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Abstract

We investigate and analyze a computational method for the ap-
proximation of reachable sets for nonlinear dynamic systems. The
method uses grids to cover the region of interest and the distance
function to the reachable set evaluated at grid points. A convergence
analysis is provided and shows the convergence of three different types
of discrete set approximations to the reachable set. The distance func-
tions can be computed numerically by suitable optimal control prob-
lems in combination with direct discretization techniques which allows
adaptive calculations of reachable sets. Several numerical examples
with nonconvex reachable sets are presented.
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1 Introduction

The subject of this paper is the detailed analysis and extension of an al-
gorithm in [8] for the approximation of reachable sets of nonlinear control
problems.

Reachable sets (for a given end time T )1 appear in various applications,
e.g. in the presence of disturbances of parameters in control problems, in
estimates in terminal points of all solutions of a control problem, differen-
tial inclusions, and differential games. Specific applications can be found
in population models, fish harvesting, collision avoidance, weather forecasts,
climate models, space orbit calculations, and many others, see [2, Sec. 1.1,
1.3 and Chap. 3, 7], [18], [24], [47]. In contrary to optimal control problems,
these applications do not single out the optimal trajectory, but require the
knowledge of all end points of feasible trajectories to calculate bounds for
the output of the systems.

Many properties of the reachable set are known for linear control prob-
lems with f being linear in x and u. Most importantly, it can be shown
that the reachable set for linear control problems is a convex set. Various
methods for the approximation of reachable sets for linear control problems
have been suggested, among them are set-valued integration schemes [4], op-
timal control techniques [64, 59, 6], external and inner ellipsoidal techniques
[46, 47, 48], estimation methods [30, 42, 43, 28], see also references listed
therein.

However, in the nonlinear case less methods are known (for an overview
see [18]) as the reachable set is nonconvex. Häckl in [36] used time dis-
cretization combined with ε-grids in state space (see also [58]), Chahma [18]
used set-valued Runge-Kutta methods for nonlinear problems with state con-
straints, in [18, 9] the Euler’s method is studied with a detailed analysis of
the discretization error in state space.

The idea of our approach is to project grid points from an equidistant
grid onto the reachable set. Each projection requires to solve an optimal
control problem, where the optimal value yields the distance of the grid
point to the reachable set. The corresponding optimal control problems are
not solved theoretically by use of the Pontryagin’s maximum principle as in
[64] but numerically by suitable discretization methods. The resulting DFOG
method (DFOG = distance field on grids) turns out to be powerful in practice
and allows to include control and/or state constraints and even boundary
conditions. Results concerning the convergence of discretized optimal control

1In the terminology of [2, Definition 4.3.1 and 8.3.1], they are called T -exact backward
capture basins.
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problems can be found in [52, 26, 37] and the references stated therein.
A similar approach using optimal control techniques was discussed in [6]

in the special case of linear control problems. Herein, the optimal value of
the optimal control problem provides the support function exploiting the
convexity of the reachable set. In the nonlinear case this approach is not
applicable anymore, as the reachable set is in general nonconvex. Hence, we
switch to the distance function which allows the description of nonconvex
sets, see [19, Sect. 1].

Distance functions are a commonly used tool, both theoretically and
numerically. They are applied in convergence proofs of set-valued Runge-
Kutta methods for estimating the Hausdorff distance of reachable sets (see
e.g. [25, 67, 18]), in level-set methods (see e.g. [47, 45, 54]) in exploiting the
Hamilton-Jacobi-Bellman equation for an alternative approximation of reach-
able sets (see e.g. [12, 13, 21]), in computational geometry (see e.g. [20, 50]),
and in proximal analysis (exemplarily we mention [19]).

We also would like to mention an interesting similar approach in [14]
which uses distance functions in the objective function of optimal control
problems and a path-following idea for boundary points of the viability ker-
nel. The distance function penalizes infeasible states or states outside an a
priori chosen bounding box. In the DFOG method the objective function is
the squared Euclidean distance and the optimal value function is the distance
function. The approach in [14] creates nonsmooth optimization problems
which are solved by simulated annealing techniques. The optimization-based
approach with distance functions allows a quicker computation of viability
kernels in comparison to other approaches ([62]). See also [15] for a related
approach computing the viable maximum of a differential inclusion with the
help of the capture-viability kernel (by a variant of the algorithm in [14]).

In the calculation of the value function, which plays an important role
in level-set methods, a similar approach with optimal control problems is
applied in [47, 49] to derive the Hamilton-Jacobi equations. Level sets of the
value function then determine the reachable set.

Further approaches can be found in [24] (simulation of trajectories with
piecewise constant control functions by Runge-Kutta methods), approxima-
tion schemes using Volterra series in [41, 57], a second-order method with
explicit parametrization in [44] or methods based on zonotopes in [33] for
hybrid linear systems.

The paper is organized as follows. In Section 1 the problem of computing
the reachable set of a nonlinear control problem is introduced. Section 2 pro-
vides three discrete approximation strategies for closed sets which are rather
elementary, but provide the basis for the numerical exploitation in Section 4.
In all cases, the approximation accuracy depends on the gridwidth for the
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state space discretization and the ”approximative” Lipschitz dependence of
the approximations w.r.t. the set is shown. The strategies depend Lips-
chitz w.r.t. the set which is discretized. Further properties and estimates are
also included in this part. In Section 3 properties and the approximation of
reachable sets are recalled to lay the basis for the introduction and numerical
analysis of the new DFOG method for approximating reachable sets. The
method is based on the formulation of suitable optimal control problems. The
main theoretical result of the paper in terms of approximation properties is
Theorem 3.4 in Section 4 which guarantees the convergence of the DFOG
method w.r.t. discretization in time and in space for the three strategies.

Section 4 discusses the numerical implementation of the three strategies
from Section 2 applied to reachable sets using optimal control solvers. Thus,
the approximation of reachable sets is accomplished by solving parametric
optimal control problems. Besides this fallback to well-adapted software as
e.g. direct discretization methods, the big advantage of the proposed ap-
proach is its flexibility that allows to handle complicated control and state
constraints and boundary conditions. Even high dimensional problems can
be handled quite efficiently either by parallelization, which is very simple
to realize, or if only low dimensional projections of the reachable set are of
interest for the application.

In this approach the grid point is the parameter entering the optimal
control problems which leads to the calculation of projections to the (un-
known) discrete reachable set. Using the results of Section 3, error estimates
w.r.t. stepsize and state-space grids are presented. In the DFOG method the
popular direct discretization of optimal control problems is combined with
an approximation strategy for sets based on distance functions and best ap-
proximations. Numerical examples for various nonlinear control problems
are presented in Section 5. Finally, concluding remarks and an outlook is
given in Section 6.

Let t0 < T be given and let U 6= ∅ be a convex and compact subset of
R

m. Moreover, let an initial state x0 ∈ R
n be given. Consider the following

nonlinear control problem.

Problem 1.1 For a given control function u ∈ U ⊂ L∞([t0, T ],R
m), i.e. u(t) ∈

U a.e. in [t0, T ], find a corresponding trajectory x ∈ W 1,∞([t0, T ],R
n) with

x′(t) = f(t, x(t), u(t)) a.e. in [t0, T ], (1)

u(·) ∈ U , (2)

x(t0) = x0. (3)

We can replace (1)–(2) by the differential inclusion

x′(t) ∈ F (t, x(t)) a.e. in [t0, T ], (4)
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with absolutely continuous solutions x(·) and the parametrized right-hand
side F (t, x) =

⋃
u∈U{f(t, x, u)} ⊂ R

n. The task is to compute the reachable
set at time T which is defined as follows:

R(T, t0, x0) :=
{
y ∈ R

n | ∃ control function u(·)
and ∃ corresponding solution x(·)
of Control Problem 1.1 with x(T ) = y

}

Consider a suitable one-step discretization scheme, e.g. an explicit Runge-
Kutta method, with increment function Φ on a time grid with time points
ti = t0 + ih, i = 0, 1, . . . , N , and stepsize h = (T − t0)/N . For simplicity the
grid is chosen equidistantly. Then, using the discretization scheme, a discrete
counterpart of the continuous control problem is defined as follows.

