U(t)) .

But this follows from the linear growth condition:

〈x, f(t, x, u)〉 ≤ ‖x‖ · ‖f(t, x, u)‖ ≤ C ·
(
‖x‖ + ‖x‖2

)

≤ C ·
(

1

2
+ ‖x‖

)2

≤ 2 · C ·
(
1 + ‖x‖2

)

�
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The previous result refers to a parametrization of the right-hand side of
the differential inclusion. This formulation is convenient for the verification
of the assumptions for the examples in Section 5. Alternatively, it would be
possible to state a similar result with the set-valued right-hand side. In [31,
Corollary 20.2], the relaxation theorem as in Proposition 3.1 is formulated
for a parametrization.

For our analysis we formulate a central result establishing the convergence
of reachable sets with slightly more restrictive assumptions on the right-hand
side based on the results in [18], see also [55].

Proposition 3.3 Let F : I×R
n ⇒ R

n be Lipschitz w.r.t. (t, x) with compact,
convex, nonempty images.
Then, the following convergence result holds for all N ∈ N, h = T−t0

N
:

dH(R(T, t0, y0),Rh(T, t0, y0)) ≤ Ch.

Proof: cf. [18, Section 1, Theorem] �

3.2 Discrete Approximation of Reachable Sets

Under the assumptions of Proposition 3.2, the reachable set is compact and
nonempty, hence we may apply the results of Section 2 to derive discrete
approximations of the reachable sets. Nevertheless, the convergence result
stated in Proposition 3.3 discusses only the discretization in time. To im-
plement set-valued Euler’s method we need the additional discretization in
space, see [12, Section 4.2] and [6]. In contrast to the cited articles, the choice
of the grid points in the three discretization strategies in Lemmas 2.4–2.6 de-
pend on values of the distance function or on closest points.

Summarizing we obtain the following main result, where we formulate
the abstract convergence result not only for the Euler method, but more
generally for set-valued Runge-Kutta methods, see [54, 53, 12, 3, 4]. Actually,
any discretization method of order p could be treated by the theorem.

Theorem 3.4 Let U ⊂ R
m be convex, compact, nonempty and let f : I ×

R
n ×Rm → R

n be a parametrization of the set-valued map F : I ×R
n ⇒ R

n

with

F (t, x) =
⋃

u∈U

{f(t, x, u)} . (6)

Let R = R(T, t0, X0) be the compact, nonempty reachable set of the differ-
ential inclusion, h = T−t0

N
be a stepsize with N ∈ N, let Rh = Rh(T, t0, X0)
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be the discrete reachable set of the set-valued Runge-Kutta method which is
assumed to be closed and nonempty. Assume that the choice of the set-valued
method and U as well as the regularity of the parametrization guarantee that

dH(R,Rh) ≤ C1 · hp . (7)

Then, taking ρ = C2 · hp for the three discretization strategies in (3)–(5)

dH(R,M1
ρ(Rh)) ≤ (C1 +

√
n

2
· C2) · hp , (8)

dH(R,M2
ρ(Rh)) ≤ (C1 +

√
n · C2) · hp , (9)

dH(R,M3
ρ(Rh)) ≤ (C1 +

√
n · C2) · hp . (10)

Proof: We just apply the triangle inequality for the Hausdorff distance and
combine the convergence assumption (7) with the results of Corollary 2.7,
since the reachable sets Rh are bounded and the assumption yields compact-
ness and nonemptiness. �

In [54, 3] regularity assumptions for Runge-Kutta methods of order 2
applied to linear differential inclusions are formulated, in [53] also for the
nonlinear ones with strongly convex right-hand sides. Typical conditions
involve smoothness of the parametrizing function f(·, ·, ·) but also for the
support functions (t, x) 7→ δ∗(l, F (t, x)) uniformly in normed directions l.

In the next corollary we restrict ourselves to the set-valued Euler’s method.

Corollary 3.5 Consider the notations for U , R as in Theorem 3.4 and let
f : I × R

n × Rm → R
n be Lipschitz continuous w.r.t. time t, continuously

differentiable w.r.t. x and continuous w.r.t. u.
Assume that F (·, ·) is given by (6) and Rh denotes the discrete reachable set
of the Euler’s method.
Then, the reachable sets R and Rh are compact, nonempty and the results
of Theorem 3.4 hold with convergence order p = 1.

