172 research outputs found

    Fully Adaptive Newton-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we develop an adaptive procedure for the numerical solution of general, semilinear elliptic problems with possible singular perturbations. Our approach combines both a prediction-type adaptive Newton method and an adaptive finite element discretization (based on a robust a posteriori error analysis), thereby leading to a fully adaptive Newton-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples

    Adaptive Pseudo-Transient-Continuation-Galerkin Methods for Semilinear Elliptic Partial Differential Equations

    Full text link
    In this paper we investigate the application of pseudo-transient-continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, employ the PTC-methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction-type PTC-method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC-Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.Comment: arXiv admin note: text overlap with arXiv:1408.522

    Maximum norm a posteriori error estimate for a 2d singularly perturbed semilinear reaction-diffusion problem

    Get PDF
    A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimat

    A singularly perturbed semilinear reaction-diffusion problem in a polygonal domain

    Get PDF
    The semilinear reaction-diĀ®usion equation Ā”"24u+b(x; u) = 0 with Dirichlet bound-ary conditions is considered in a convex polygonal domain. The singular perturbation parameter Īµ is arbitrarily small, and the ā€œreduced equationā€ b(x, u0 (x)) = 0 may have multiple solutions. An asymptotic expansion for u is constructed that involves boundary and corner layer functions. By perturbing this asymptotic expansion, we obtain certain sub- and super-solutions and thus show the existence of a solution u that is close to the constructed asymptotic expansion. The polygonal boundary forces the study of the nonlinear autonomous elliptic equation āˆ’Dz + f (z) = 0 posed in an infinite sector, and then well-posedness of the corresponding linearized problem
    • ā€¦
    corecore