Problem 1.2 For a discretized control function uh(·) ∈ Uh, i.e. uh : I → U
and Uh being a finite dimensional approximation of U , find a solution xh(·)
with

xh(ti+1) = xh(ti) + hΦ(ti, xh(ti), uh, h), i = 0, 1, . . . , N − 1,

xh(0) = x0,

uh(·) ∈ Uh.

In the simplest case we choose Φ(t, x, u, h) = f(t, x, u) and Uh as the
piecewise constant functions with values in U which corresponds to Euler’s
method. This method is highly studied in the approximation of control
problems, see [26] for an overview.

An approximation of the continuous reachable set R(T, t0, x0) is given by
the discrete reachable set defined by

Rh(tN , t0, x0) :=
{
y ∈ R

n | ∃ discretized control function uh(·)
and ∃ corresponding solution xh(·)
of Control Problem 1.2 with xh(tN) = y

}
.

Reachable sets are interesting, because they allow to study the future
development of dynamic systems under the influence of control variations and
variations in parameters. For instance based on appropriate models, changes
in climate can be studied for different environmental influence factors, like
carbondioxid concentrations or temperature, see [18, Sect. 5.3], [3] and [2,
Subsec. 1.3.2].

Another field of applications are robust control problems. Herein, a con-
trol problem with uncertain dynamics is considered:

x′(t) = f(t, x(t), u(t), p(t)), p(·) ∈ P,
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where P denotes an appropriate parameter region. Let u∗ be a given control
law (e.g. an optimal control for the nominal parameter p∗(·) ∈ P ) and let
x(u∗, p)(·) denote the solution for any p(·) ∈ P . The task is to decide whether
u∗ robustly obeys given constraints, e.g. whether

c(t, x(u∗, p)(t), u∗(t)) ≤ 0 ∀p(·) ∈ P

holds. This constraint can be checked, if the reachable set of x for a fixed u∗

and for varying p(·) ∈ P can be approximated.
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2 Proximal Normals and Inner/Outer Approx-

imation of Sets

2.1 Set Representation Techniques

We want to recall basic notions from set representations in [19, Sect.1.1]
which appear in connection with proximal normals. Hereby, ‖ · ‖ denotes the
Euclidean norm in R

n.

Definition 2.1 Let S ⊂ R
n be closed and nonempty, x ∈ R

n.
dist(x, S) := infs∈S ‖x − s‖ is the distance of x to the set S. The (metric)
projection is the set of all closest points of x in S, i.e.

ΠS(x) := {s ∈ S : ‖x− s‖ = dist(x, S)}.

If needed, we use the notation πS(x) for one element of ΠS(x).
The (one-sided Hausdorff) distance of one compact, nonempty set S ⊂ R

n

to another one S̃ ⊂ R
n and the Hausdorff distance between both are given by

d(S, S̃) = sup
s∈S

dist(s, S̃),

dH(S, S̃) = max{d(S, S̃), d(S̃, S)}.

Under the assumptions of the previous definition, the set of closest points
is compact and nonempty, see [61, Example 1.20] or [40, Section 3] and the
corresponding map is upper semi-continuous. As a consequence ΠS(·) is
continuous on the complement of S, if the closest point is unique on R

n \ S.
The following lemma leads to a characterization of (parts of) a set by the

complement of open balls whose radii are given by the distance function.

Lemma 2.2 Let S ⊂ R
n be closed and nonempty.

Then,

S = R
n \

{ ⋃

x∈Rn

ŝ∈ΠS(x)

ŝ6=x

intB‖x−ŝ‖(x)
}
= R

n \
{ ⋃

x∈Rn

intBr(x)(x)
}
,

where r(x) = dist(x, S).

Proof: The representation follows immediately from [19, § 1, Corollary 6.2].
Please notice that the case ŝ = x, i.e. x ∈ S, can be safely ignored in the
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union above, since r(x) = ‖x− ŝ‖ = 0 and the interior of the ball is empty.
�

The Hausdorff distance can be expressed not only by the Minkowski dual-
ity [1, Lemma 3.12], but more general for closed sets by the distance function,
which immediately results in regularity properties for the distance function.

Proposition 2.3 Let S, S̃ ⊂ R
n be closed and nonempty. Then,

dH(S, S̃) = sup
x∈Rn

∣∣∣ dist(x, S)− dist(x, S̃)
∣∣∣ = sup

x∈S∪S̃

∣∣∣ dist(x, S)− dist(x, S̃)
∣∣∣ (5)

Proof: cf. [61, Example 4.13] or [1, Lemma 3.7] �

Hence, the distance of the two distance functions measured in the supre-
mum norm yields the Hausdorff distance of the two corresponding sets. Ob-
viously, the Lipschitz continuity of the distance function dist(x, S) w.r.t. the
set argument S follows immediately, if the Hausdorff metric of sets is ap-
plied. Furthermore, it is well-known that the distance function is Lipschitz
continuous with modulus 1 w.r.t. the first argument x, see [22, Chapter 6,
Theorem 2.1] or [61, Example 4.13].

2.2 Inner/Outer Approximation of Sets

If not otherwise specified, let ρ · Zn be a grid with grid size ρ > 0. For a
given set S ⊂ R

n we denote by Sρ the slightly enlarged set S restricted to
the grid, i.e.

Sρ :=

(
S +

√
n

2
· ρ · B1(0)

)
∩ ρZn . (6)

The strategy (6) to extend a set depending on the distance of grid points in
one coordinate before restricting it to the grid is commonly used in set-valued
analysis, especially in viability theory, see e.g. [62, 60], as well as [23, 18, 9].
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Figure 1: bad approximation of the dark colored set without extension
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We explain the need to extend sets by an example that Lars Grüne pro-
vided to us, compare also [35, Section 2.3]. In Figure 1 the dark colored
set S (a small ball with an attached horizontal line segment with irrational
x2-coordinate) is not well approximated by its grid projection S ∩ ρZn for
rational figures ρ. Only one element of S, the origin, is hit by grid points
(marked with black diamonds) for the values ρ = 2, 1, 1

2
. Thus, the Hausdorff

distance remains constant and no point of the line segment with irrational
coordinate is ever hit by grid points.
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Figure 2: better approximation of the light colored set with extension (dark
colored set)

In contrary, Figure 2 shows that the extension Sρ of S (dark colored set)
yields a better approximation of S. Now, 2, 3 or 5 grid points lie in the dark
colored shaded extension for ρ = 2, 1, 1

2
respectively. Here, the Hausdorff

distance between S and its (shrinking) extension Sρ is proportional to ρ.
The following lemma suggests that this extension provides a first strategy

to approximate a closed set via grid points. Although the result is well-
known, we provide the proof for the convenience of the reader.

Lemma 2.4 Assume that S is closed and nonempty, ρ > 0, and ρ · Zn be
the (infinite) grid.
Then, the distance of a point s in S to a grid point can be estimated by

dist(s, ρ · Zn) ≤
√
n

2
· ρ .