Proof: Everything follows from Theorem 3.4, if we can show that the as-
sumption of the parametrization fits to the set-valued convergence results.

Under the given assumptions F (·) is Lipschitz w.r.t. (t, x) and we can ap-
ply Propositions 3.1–3.2. In particular, we can drop the assumptions of the
convex images in Proposition 3.2, see also [51]. Due to this relaxation theo-
rem, the Hausdorff distance remains unchanged and this proposition shows
that the reachable set R is compact, nonempty. It is not difficult to conclude
that this is valid for the discrete reachable sets Rh, too. Proposition 3.3
clarifies that the assumption (7) holds. Hence, we can apply the theorem
above. �
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4 Numerical Realization

We suggest a numerical method which allows to approximate reachable sets
for non-linear problems using optimal control techniques. The theoretical ap-
proximation properties using a combination of distance functions and state-
space grids have been derived in Theorem 3.4. Although it is possible to
consider other set-valued Runge-Kutta methods, we restrict ourselves to the
simplest case, the set-valued Euler’s method in [18, 55, 12, 6].

4.1 DFOG Method

The algorithm is presented only for the set-valued Euler’s method, but can
easily be adapted to set-valued Runge-Kutta methods of higher order in the
light of Theorem 3.4.

The algorithm works with a grid Gh with stepsize h and projects each
element in Gh onto the reachable set of the dynamic system. For simplicity,
we choose C2 = 1 in adapting the grid size ρ = C2h to the stepsize h in time.
Projecting a grid point w.r.t. the Euclidean norm leads to an optimal control
problem and the following algorithm for the approximation of the reachable
set. The algorithm is called DFOG method, since it applies distance f ields3

on grids.

Algorithm 4.1 (DFOG method)

(i) Choose a bounding region G ⊆ R
n for the reachable set and approximate

G by its grid extension Gh in (2) with stepsize ρ = h (or ρ = hp for
higher-order methods).

(ii) For every gh ∈ Gh solve the following optimal control problem:

OCP (gh)

Min 1
2
‖x(T ) − gh‖2

2

s.t. x′(t) = f(t, x(t), u(t)) a.e. in [t0, T ],
x(0) = x0,
u(t) ∈ U a.e. in [t0, T ].

Let x⋆(·; gh) and u⋆(·; gh) denote the solution of OCP(gh).

(iii) Define the reachable set approximation (relative to Gh) according to
one of the three strategies (3)–(5) stated in Lemmas 2.4–2.6.

Please notice the following relations in optimal control problem OCP (gh):

3A distance field consists of the evaluation of the distance functions for many (grid)
points.
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• The admissible set is the set of solutions of Problem 1.1.

• The set of all endpoints x(T ) of admissible solutions forms the reachable
set R = R(T, t0, X0).

• The optimal value coincides with 1
2
· dist(gh,R)2.

• The endpoint x⋆(T ; gh) is a best approximation of the grid point gh in
the reachable set R.

Similar relations hold also for the following discretized version of OCP(gh)
and Problem 1.2, provided the same discretization scheme is used.

DOCP (gh)

Min 1
2
‖xh(T ) − gh‖2

2

s.t. xh(ti+1) = xh(ti) + hΦ(ti, xh(ti), uh, h) ,
i = 0, 1, . . . , N − 1,

xh(0) = x0,
uh(·) ∈ Uh,

where Φ(·, ·, ·, ·) is the increment function of a Runge-Kutta method (see
Problem 1.2). Let x⋆

h(·; gh) and u⋆
h(·; gh) denote the solution of DOCP(gh). In

DOCP(gh), uh is a suitable control discretization. For simplicity, we restrict
ourselves to Euler’s method so that Φ(t, x, u, h) = f(t, x, u) and uh will be
the following piecewise constant control approximation on the grid

uh(t) = ui for ti ≤ t < ti+1, i = 0, 1, . . . , N − 1.

Obviously, DOCP(gh) is an approximation of OCP(gh) and any global so-
lution of OCP(gh) is an element of ΠR(gh) with R = R(T, t0, x0) and any
global solution of DOCP(gh) computes an element of ΠRh

(gh) with Rh =
Rh(T, t0, x0). The convergence results in the previous section guarantee that
the reachable set is approximated with at least order h for Euler’s method.

It remains to solve DOCP(gh) (or ideally OCP(gh)). OCP(gh) and its
discrete counterpart DOCP(gh) are in general non-convex problems and may
exhibit all difficulties that may occur for general (discretized) optimal control
problems like ill-conditioning, non-regularity, singular subarcs, etc. Particu-
larly, they may possess local minima, which as we shall see later may cause
problems in combination with an adaptive strategy.

In order to make DOCP(gh) accessible to numerical methods, we assume
that the control set U is defined by box constraints, i.e.

U := {u ∈ R
nu | umin ≤ u ≤ umax}, umin < umax.
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Let z := (u0, u1, . . . , uN−1)
⊤. Then the constraints uh(ti) ∈ U read as

ui ∈ [umin, umax], i = 0, 1, . . . , N − 1.

In order to reduce the number of variables of DOCP(gh) the equations can
be eliminated recursively according to

x1 = x0 + hΦ(t0, z, h) =: X1(z),

x2 = x1 + hΦ(t1, x1, z, h) = X1(z) + hΦ(t1, X1(z), z, h) =: X2(z),
...

xN = xN−1 + hΦ(tN−1, xN−1, z, h)

= XN−1(z) + hΦ(tN−1, XN−1(z), z, h) =: XN (z).

Herein, we identified the grid function uh(·) with the control parameterization
z. Using these expressions, an equivalent optimization problem with variable
z arises:

Problem 4.2

Min
1

2
‖XN(z) − gh‖2

2 s.t. z ∈ [umin, umax]
N , i = 0, 1, . . . , N − 1.

This is a bound constraint nonlinear program and it can be solved, for
instance, by a sequential quadratic programming (SQP) method or any
other suitable nonlinear programming method. As all these methods are
well-known and well-analyzed, see for instance the book of Wright and No-
cedal [45], we are not going into details here. All these methods have in
common that they require the gradient of the objective function, which is
the most costly operation during the numerical solution. Hence, it is impor-
tant to exploit the structure of Problem 4.2.

There are basically four approaches for calculating derivatives:

• The sensitivity ODE approach (also known as IND approach) is a
sensitivity analysis of the integration scheme w.r.t. z. As the effort
depends mainly on the number of variables and less on the number
of constraints, it is particularly efficient, if the number of nonlinear
constraints exceeds the number of variables in the discretized optimal
control problem. Details can be found in Bock [7], Caracotsios and
Stewart [11], Maly and Petzold [43]. A discussion and comparison of
several strategies can be found in Feehery et al. [20].
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• The adjoint ODE approach, see Cao et al. [10], is advantageous com-
pared to the sensitivity ODE approach if the number of nonlinear con-
straints is less than the number of variables in the discretized optimal
control problem. The effort mainly depends on the number of con-
straints and less on the number of variables.

• Algorithmic differentiation, see Griewank [27], combines the sensitivity
ODE approach (forward mode) and the adjoint ODE approach (back-
ward mode).

• Finite difference approximations are easy to implement but tend to
be costly and it is difficult to control the accuracy of the computed
gradients.

Since Problem 4.2 only has box constraints, the adjoint approach for calcu-
lating gradients is the most efficient one. As we shall see, it only requires
to integrate the differential equation from t0 to T and the adjoint equation
backwards from T to t0.

We intend to calculate the gradient w.r.t. z of

G(z) :=
1

2
‖XN(z) − gh‖2

2,

where

X0(z) = x0,

Xi+1(z) = Xi(z) + hΦ(ti, Xi(z), z, h), i = 0, 1, . . . , N − 1.