Denote the first strategy by

M1
ρ(S) :=

⋃

gρ∈ρ·Zn

dist(gρ,S)≤
√

n

2
·ρ

{gρ} , (7)
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then Sρ = M1
ρ(S) and the following estimate holds:

dH(S,M1
ρ(S)) ≤

√
n

2
· ρ

Proof: Let s ∈ S. We define the grid point gρ ∈ ρZn componentwise with
the Gauss bracket ⌊·⌋ for the biggest integer not exceeding a real number:

gρ,i :=

{
⌊si
ρ
⌋ · ρ , if 0 ≤ si

ρ
− ⌊si

ρ
⌋ < 1

2
,

(⌊si
ρ
⌋+ 1) · ρ , else

Clearly, gρ ∈ ρZn with ‖s−gρ‖ ≤
√
n

2
ρ and dist(s,M1

ρ(S)) ≤ ‖s−gρ‖ delivers
the estimate of the one-sided Hausdorff distance d(S,M1

ρ(S)). On the other
hand, choosing gρ ∈ M1

ρ(S) we know the existence of s ∈ S with

dist(gρ, S) = ‖gρ − s‖ ≤
√
n

2
ρ ,

so that the estimate follows. The equality of the first strategy with the
extension Sρ is clear by the equivalence of dist(gρ, S) ≤

√
n

2
ρ and gρ ∈ S +√

n

2
ρB1(0). �

A second elementary strategy is described in the following lemma and
is based on best approximations of grid points. Here, we collect one best
approximation ŝρ ∈ S closest to some grid point gρ instead of all grid points

that are ε-close to the set S (with ε =
√
n

2
ρ). Clearly, this strategy reflects

better the boundary of the set S than the first strategy (see later Fig. 8(a)–
(c)).

Lemma 2.5 Assume that S is closed and nonempty, ρ > 0 and ρ ·Zn be the
(infinite) grid. Let us denote the second strategy by

M2
ρ(S) :=

⋃

gρ∈ρ·Zn

ŝρ∈ΠS(gρ)

{ŝρ}. (8)

Then,

dH(S,M2
ρ(S)) ≤

√
n · ρ.

Proof: Clearly, d(M2
ρ(S), S) = 0, since all best approximations are elements

of S. On the other hand, for any gρ ∈ M1
ρ(S) there exists s ∈ S with

‖s− gρ‖ = dist(s,M1
ρ(S)) ≤

√
n

2
· ρ

11



by Lemma 2.4. For this grid point gρ let us choose ŝρ ∈ ΠS(gρ). Then,

‖gρ − ŝρ‖ = dist(gρ, S) ≤ ‖gρ − s‖.

Moreover, we can insert the grid point gρ in the triangle inequality:

dist(s,M2
ρ(S)) ≤ ‖s− ŝρ‖ ≤ ‖s− gρ‖+ ‖gρ − ŝρ‖ ≤ 2 · ‖s− gρ‖ ≤ √

n · ρ,
d(S,M2

ρ(S)) ≤
√
n · ρ.

�

The following lemma provides an approximate set representation via the
complement using only finitely many open balls instead of infinitely many
ones as in Lemma 2.2. The radius of the balls is given by the distance
function from some grid point gρ which also determines the center of these
balls.

Lemma 2.6 Let S ⊂ R
n be closed and nonempty, ρ > 0 and ρ · Zn be the

(infinite) grid. Define the third strategy by

M3
ρ(S) := R

n \
⋃

gρ∈ρ·Zn

intBr(gρ)(gρ) (9)

with r(x) = dist(x, S). Then,

dH(S,M3
ρ(S)) ≤

√
n · ρ.

Proof: From Lemma 2.2,

S = R
n \

⋃

x∈Rn

intBr(x)(x) ⊂ M3
ρ(S)

obviously holds.
Each v ∈ M3

ρ(S) cannot lie in the interior of the ball Br(gρ)(gρ) for all
gρ ∈ ρZn due to (9). Hence, the inequality ‖v − ĝρ‖ ≥ dist(ĝρ, S) holds for
ĝρ ∈ ΠρZn(v). Furthermore,

dist(ĝρ, S) ≤ ‖v − ĝρ‖ ≤
√
n

2
· ρ

is valid by Lemma 2.4. Hence, there exists ŝ ∈ S with

‖ĝρ − ŝ‖ = dist(ĝρ, S) ≤
√
n

2
· ρ

12



which can be used to estimate the distance

dist(v, S) ≤ ‖v − ŝ‖ ≤ ‖v − ĝρ‖+ ‖ĝρ − ŝ‖ ≤
√
n · ρ ,

d(M3
ρ(S), S) ≤

√
n · ρ .

�

Surprisingly, all above estimates of the three discretization strategies
Mi

ρ(S), i = 1, 2, 3, do not depend on the set S and the regularity of its
boundary. Let us add that the distance function directly appears in the first
and third strategy and also indirectly in the second one, since the minimiz-
ers of the distance functions, which are grid points, also are points of best
approximation.

Let us specialize these results to compact sets S to be able to restrict our
discretization to a finite set Gρ of grid points, where G ⊃ S is a compact
bounding box covering the set S. Although we change the set of grid points
slightly, we stick to the old notation Mi

ρ(S) to avoid additional notation. In
all strategies, the grid points no longer belong to the unbounded grid ρZn

but to the finite set Gρ.

Corollary 2.7 Let S ⊂ R
n be compact and nonempty with a (compact)

bounding box G ⊂ R
n, i.e. S ⊂ G. For a given grid size ρ > 0 we use

the extension Gρ ⊂ ρZn in (6) with finitely many grid points.
If we replace ρ · Zn by Gρ in the three strategies, the following holds:

(i) dH(S,M1
ρ(S))≤

√
n

2
· ρ with M1

ρ(S) =
⋃

gρ∈Gρ

dist(gρ,S)≤
√

n

2
·ρ

{gρ} ,

(ii) dH(S,M2
ρ(S))≤

√
n · ρ with M2

ρ(S) =
⋃

gρ∈Gρ

ŝρ∈ΠS(gρ)

{ŝρ} ,

(iii) dH(S,M3
ρ(S))≤

√
n · ρ with M3

ρ(S) = R
n \ ⋃

gρ∈Gρ

intBr(gρ)(gρ)

Proof: Let us check the three strategies separately, since only small modifi-
cations of the proofs of Lemmas 2.4–2.6 are necessary.

(i) If we take s ∈ S, it is obvious that the constructed grid point gρ in

Lemma 2.4 lies in Sρ ⊂ Gρ, since ‖gρ − s‖ ≤
√
n

2
ρ.

On the other hand, each grid point gρ in Gρ with distance to S not exceeding√
n

2
ρ lies in S +

√
n

2
ρB1(0) so that the rest of the proof remains unchanged.

(ii) We only need to adapt the second part of the proof slightly. The
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best approximation gρ of an element s ∈ S to the set M1
ρ(S) has distance

smaller or equal to
√
n

2
ρ. Now, the same reasoning as in (i) shows that

gρ ∈ S +
√
n

2
ρB1(0) ⊂ G +

√
n

2
ρB1(0) which means that gρ is an element of

Gρ. The proof can be finished as in Lemma 2.5.

(iii) Similar to (ii) one shows that ĝρ ∈ Gρ for a chosen v ∈ M3
ρ(S) in

Lemma 2.6. The rest of the proof remains unchanged. �

The next proposition compares the three strategies. The first strategy
(restricted to grid points in S) is included in the second one2, the latter is
a subset of the third strategy3 and this strategy is contained in the original
set S. The first two strategies consist only of finitely many points, the third
one will later allow an adaptive modification of the approximation, since we
can select the order in which we run through the grid points. Furthermore,
the complement of open balls allows to cut away larger regions of G which
do not belong to S.