Following [25] let us consider the auxiliary functional

J(z) := G(z) +

N−1∑

i=0

λ⊤
i+1 (Xi+1(z) − Xi(z) − hΦ(ti, Xi(z), z, h))

with multipliers λi, i = 1, . . . , N . Differentiating J w.r.t. z, reordering terms,
and neglecting arguments yields

J ′(z) = ((XN(z) − gh) + λN)⊤ · X ′
N(z)

+

N−1∑

i=1

(
λ⊤

i − λ⊤
i+1 − hλ⊤

i+1Φ
′
x[ti]

)
· X ′

i(z) −
N−1∑

i=0

hλ⊤
i+1Φ

′
z[ti].

Herein, Φ′
x[ti] is an abbreviation for Φ′

x(Xi(z), z, h) and likewise for Φ′
z.
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The calculation of the terms X ′
i(z) is costly and shall be avoided. Hence,

terms involving X ′
i(z) have to be eliminated. This leads to the adjoint equa-

tion
λ⊤

i − λ⊤
i+1 − hλ⊤

i+1Φ
′
x[ti] = 0, i = 0, . . . , N − 1,

and the transversality condition λ⊤
N = −(XN (z) − gh). Notice, that the

adjoint equation is solved backward in time. Exploiting these relations yields

J ′(z) = −
N−1∑

i=0

hλ⊤
i+1Φ

′
z[ti].

It is straightforward to show that G′(z) = J ′(z) holds and thus we obtained
a formula for the gradient of G.

Notice, that the derivatives Φ′
x and Φ′

z have to be computed. This is
straightforward for Euler’s method with Φ(t, x, u, h) = f(t, x, u), but it is
more involved for more general Runge Kutta methods.

Remark 4.3

• The direct discretization approach outlined above can be easily extended
to more complicated control constraints. Even state constraints and
boundary conditions can be added, see [5]. However, the calculcation of
gradients using the adjoint approach may not be the most suitable one
if non-linear control and/or state constraints are present in the opti-
mal control problem. In this case the sensitivity approach is preferable,
details can be found in Gerdts [25].

• The effort for solving the discretized optimal control problems obviously
increases as the stepsize h decreases.

• Common nonlinear programming methods are only capable of finding a
local minimizer of the above optimization problem. Global optimality is
practically not achievable with a reasonable computational effort. Thus,
all calculations in Section 5 may contain inaccuracies owing to local
minimality. Nevertheless, the obtained numerical results are in good
correspondence to the results in [12].

5 Numerical Examples

In all following pictures, grid points gh ∈ h·Zn in red color indicate a negative
status of the optimizer for the discrete optimization problem DOCP(gh). In
this case, the corresponding grid point (or its best approximation, depending
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on the strategy that is used) will be colored in red. Furthermore, we use
Euler’s method as direct discretization method, the grid width in state space
equal to the stepsize in time and an optimizer OCPID-DAE1 [24]. It is
surprising that the algorithm produces nice results, although it only returns
a local minimum. Note that local minimizers still define reachable points.
We observed that the lack of global optimality is often cured by considering
many grid points.

5.1 Kenderov’s Example

This example was suggested by Petar Kenderov (see [12, Example 5.2.1]). It
is constructed in such a way that the reachable set is a sphere, that is the
reachable set is a set of measure zero. The nonlinear control problem reads
as follows:

x′(t) = 8 (a11x(t) + a12y(t) − 2a12y(t)u(t)) (t ∈ [0, 1]) ,

y′(t) = 8 (−a12x(t) + a11y(t) + 2a12x(t)u(t)) ,

x(0) = y(0) = 2,

u(t) ∈ [−1, 1].

Herein, a11 = σ2 − 1, a12 = σ
√

1 − σ2, and σ = 0.9.

(a) N = 20 (b) N = 40

(c) N = 80 (d) N = 160 (e) N = 320

Figure 3: Reachable set for Kenderov’s problem with N = 20, 40, 80, 160, 320.
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The numerical computations reveal that the reachable set is non-convex
and the approximations apparently converge to a sphere. Figure 3 shows
the numerical results for a discretization of N = 20, 40, 80, 160, 320 and the
linear convergence w.r.t. ρ = h.

Please notice that the axes are different for the first two pictures in the
first line of Figure 3.

For this example, the results of the three strategies differ in an obvious
way, see Figure 4. Without the extension in the first strategy (a), only two
grid points lie on the reachable set, whereas a major part of the reachable set
appears with extension (b). The best result of the four pictures is (c), the
second strategy. Since the best approximations of grid points do not need to
be grid points themselves, we can drop the extension here. Due to the one-
dimensionality, the third strategy (d) produces reasonable theoretical results,
but the visualization is not helpful.

(a) strat. 1 (no extension) (b) strat. 1 (with extension)

(c) strat. 2 (d) strat. 3 (unchecked balls)

Figure 4: Kenderov example: different strategies for N = 20

Only zooming for the third strategy helps to understand that the cal-
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culated balls touch this one-dimensional spiral approaching the sphere, see
Figure 5 with parts of the bounding box G used in Algorithm 4.1.

Figure 5: Kenderov example: two zooms for third strategy for N = 20

(a) some unchecked balls (b) checked balls

(c) 1. zoom (d) 2. zoom

Figure 6: Kenderov example: unchecked and checked balls in third strategy
for N = 20
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Checked balls in strategy 3 are important, see Figure 6. In (a) the ap-
proximation contains unchecked balls which cut away parts of the reachable
set. All other pictures (b)–(d) contain checked balls and yield good approx-
imations of reachable sets.

5.2 Bilinear Example

This example contains a bilinear term in the dynamics which are given below:

x′(t) = πy(t),

y′(t) = −πu(t)x(t),

x(0) = −1,

y(0) = 0,

u(t) ∈ [0, 1],

t ∈ [0, 1].

Linear convergence and the numerical approximations of the reachable set
for T = 1 and N = 10, 20, 40, 80, 160 are visualized in Figure 7.

(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 80 (e) N = 160

Figure 7: Reachable set for the bilinear problem with T = 1 and N =
10, 20, 40, 80, 160.

For this example, the results of the three strategies are rather similar, see
Figure 8. The extension in the first strategy (b) does not improve significantly
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the reachable set and is very similar to the non-extended version (a). In
Figures 8(c)–(d), strategy 2 (c) and strategy 3 (d) deliver similar results.

(a) modified strat. 1 (no ext.) (b) strat. 1 (with extension)

(c) strat. 2 (d) strat. 3 (unchecked balls)

Figure 8: bilinear example: 3 different strategies for N = 10

It turns out that the extra effort for checking the balls in the third strategy
does not lead to improvements.

Figure 9 shows an impression of the funnel of trajectories by plotting
reachable sets for t = 1

8
, 1

4
, 1

2
(small-time convexity of the reachable sets) in

(a) resp. t = 1
16

, 1
8
, 3

16
, 1

4
, 1

2
, 3

4
, 1 in (b). The above method (strategy 2) was

simply applied to different final times.

25



(a) (b)

Figure 9: bilinear problem: evolution of reachable sets in time.

Further plots with different viewpoints are in Figure 10.

(a) (b)

Figure 10: bilinear problem: evolution of reachable sets in time.

26



5.3 Adaptive Version

The idea of an adaptive algorithm for the third strategy is as follows. Let gh

be a grid point and x⋆(T ; gh) an optimal solution of DOCP(gh). Then no grid
point within the ball Br(gh) and radius r = ‖x⋆

h(T ; gh)−gh‖ is reachable and
the ball could not contain an element of the reachable set as r is supposed to
be minimal. Following a heuristic approach, all grid points within the ball
Br(gh) will not to be projected.

In Figure 11(a) the bounding box is shown in which all grid points are
chosen. For each grid point the best approximation to the (unknown) reach-
able set (painted in blue color) is computed. The reachable set belongs to
the Rayleigh problem in [12, Ex. 5.2.5], [5, Example 2]. Since neighboring
grid points create similar balls, a first idea of an adaptive algorithm is rather
obvious. We do not compute projections of grid points that already lie inside
an open ball calculated for another grid point, in contrary to Figure 11(b).
In this way, the calculation time can be drastically reduced, but the approx-
imation in state space is coarser.