Proposition 2.8 Let S ⊂ R
n be closed and nonempty and let ρ > 0 be the

grid size.
Then,

S ∩M1
ρ(S) ⊂ M2

ρ(S) ⊂ S ⊂ M3
ρ(S) .

If S is compact and G is a compact bounding box and we substitute ρ ·Zn by
Gρ in all three strategies, we will have the same inclusions.

Proof: A grid point gρ that lies in S ∩ M1
ρ(S) coincides with its best ap-

proximation in S and thus is contained in the second strategy.
Take a best approximation ŝρ ∈ S of a grid point gρ ∈ ρ · Zn. Let us

assume that there exists g̃ρ ∈ ρ · Zn with ‖ŝρ − g̃ρ‖ < dist(g̃ρ, S). This grid
point g̃ρ could not lie in S, since we would get the contradiction ‖ŝρ−g̃ρ‖ < 0.
Its best approximation s̃ ∈ ΠS(g̃ρ) fulfills

‖g̃ρ − ŝρ‖ < r(g̃ρ) = dist(g̃ρ, S) = ‖g̃ρ − s̃‖

which would be a contradiction to the optimality of ŝρ. Hence, such a grid
point g̃ρ cannot exist and ŝρ is an element of the set of the third strategy.

The last inclusion is already shown in the proof of Lemma 2.6, while the
reasoning is the same for the three strategies using finitely many points in
Gρ instead of infinitely many in ρ · Zn. �

2The second strategy additionally collects the best approximations.
3The best approximations of grid points in S and thus, the grid points inside of S

themselves, cannot lie in the union of open balls given by the distance function.
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We end this section with a perturbation result for the three discretization
strategies. Except a fixed error of term O(ρ) each of the three strategies
behaves Lipschitz continuous w.r.t. the change in the set. Furthermore, all
three strategies differ only in Hausdorff distance by O(ρ).

Lemma 2.9 Let S, S̃ ⊂ R
n be closed and nonempty and ρ > 0 be the grid

size.
Then,

dH(Mi
ρ(S),Mi

ρ(S̃)) ≤ dH(S, S̃) + ci
√
nρ ,

dH(Mi
ρ(S),Mj

ρ(S)) ≤ 2
√
nρ

for all strategies i, j = 1, 2, 3, where c1 = 1 and c2 = c3 = 2.

Proof: Both estimates follow immediately from Lemmas 2.4–2.6 with the
triangle inequality. �

The application of these three strategies to reachable sets is obvious. Since
we know that the discrete reachable sets are close to the continuous one under
appropriate assumptions, we will apply the three discretization strategies to
the discrete reachable set and we will still have a good approximation of the
reachable set in Problem 1.1.

3 Convergence Analysis

3.1 Properties and Approximations of Reachable Sets

We start collecting some results on reachable sets from the literature. The
first result is a relaxation theorem which allows to convexify the right-hand
side in (4).

Proposition 3.1 Let the set-valued mapping F : I × R
n ⇒ R

n be locally
Lipschitz w.r.t. x with integrable Lipschitz bounds LR(·) on balls BR(0) and
have closed, nonempty images.
Assume that F is of linear growth with integrable bound C(·), i.e.

‖F (t, x)‖ ≤ C(t) · (1 + ‖x‖).
Then, the closure of the reachable set in (3)–(4) for the right-hand side F
equals the reachable set for the convexified (relaxed) right-hand side coF .

Proof: cf. [29, Theorem 2.3] �

In our problem setting we need to ensure that the reachable set is closed
and nonempty, for the numerical computations the compactness is essential.
Both is guaranteed by the following proposition.

15



Proposition 3.2 Let f : I × R
n × Rm → R

n be continuous w.r.t. all ar-
guments, continuously differentiable w.r.t. x and U : I ⇒ R

m be continuous
with compact, nonempty images.
Consider F : I × R

n ⇒ R
n defined as

F (t, x) =
⋃

u∈U(t)

{f(t, x, u)}.

Assume that F has convex images and is of linear growth, i.e.

‖F (t, x)‖ ≤ C · (1 + ‖x‖).

Then, the reachable set is compact and nonempty.

Proof: To apply [39, Theorem 20.1] we only have to show that

〈x, f(t, x, u)〉 ≤ C ·
(
1 + ‖x‖2

)
(t ∈ I, x ∈ R

n, u ∈ U(t)) .

But this follows from the linear growth condition:

〈x, f(t, x, u)〉 ≤ ‖x‖ · ‖f(t, x, u)‖ ≤ C ·
(
‖x‖+ ‖x‖2

)

≤ C ·
(
1

2
+ ‖x‖

)2

≤ 2 · C ·
(
1 + ‖x‖2

)

�

The previous result refers to a parametrization of the right-hand side of
the differential inclusion. This formulation is convenient for the verification
of the assumptions for the examples in Section 5. Alternatively, it would be
possible to state a similar result with the set-valued right-hand side. In [39,
Corollary 20.2], the relaxation theorem as in Proposition 3.1 is formulated
for a parametrization.

For our analysis we formulate a central result establishing the convergence
of reachable sets with slightly more restrictive assumptions on the right-hand
side based on the results in [25], see also [67].

Proposition 3.3 Let F : I×R
n ⇒ R

n be Lipschitz w.r.t. (t, x) with compact,
convex, nonempty images.
Then, the following convergence result holds for all N ∈ N, h = T−t0

N
:

dH(R(T, t0, y0),Rh(T, t0, y0)) ≤ Ch.

Proof: cf. [25, Section 1, Theorem] �
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3.2 Discrete Approximation of Reachable Sets

Under the assumptions of Proposition 3.2, the reachable set is compact and
nonempty, hence we may apply the results of Section 2 to derive discrete
approximations of the reachable sets. Nevertheless, the convergence result
stated in Proposition 3.3 discusses only the discretization in time. To im-
plement set-valued Euler’s method we need the additional discretization in
space, see [18, Section 4.2] and [9]. In contrast to the cited articles, where
each iterative step in time involves a space discretization, the grid points are
needed only once to discretize the bounding box for the end points of the
discrete approximation with the help of the three discretization strategies in
Lemmas 2.4–2.6.

Summarizing we obtain the following main result, where we formulate
the abstract convergence result not only for the Euler method, but more
generally for set-valued Runge-Kutta methods, see [66, 65, 18, 5, 6]. Actually,
any discretization method of order p could be treated by the theorem.

Theorem 3.4 Let U ⊂ R
m be convex, compact, nonempty and let f : I ×

R
n ×Rm → R

n be a parametrization of the set-valued map F : I ×R
n ⇒ R

n

with

F (t, x) =
⋃

u∈U
{f(t, x, u)} . (10)

Let R = R(T, t0, X0) be the compact, nonempty reachable set of the differ-
ential inclusion, h = T−t0

N
be a stepsize with N ∈ N, let Rh = Rh(T, t0, X0)

be the discrete reachable set of the set-valued Runge-Kutta method which is
assumed to be closed and nonempty. Assume that the choice of the set-valued
method and U as well as the regularity of the parametrization guarantee that

dH(R,Rh) ≤ C1 · hp . (11)

Then, taking ρ = C2 · hp for the three discretization strategies in (7)–(9)

dH(R,M1
ρ(Rh)) ≤ (C1 +

√
n

2
· C2) · hp , (12)

dH(R,M2
ρ(Rh)) ≤ (C1 +

√
n · C2) · hp , (13)

dH(R,M3
ρ(Rh)) ≤ (C1 +

√
n · C2) · hp . (14)

Proof: We just apply the triangle inequality for the Hausdorff distance and
combine the convergence assumption (11) with the results of Corollary 2.7,
since the reachable sets Rh are bounded and the assumption yields compact-
ness and nonemptiness. �
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In [66, 5] regularity assumptions for Runge-Kutta methods of order 2
applied to linear differential inclusions are formulated, in [65] also for the
nonlinear ones with strongly convex right-hand sides. Typical conditions
involve smoothness of the parametrizing function f(·, ·, ·) but also for the
support functions (t, x) 7→ δ∗(l, F (t, x)) uniformly in normed directions l.