−30 −20 −10 0 10 20
−25

−20

−15

−10
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0
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x
1

x
2

(a)

−10 −5 0 5
−6

−4

−2

0

2

4

6

x
1

x
2

(b)

Figure 11: non-adaptive algorithm: grid points lie in many balls

There is one pitfall. The above reasoning assumes that the numerical
method is able to find a global minimizer of DOCP(gh). However, in practise
this cannot be guaranteed, if a local optimization method is used. If the
method finds a local minimizer but not a global minimizer, then the radius
r of the ball Br(gh) is too large and too many grid points are cut off. A
remedy for this problem would be to use global optimization methods, which
unfortunately is not practical owing to the large dimension of the discretized
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optimal control problems. In our numerical examples we observe that the
above mentioned shortcoming is cured by considering many grid points and
storing all end-points of locally optimal trajectories, which might not be
globally optimal but still are reachable.

This pitfall will be demonstrated for Kenderov’s example. This example
is particularly well-suited for demonstration, because the reachable set is a
set of measure zero.

The benefit in view of CPU time of the adaptive strategy depends on
the initial region and on the dimension of the reachable set. Thus, the
adaptive strategy is particularly efficient for low dimensional reachable sets,
e.g. Kenderovs example below.

CPU times for Kenderov’s problem are summarized in Table 1. The
adaptive algorithm turns out to be very efficient in view of CPU, because of
the low dimension of the reachable set. However, for this example, special
measures have to be taken to avoid that the adaptive algorithm cuts off some
regions of the reachable set, because the optimization algorithm only found
local minimizers instead of global ones.

Table 1: CPU times for Kenderov’s problem: Comparison of non-adaptive
and adaptive algorithm.

N CPU User CPU User
full adaptive

20 0m 1.296s 0m 0.152s
40 0m 14.313s 0m 0.752s
80 3m 54.151s 0m 5.980s

160 86m 48.758s 1m 6.528s
320 2802m 35.469s 21m 23.856s

Let us point out that the computation times in Tables 1 and 2 use the
strategy ρ = hN . This is required by the convergence result in Theorem 3.4,
but the discretization in space in Figures 7, 12 is much finer than optically
necessary. An obvious way to drastically reduce computational time is the
choice of a rougher state space grid.

In Figure 12 we will compare the non-adaptive and the adaptive version
of the third strategy. In the latter one, only those grid points, which do not
lie in other open balls from other grid points, determine open balls.
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(a) N = 10 (b) N = 10 (adaptive)

(c) N = 40 (d) N = 40 (adaptive)

(e) N = 160 (f) N = 160 (adaptive)

Figure 12: non-adaptive and adaptive second strategy for the bilinear prob-
lem with T = 0.5 and N = 10, 40, 160

CPU times for the bilinear problem are summarized in Table 2. The
adaptive algorithm turns out not to be so efficient in view of CPU time as
for Kenderov’s example, because the reachable set is two dimensional and
the initial region already localizes the reachable set sufficiently well.
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Table 2: CPU times for the bilinear problem: Comparison of non-adaptive
and adaptive algorithm.

N CPU User CPU User
full adaptive

10 0m 0.404s 0m 0.268s
20 0m 5.016s 0m 2.224s
40 1m 35.818s 0m 34.526s
80 38m 34.489s 13m 14.846s

160 1204m 35.461s 457m 28.067s

6 Outline

The proposed algorithm has the following potential advantages and exten-
sions:

• The approximation of reachable sets with higher order methods (Runge-
Kutta methods of second order in [54, 53]) is possible with adapted
stepsize ρ = C2h

2.

• Zooming into interesting sub-regions of the reachable set can be easily
realized.

• DFOG requires to solve one optimal control problem for each point
in the O(h)-grid in state space. In common implementations of the
set-valued Euler method

Xh(tj+1) =
⋃

xh(tj )∈Xh(tj)

{xh(tj) + hF (tj, xh(tj))} (j = 0, 1, . . . , N − 1)

as in [12] and [6], the sets within the union have to be approximated
with an O(h2)-grid in state space to keep the overall order O(h) for
subsequent times tk, k > j.
The effort for solving the finite dimensional optimization problem for
O(Nn) grid points and exhaustive calculation of set-valued Euler steps
from neighboring grid points with approximately the same images has
to be compared. Our experience shows advantages of the DFOG method
in computational time and memory consumption.