In the next corollary we restrict ourselves to the set-valued Euler’s method.

Corollary 3.5 Consider the notations for U , R as in Theorem 3.4 and let
f : I × R

n × Rm → R
n be Lipschitz continuous w.r.t. time t, continuously

differentiable w.r.t. x and continuous w.r.t. u.
Assume that F (·, ·) is given by (10) and Rh denotes the discrete reachable
set of the Euler’s method.
Then, the reachable sets R and Rh are compact, nonempty and the results
of Theorem 3.4 hold with convergence order p = 1.

Proof: Everything follows from Theorem 3.4, if we can show that the as-
sumption of the parametrization fits to the set-valued convergence results.

Under the given assumptions F (·) is Lipschitz w.r.t. (t, x) and we can ap-
ply Propositions 3.1–3.2. In particular, we can drop the assumptions of the
convex images in Proposition 3.2, see also [63]. Due to this relaxation theo-
rem, the Hausdorff distance remains unchanged and this proposition shows
that the reachable set R is compact, nonempty. It is not difficult to conclude
that this is valid for the discrete reachable sets Rh, too. Proposition 3.3
clarifies that the assumption (11) holds. Hence, we can apply the theorem
above. �

4 Numerical Realization

We suggest a new numerical method which allows to approximate reachable
sets for nonlinear problems using optimal control techniques. The method
is based on a suitable formulation of an optimal control problem such that
the feasible set coincides with the reachable set and the optimal value of
the problem yields the distance function. This simplicity in the approach
leads to several advantages in comparison to known methods: one can ap-
ply well-tested optimal control solvers and does not need to work directly
with sets; the set-valuedness is replaced by a parameter (the grid point gρ
in OCP (gh) in Algorithm 4.1) such that one can reuse the optimal control
for the previous grid point for the starting guess of the optimal control for
the next one; the parallelization is very evident; direct discretization meth-
ods can easily integrate difficult state constraints and boundary conditions;
the state discretization can be directly applied to the regions of interest; the
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basic concepts of the algorithm are easy to understand and involve simple
geometric tools as the distance function.

The theoretical approximation properties using a combination of distance
functions and state-space grids have been derived in Theorem 3.4. Although
it is possible to consider other set-valued Runge-Kutta methods [65, 66, 18, 5,
26], we restrict ourselves to the simplest case, the set-valued Euler’s method
in [25, 67, 18, 9].

4.1 DFOG Method

The new algorithm is presented only for the set-valued Euler’s method, but
can easily be adapted to set-valued Runge-Kutta methods of higher order in
the light of Theorem 3.4.

The algorithm works with a grid Gh with stepsize h and projects each
element in Gh onto the reachable set of the dynamic system. For simplicity,
we choose C2 = 1 in adapting the grid size ρ = C2h to the stepsize h in time.
Projecting a grid point w.r.t. the Euclidean norm leads to an optimal control
problem and the following algorithm for the approximation of the reachable
set. The algorithm is called DFOG method, since it applies distance f ields4

on grids.

Algorithm 4.1 (DFOG method)

(i) Choose a bounding region G ⊆ R
n for the reachable set and approximate

G by its grid extension Gh in (6) with stepsize ρ = h (or ρ = hp for
higher-order methods).

(ii) For every gh ∈ Gh solve the following optimal control problem:

OCP (gh)

Min 1
2
‖x(T )− gh‖22

s.t. x′(t) = f(t, x(t), u(t)) a.e. in [t0, T ],
x(0) = x0,
u(t) ∈ U a.e. in [t0, T ].

Let x⋆(·; gh) and u⋆(·; gh) denote the solution of OCP(gh).

(iii) Define the reachable set approximation (relative to Gh) according to
one of the three strategies (7)–(9) stated in Lemmas 2.4–2.6.

Please notice the following relations in optimal control problem OCP (gh):

4A distance field consists of the evaluation of the distance functions for many (grid)
points.
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• The admissible set is the set of solutions of Problem 1.1.

• The set of all endpoints x(T ) of admissible solutions forms the reachable
set R = R(T, t0, X0).

• The optimal value coincides with 1
2
· dist(gh,R)2.

• The endpoint x⋆(T ; gh) is a best approximation of the grid point gh in
the reachable set R.

Similar relations hold also for the following discretized version of OCP(gh)
and Problem 1.2, provided the same discretization scheme is used.

DOCP (gh)

Min 1
2
‖xh(T )− gh‖22

s.t. xh(ti+1) = xh(ti) + hΦ(ti, xh(ti), uh, h) ,
i = 0, 1, . . . , N − 1,

xh(0) = x0,
uh(·) ∈ Uh,

where Φ(·, ·, ·, ·) is the increment function of a Runge-Kutta method (see
Problem 1.2). Let x⋆

h(·; gh) and u⋆
h(·; gh) denote the solution of DOCP(gh). In

DOCP(gh), uh is a suitable control discretization. For simplicity, we restrict
ourselves to Euler’s method so that Φ(t, x, u, h) = f(t, x, u) and uh will be
the following piecewise constant control approximation on the grid

uh(t) = ui for ti ≤ t < ti+1, i = 0, 1, . . . , N − 1.

Obviously, DOCP(gh) is an approximation of OCP(gh) and any global so-
lution of OCP(gh) is an element of ΠR(gh) with R = R(T, t0, x0) and any
global solution of DOCP(gh) computes an element of ΠRh

(gh) with Rh =
Rh(T, t0, x0). The convergence results in the previous section guarantee that
the reachable set is approximated with at least order h for Euler’s method.

It remains to solve DOCP(gh) (or ideally OCP(gh)). OCP(gh) and its
discrete counterpart DOCP(gh) are in general nonconvex problems and may
exhibit all difficulties that may occur for general (discretized) optimal control
problems like ill-conditioning, non-regularity, singular subarcs, etc. Particu-
larly, they may possess local minima, which as we shall see later may cause
problems in combination with an adaptive strategy.

In order to make DOCP(gh) accessible to numerical methods, we assume
that the control set U is defined by box constraints, i.e.

U := {u ∈ R
nu | umin ≤ u ≤ umax}, umin < umax.
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Let z := (u0, u1, . . . , uN−1)
⊤. Then the constraints uh(ti) ∈ U read as

ui ∈ [umin, umax], i = 0, 1, . . . , N − 1.

In order to reduce the number of variables of DOCP(gh) the equations can
be eliminated recursively according to

x1 = x0 + hΦ(t0, z, h) =: X1(z),

x2 = x1 + hΦ(t1, x1, z, h) = X1(z) + hΦ(t1, X1(z), z, h) =: X2(z),
...

xN = xN−1 + hΦ(tN−1, xN−1, z, h)

= XN−1(z) + hΦ(tN−1, XN−1(z), z, h) =: XN (z).