• The grid points do not need to be chosen in an equidistant fashion and
adaptivity based on the third strategy is possible.
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• The algorithm can be easily parallelized.

• Higher-dimensional systems can be treated as long as the discretized
optimal control problems can be solved.

• State constraints, mixed control state constraints, and terminal condi-
tions can be introduced in the algorithm.

• It remains a future a task to adapt the method to the regularity of the
boundary of the reachable set, see [41].
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[4] R. Baier, C. Büskens, A.I. Chahma, and M. Gerdts. Approximation of
reachable sets by direct solution methods of optimal control problems.
Optim. Methods Softw., 22(3):433–452, 2007.

31



[5] R. Baier and M. Gerdts. A computational method for non-convex reach-
able sets using optimal control. In Proceedings of the European Con-
trol Conference (ECC) 2009, Budapest (Hungary), August 23-26, 2009,
pages 97–102, Budapest, 2009. EUCA.

[6] W.-J. Beyn and J. Rieger. Numerical fixed grid methods for differential
inclusions. Computing, 81(1):91–106, 2007.

[7] H. G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in
Systemen nichtlinearer Differentialgleichungen, volume 183 of Bonner
Mathematische Schriften. Dissertation (1985), Mathematisches Institut,
Rheinische Friedrich-Wilhelms-Universität, Bonn, 1987.

[8] O. Bokanowski, N. Forcadel, and H. Zidani. Reachability and minimal
times for state constrained nonlinear problems without any controllabil-
ity assumption. SIAM J. Control Optim., 48(7):4292–4316, 2010.

[9] N. Bonneuil. Computing the viability kernel in large state dimension.
J. Math. Anal. Appl., 323(2):1444–1454, 2006.

[10] Y. Cao, S. Li, L. R. Petzold, and R. Serban. Adjoint sensitivity analysis
for differential-algebraic equations: The adjoint DAE system and its
numerical solution. SIAM J. Sci. Comput., 24(3):1076–1089, 2003.

[11] M. Caracotsios and W. E. Stewart. Sensitivity analysis of initial-
boundary-value problems with mixed PDEs and algebraic equations.
Computers chem. Engng, 19(9):1019–1030, 1985.

[12] I. A. Chahma. Set-valued discrete approximation of state-constrained
differential inclusions. Bayreuth. Math. Schr., 67:3–162, 2003.

[13] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Non-
smooth analysis and control theory, volume 178 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1998.

[14] D. Cohen-Or, D. Levin, and A. Solomovici. Three-dimensional distance
field metamorphosis. ACM Trans. Graph., 17(2):116–141, 1998.

[15] M. C. Delfour and J.-P. Zolésio. Shapes and geometries. Analysis, dif-
ferential calculus, and optimization, volume 4 of Advances in Design
and Control. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2001.

32



[16] M. Dellnitz and O. Junge. Set oriented numerical methods for dynamical
systems. In Handbook of dynamical systems, Vol. 2, pages 221–264.
North-Holland, Amsterdam, 2002.

[17] M. Dellnitz, O. Junge, M. Post, and B. Thiere. On target for Venus—set
oriented computation of energy efficient low thrust trajectories. Celestial
Mech. Dynam. Astronom., 95(1-4):357–370, 2006.

[18] A. L. Dontchev and E. M. Farkhi. Error Estimates for Discretized Dif-
ferential Inclusions. Computing, 41(4):349–358, 1989.

[19] A. L. Dontchev, W. W. Hager, and V. M. Veliov. Second-Order Runge-
Kutta Approximations in Control Constrained Optimal Control. SIAM
J. Numer. Anal., 38(1):202–226, 2000.

[20] W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient sensitivity anal-
ysis of large-scale differential-algebraic systems. Appl. Numer. Math.,
25:41–54, 1997.

[21] T. F. Filippova and E. V. Berezina. On state estimation approaches for
uncertain dynamical systems with quadratic nonlinearity: theory and
computer simulations. In Large-scale scientific computing, volume 4818
of Lecture Notes in Comput. Sci., pages 326–333. Springer, Berlin, 2008.

[22] H. Frankowska and F. Rampazzo. Filippov’s and Filippov-Ważewski’s
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