Herein, we identified the grid function uh(·) with the control parameterization
z. Using these expressions, an equivalent optimization problem with variable
z arises:

Problem 4.2

Min
1

2
‖XN(z)− gh‖22 s.t. z ∈ [umin, umax]

N , i = 0, 1, . . . , N − 1.

This is a bound constraint nonlinear program and it can be solved, for
instance, by a sequential quadratic programming (SQP) method or any
other suitable nonlinear programming method. As all these methods are
well-known and well-analyzed, see for instance the book of Wright and No-
cedal [56], we are not going into details here. All these methods have in
common that they require the gradient of the objective function, which is
the most costly operation during the numerical solution. Hence, it is impor-
tant to exploit the structure of Problem 4.2.

There are basically four approaches for calculating derivatives:

• The sensitivity ODE approach (also known as IND approach) is a
sensitivity analysis of the integration scheme w.r.t. z. As the effort
depends mainly on the number of variables and less on the number
of constraints, it is particularly efficient, if the number of nonlinear
constraints exceeds the number of variables in the discretized optimal
control problem. Details can be found in Bock [11], Caracotsios and
Stewart [17], Maly and Petzold [53]. A discussion and comparison of
several strategies can be found in Feehery et al. [27].
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• The adjoint ODE approach, see Cao et al. [16], is advantageous com-
pared to the sensitivity ODE approach if the number of nonlinear con-
straints is less than the number of variables in the discretized optimal
control problem. The effort mainly depends on the number of con-
straints and less on the number of variables.

• Algorithmic differentiation, see Griewank [34], combines the sensitivity
ODE approach (forward mode) and the adjoint ODE approach (back-
ward mode).

• Finite difference approximations are easy to implement but tend to
be costly and it is difficult to control the accuracy of the computed
gradients.

Since Problem 4.2 only has box constraints, the adjoint approach for calcu-
lating gradients is the most efficient one. As we shall see, it only requires
to integrate the differential equation from t0 to T and the adjoint equation
backwards from T to t0.

We intend to calculate the gradient w.r.t. z of

G(z) :=
1

2
‖XN(z)− gh‖22,

where

X0(z) = x0,

Xi+1(z) = Xi(z) + hΦ(ti, Xi(z), z, h), i = 0, 1, . . . , N − 1.

Following [32] let us consider the auxiliary functional

J(z) := G(z) +

N−1∑

i=0

λ⊤
i+1 (Xi+1(z)−Xi(z)− hΦ(ti, Xi(z), z, h))

with multipliers λi, i = 1, . . . , N . Differentiating J w.r.t. z, reordering terms,
and neglecting arguments yields

J ′(z) = ((XN(z)− gh) + λN)
⊤ ·X ′

N(z)

+

N−1∑

i=1

(
λ⊤
i − λ⊤

i+1 − hλ⊤
i+1Φ

′
x[ti]

)
·X ′

i(z)−
N−1∑

i=0

hλ⊤
i+1Φ

′
z[ti].

Herein, Φ′
x[ti] is an abbreviation for Φ′

x(Xi(z), z, h) and likewise for Φ′
z.
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The calculation of the terms X ′
i(z) is costly and shall be avoided. Hence,

terms involving X ′
i(z) have to be eliminated. This leads to the adjoint equa-

tion
λ⊤
i − λ⊤

i+1 − hλ⊤
i+1Φ

′
x[ti] = 0, i = 0, . . . , N − 1,

and the transversality condition λ⊤
N = −(XN (z) − gh). Notice, that the

adjoint equation is solved backward in time. Exploiting these relations yields

J ′(z) = −
N−1∑

i=0

hλ⊤
i+1Φ

′
z[ti].

It is straightforward to show that G′(z) = J ′(z) holds and thus we obtained
a formula for the gradient of G.

Notice, that the derivatives Φ′
x and Φ′

z have to be computed. This is
straightforward for Euler’s method with Φ(t, x, u, h) = f(t, x, u), but it is
more involved for more general Runge Kutta methods.

Remark 4.3

• The direct discretization approach outlined above can be easily extended
to more complicated control constraints. Even state constraints and
boundary conditions can be added, see [8]. However, the calculcation of
gradients using the adjoint approach may not be the most suitable one
if nonlinear control and/or state constraints are present in the opti-
mal control problem. In this case the sensitivity approach is preferable,
details can be found in Gerdts [32].

• The effort for solving the discretized optimal control problems obviously
increases as the stepsize h decreases. In contrast to the implementation
of Euler’s method in [18, 9] the state discretization applied to all com-
puted sets increases linearly with h and not quadratically. Furthermore,
it does not depend on the number of boxes calculated for intermediate
sets.

• Common nonlinear programming methods are only capable of finding a
local minimizer of the above optimization problem. Global optimality is
practically not achievable with a reasonable computational effort. Thus,
all calculations in Section 5 may contain inaccuracies owing to local
minimality. Nevertheless, the obtained numerical results are in good
correspondence to the results in [18].
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5 Numerical Examples

In all following pictures, grid points gh ∈ h·Zn in red color indicate a negative
status of the optimizer for the discrete optimization problem DOCP(gh). In
this case, the corresponding grid point (or its best approximation, depending
on the strategy that is used) will be colored in red. Furthermore, we use
Euler’s method as direct discretization method, the grid width in state space
being equal to the stepsize in time and the optimizer OCPID-DAE1 [31].
It is surprising that the algorithm often produces nice results comparable
to results in [18, 7, 55] (which are gained with different methods), although
the optimizer sometimes only returns a local minimum. Note that local
minimizers still define reachable points. We observed that the lack of global
optimality is often cured by considering many grid points.

5.1 Kenderov’s Example

This example was suggested by Petar Kenderov (see [18, Example 5.2.1]). It
is constructed in such a way that the reachable set is a sphere, that is the
reachable set is a set of measure zero. The nonlinear control problem reads
as follows:

x′(t) = 8 (a11x(t) + a12y(t)− 2a12y(t)u(t)) (t ∈ [0, 1]) , (15)

y′(t) = 8 (−a12x(t) + a11y(t) + 2a12x(t)u(t)) , (16)

x(0) = y(0) = 2, (17)

u(t) ∈ [−1, 1]. (18)

Herein, a11 = σ2 − 1, a12 = σ
√
1− σ2, and σ = 0.9.

If r(·) and ϕ(·) solve the corresponding ODE in polar coordinates, i.e.

r′(t) = (σ2 − 1)r(t) (t ∈ [0, 1]),

ϕ′(t) = σ
√
1− σ2(2v − 1),

r(0) = r0 = 2
√
2,

ϕ(0) = ϕ0 =
π

4
,

and x(t) = r(t) cos(ϕ(t)), y(t) = r(t) sin(ϕ(t)), then (x(·), y(·)) is the solution
of (15)–(18) with u(·) ≡ v ∈ [0, 1].

This test problem is extremely hard to solve for the algorithm presented in
Section 4, since the feasible points (x(1), y(1)) belong to a lower-dimensional
manifold. The absence of inner points in the continuous reachable set makes
the optimization a difficult task.
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(a) N = 20 (b) N = 40

(c) N = 80 (d) N = 160 (e) N = 320

Figure 3: Reachable set for Kenderov’s problem with N = 20, 40, 80, 160, 320.

The numerical computations reveal that the reachable set is nonconvex
and the approximations apparently converge to a sphere. Figure 3 shows
the numerical results for a discretization of N = 20, 40, 80, 160, 320 and the
linear convergence w.r.t. ρ = h.

Please notice that the axes are different for the first two pictures in the
first row of Figure 3.

For this example, the results of the three strategies differ in an obvious
way, see Figure 4. Without the extension in the first strategy (a), only two
grid points lie on the reachable set, whereas a major part of the reachable
set appears with the extension in (b). The best result of the four pictures
is (c), the second strategy. Since the best approximations of grid points
do not need to be grid points themselves, we can drop the extension here.
Due to the one-dimensionality, the third strategy (d) produces reasonable
theoretical results, but the visualization is not helpful.
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(a) strat. 1 (no extension) (b) strat. 1 (with extension)

(c) strat. 2 (d) strat. 3 (unchecked balls)

Figure 4: Kenderov example: different strategies for N = 20

Only zooming in for the third strategy helps to understand that the cal-
culated balls touch this one-dimensional spiral approaching the sphere, see
Figure 5 with parts of the bounding box G used in Algorithm 4.1.

Figure 5: Kenderov example: two zooms for third strategy for N = 20
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(a) some unchecked balls (b) checked balls

(c) 1. zoom (d) 2. zoom

Figure 6: Kenderov example: unchecked and checked balls in third strategy
for N = 20

Due to some local optima computed by the optimizer in the DFOG
method, we may get a too big radius for the ball computed for a new grid
point. As a remedy we can check whether some of the previously computed
best approximants are contained in the ball with the radius computed for a
new grid point. If yes, the new radius is too large and we ignore the results
resp. this ball. If no, we call this ball a checked ball. This test is an important
improvement in strategy 3 as Figure 6(a) demonstrates.

In (a) the approximation contains unchecked balls which cut away parts
of the reachable set. All other pictures (b)–(d) contain checked balls and
yield good approximations of reachable sets.
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5.2 Bilinear Example

This example contains a bilinear term in the dynamics which are given below:

x′(t) = πy(t),

y′(t) = −πu(t)x(t),

x(0) = −1,

y(0) = 0,

u(t) ∈ [0, 1],

t ∈ [0, 1].

This example exhibits the small-time convexity of the reachable set (see [38,
Sec. 3.6]), i.e. for small end times T the reachable set is convex (see Fig. 9(a)),
but it becomes nonconvex for bigger times (see Fig. 9(b)). The DFOG
method can easily deal with both cases.

Linear convergence and the numerical approximations of the reachable
set for T = 1 and N = 10, 20, 40, 80, 160 are visualized in Figure 7.
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(a) N = 10 (b) N = 20

(c) N = 40 (d) N = 80

(e) N = 160

Figure 7: Reachable set for the bilinear problem with T = 1 and N =
10, 20, 40, 80, 160.

For this example, the results of the three strategies are rather similar, see
Figure 8. The extension in the first strategy (b) does not improve significantly
the reachable set and is very similar to the non-extended version (a). In
Figures 8(c)–(d), strategy 2 (c) and strategy 3 (d) deliver similar results.

It turns out that the extra effort for checking the balls in the third strategy
does not lead to improvements.
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(a) modified strat. 1 (no ext.) (b) strat. 1 (with extension)

(c) strat. 2 (d) strat. 3 (unchecked balls)

Figure 8: bilinear example: 3 different strategies for N = 10

Figure 9 shows an impression of the funnel of trajectories by plotting
reachable sets for t = 1

8
, 1
4
, 1
2
(small-time convexity of the reachable sets) in

(a) resp. t = 1
16
, 1
8
, 3
16
, 1
4
, 1
2
, 3
4
, 1 in (b). The above method (strategy 2) was

simply applied to different final times.

(a) (b)

Figure 9: bilinear problem: evolution of reachable sets in time.
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Further plots with different viewpoints are in Figure 10.

(a) (b)

Figure 10: bilinear problem: evolution of reachable sets in time.

5.3 Adaptive Version

The idea of an adaptive algorithm for the third strategy is as follows. Let gh
be a grid point and x⋆(T ; gh) an optimal solution of DOCP(gh). Then, no
grid point from the interior of the ball Br(gh) with radius r = ‖x⋆

h(T ; gh)−gh‖
is reachable and the ball cannot contain an element of the reachable set as
r is supposed to be minimal. Following a heuristic approach, all grid points
within the ball Br(gh) will not to be projected.

In Figure 11(a) the bounding box is shown in which all grid points are
chosen. For each grid point the best approximation to the (unknown) reach-
able set (painted in blue color) is computed. The reachable set belongs to
the Rayleigh problem in [18, Ex. 5.2.5], [8, Example 2]. Since neighboring
grid points create similar balls, a first idea of an adaptive algorithm is rather
obvious. We do not compute projections of grid points that already lie inside
an open ball calculated for another grid point, in contrary to Figure 11(b).
In this way, the calculation time can be drastically reduced, but the approx-
imation in state space is coarser.
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Figure 11: non-adaptive algorithm: grid points lie in many balls

There is one pitfall. The above reasoning assumes that the numerical
method is able to find a global minimizer of DOCP(gh). However, in practise
this cannot be guaranteed, if a local optimization method is used. If the
method finds a local minimizer but not a global minimizer, then the radius
r of the ball Br(gh) is too large and too many grid points are cut off. One
remedy for this problem would be to use global optimization methods, which
unfortunately is not a good option for the practice owing to the large dimen-
sion of the discretized optimal control problems. In our numerical examples
we observe that the above mentioned shortcoming is cured by considering
many grid points and storing all end-points of locally optimal trajectories,
which might not be globally optimal but still are reachable.

This pitfall was already demonstrated and discussed for Kenderov’s ex-
ample. This example is particularly well-suited for demonstration, because
the reachable set is a set of measure zero.

The benefit in view of CPU time of the adaptive strategy depends on the
initial region and on the dimension of the reachable set. Thus, the adaptive
strategy is particularly efficient for low dimensional reachable sets, e.g. as in
Kenderov’s example below.

CPU times for Kenderov’s problem are summarized in Table 1. The
adaptive algorithm turns out to be very efficient in view of CPU, because of
the low dimension of the reachable set. However, for this example, special
measures with checked balls (see Subsect. 5.1) have to be taken to avoid that
the adaptive algorithm cuts off some regions of the reachable set, because the
optimization algorithm only found local minimizers instead of global ones.
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Table 1: CPU times for Kenderov’s problem: Comparison of non-adaptive
and adaptive algorithm.

N CPU User CPU User
full adaptive

20 0m 1.296s 0m 0.152s
40 0m 14.313s 0m 0.752s
80 3m 54.151s 0m 5.980s
160 86m 48.758s 1m 6.528s
320 2802m 35.469s 21m 23.856s

Let us point out that the computation times in Tables 1 and 2 use the
strategy ρ = hN . This is required by the convergence result in Theorem 3.4,
but the discretization in space in Figures 7, 12 is much finer than optically
necessary. An obvious way to drastically reduce computational time is the
choice of a rougher state space grid at least for inner points not being O(ρ)-
close to the boundary.

In Figure 12 we will compare the non-adaptive and the adaptive version
of the third strategy. In the latter one, only those grid points, which do not
lie in other open balls from other grid points, determine open balls.
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(a) N = 10 (b) N = 10 (adaptive)

(c) N = 40 (d) N = 40 (adaptive)

(e) N = 160 (f) N = 160 (adaptive)

Figure 12: non-adaptive and adaptive second strategy for the bilinear prob-
lem with T = 0.5 and N = 10, 40, 160

CPU times for the bilinear problem are summarized in Table 2. The
adaptive algorithm turns out not to be so efficient in view of CPU time as
for Kenderov’s example, because the reachable set is two-dimensional and
the initial region already localizes the reachable set sufficiently well.
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Table 2: CPU times for the bilinear problem: Comparison of non-adaptive
and adaptive algorithm.

N CPU User CPU User
full adaptive

10 0m 0.404s 0m 0.268s
20 0m 5.016s 0m 2.224s
40 1m 35.818s 0m 34.526s
80 38m 34.489s 13m 14.846s
160 1204m 35.461s 457m 28.067s

See also [8] for further examples and CPU comparisons of the adaptive
and the non-adaptive version.

5.4 Example from a Pursuit-Evasion Game

The following example has its origin in a pursuit evasion game of two identical
vehicles moving in the plane, see [55, Section 2.1]. The vehicles are moving
with constant velocity and can control its yaw angle velocities by controls
u1, u2 ∈ [−1, 1], respectively. The equations of motion in relative coordinates
read as follows:

x′
1(t) = −v + v cos(x3(t)) + u1(t)x2(t),

x′
2(t) = v sin(x3(t))− u1(t)x1(t),

x′
3(t) = u2(t)− u1(t),

where v = 5 is the velocity of the vehicles, (x1, x2) is the relative location in
the plane, and x3 is the relative heading angle. A collision of the two vehicles
occurs if x1 = x2 = 0. We are now interested in the set of initial conditions
from which the state x1 = x2 = x3 = 0 can be reached within one time
unit. To this end we investigate the backward oriented reachable set at t = 0
emanating from the terminal condition x1(1) = x2(1) = x3(1) = 0 backward
in time. Apparently, the backward oriented reachable set is nothing else but
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the reachable set R(1, 0, 0) for the time-reversed differential equations

x′
1(t) = − (−v + v cos(x3(t)) + u1(t)x2(t)) ,

x′
2(t) = − (v sin(x3(t))− u1(t)x1(t)) ,

x′
3(t) = − (u2(t)− u1(t)) ,

x1(0) = x2(0) = x3(0) = 0,

u1(t) ∈ [−1, 1],

u2(t) ∈ [−1, 1],

t ∈ [0, 1],

where the negative of the right-hand side of the original dynamics must be
used. Figure 13 shows the three-dimensional nonconvex reachable set at time
T = 1. This set represents all initial starting points from which a collision of
the two vehicles can be achieved. Given this set, it is now easy to exploit this
information to decide whether a collision is possible or not. Such decisions
have to be made in automatic warning systems for vehicles.

Reachable Set (T=1)

-1
 0

 1
 2

 3
 4

x_1

-4 -3 -2 -1  0  1  2  3  4

x_2

-2
-1
 0
 1
 2

x_3

-2
-1.5
-1
-0.5
 0
 0.5
 1
 1.5
 2

Figure 13: Three-dimensional reachable set for the pursuit-evasion game
example with N = 20.

Related problems can be found in the references [21, 13].
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6 Outline

The proposed algorithm has the following potential advantages and exten-
sions:

• The approximation of reachable sets with higher-order methods (Runge-
Kutta methods of second order in [66, 65]) is possible with adapted
stepsize ρ = C2h

2. It can also be used to implement the set-valued
implicit Euler’s method in [10] which is reflected by the implicit Euler
method as direct discretization method.

• Zooming into interesting sub-regions of the reachable set can be easily
realized.

• DFOG requires to solve one optimal control problem for each point
in the O(h)-grid in state space. In common implementations of the
set-valued Euler method

Xh(tj+1) =
⋃

xh(tj )∈Xh(tj)

{xh(tj) + hF (tj, xh(tj))} (j = 0, 1, . . . , N − 1)

as in [18] and [9], the sets within the union have to be approximated
with an O(h2)-grid in state space to keep the overall order O(h) for
subsequent times tk, k > j.
The effort for solving the finite dimensional optimization problem for
O(Nn) grid points and exhaustive calculation of set-valued Euler steps
from neighboring grid points with approximately the same images has
to be compared. Our experience shows advantages of the DFOGmethod
in computational time and memory consumption.

• The grid points do not need to be chosen in an equidistant fashion and
adaptivity based on the third strategy is possible.

• The algorithm can be easily parallelized.

• Higher-dimensional systems can be treated as long as the discretized
optimal control problems can be solved. The number of grid points in
space for Euler’s method does not grow quadratically w.r.t. the stepsize
h in time. If the interesting part of the reachable set lies in a lower-
dimensional space, one only need to discretize a lower-dimensional
bounding box. This is in contrast to many other methods, where the
full state space needs to be discretized. In a first test example, we can
calculate a 2D projection of the reachable set with space dimension 9
which is out of reach for level-set methods solving a PDE.
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• State constraints, mixed control state constraints, and terminal condi-
tions can be introduced in the algorithm.

• It remains a future a task to adapt the method to the regularity of the
boundary of the reachable set, see [51].
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theorems on closed domains. J. Differ. Equ., 161(2):449–478, 2000.

[30] J. E. Gayek. Approximating reachable sets for a class of linear control
systems. Internat. J. Control, 43(2):441–453, 1986.

[31] M. Gerdts. User manual for OCPID-DAE1. User manual, University of
the German Federal Armed Forces in Munich, Munich, 2010
(online at http://www.unibw.de/lrt1/gerdts/software/ocpiddae1.pdf).

[32] M. Gerdts. Optimal Control of ODEs and DAEs. DeGruyter, Berlin,
2011.

[33] A. Girard and C. Le Guernic. Zonotope/hyperplane intersection for
hybrid systems reachability analysis. In M. Egerstedt et al. (eds.), Hy-
brid systems: Computation and Control. 11th International Workshop,
HSCC 2008, St. Louis, MO, USA, April 22–24, 2008, volume 4981 of
Lecture Notes in Comput. Sci., pages 215–228. Springer, Berlin, 2008.

[34] A. Griewank. Evaluating Derivatives. Principles and Techniques of Algo-
rithmic Differentiation, volume 19 of Frontiers in Applied Mathematics.
SIAM, Philadelphia, 2000.
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D. Hömberg and F. Tröltzsch, eds. 25th Conference on System Mod-
eling and Optimization held September 12–16, 2011 in Berlin, 10 pages,
Springer, 2012.

[44] M. I. Krastanov and V. M. Veliov. High-order approximations to non-
holonomic affine control systems. In Large-Scale Scientific Computing
7th International Conference, LSSC 2009, Sozopol, Bulgaria, June 4–8,
2009. Revised Papers, volume 5910 of Lecture Notes in Comput. Sci.,
pages 294–301, 2010.

[45] A. B. Kurzhanski, I. M. Mitchell, and P. Varaiya. Optimization tech-
niques for state-constrained control and obstacle problems. J. Optim.
Theory Appl., 128(3):499–521, 2006.

42



[46] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability
analysis: internal approximation. Systems Control Lett., 41(3):201–211,
2000.

[47] A. B. Kurzhanski and P. Varaiya. Dynamic optimization for reachability
problems. J. Optim. Theory Appl., 108(2):227–251, 2001.

[48] A. B. Kurzhanski and P. Varaiya. On ellipsoidal techniques for reacha-
bility analysis. Part I: external approximations. Optim. Methods Softw.,
17(2):177–206, 2002.

[49] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachabil-
ity under state constraints. SIAM J. Control Optim., 45(4):1369–1394
(electronic), 2006.

[50] D. Levin. Multidimensional reconstruction by set-valued approxima-
tions. IMA J. Numer. Anal., 6:173–184, 1986.

[51] T. Lorenz. Epi-Lipschitzian reachable sets of differential inclusions. Syst.
Control Lett., 57(9):703–707, 2008.
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