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MAXIMUM NORM A POSTERIORI ERROR ESTIMATE
FOR A 2D SINGULARLY PERTURBED SEMILINEAR

REACTION-DIFFUSION PROBLEM∗

NATALIA KOPTEVA†

Abstract. A singularly perturbed semilinear reaction-diffusion equation, posed in the unit
square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order
maximum norm a posteriori error estimate that holds true uniformly in the small diffusion param-
eter. No mesh aspect ratio assumption is made. Numerical results are presented that support our
theoretical estimate.
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1. Introduction. Solutions of singularly perturbed differential equations typ-
ically exhibit sharp boundary and interior layers, which are narrow regions where
solutions change rapidly. To obtain reliable numerical approximations of layer solu-
tions in an efficient way, one has to use locally refined meshes that are fine in layer
regions and standard outside. Furthermore, as is shown in [20, 19, 7, 13] by the nu-
merical analysis of model problems, for which the location and width of the layers are
known a priori, optimal layer-adapted meshes have extremely high maximum aspect
ratios (typically O(ε−1), where ε is the layer width).

In contrast, a posteriori error estimates, which underlie any reliable a posteriori
mesh construction, are typically obtained under the minimum angle condition, which
is equivalent to the bounded-mesh-aspect-ratio condition; see, e.g., [2, 21]. But the
minimum angle condition seems rather restrictive and makes a posteriori error esti-
mates less practical for layer solutions, for which a posteriori mesh generation is most
needed.

The aim of the present paper is to establish an a posteriori error estimate for one
singularly perturbed problem under no mesh aspect ratio condition. Note that our
error estimate is in the maximum norm, which is sufficiently strong to capture layers
and hence seems most appropriate for singularly perturbed problems.

Consider the singularly perturbed semilinear reaction-diffusion problem posed in
the unit square:

Tu := −ε2�u + b(x, y, u) = 0, (x, y) ∈ Ω = (0, 1) × (0, 1),

u(x, y) = 0, (x, y) ∈ ∂Ω.
(1.1)
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MAXIMUM NORM A POSTERIORI ERROR ESTIMATE 1603

Here ε is a small positive parameter, � = ∂2/∂x2 + ∂2/∂y2 is the Laplace operator,
the function b is sufficiently smooth, and

0 < β < bu(x, y, u) ≤ β̄ for all (x, y, u) ∈ [0, 1]2 × R.(1.2)

Under condition (1.2), problem (1.1) has a unique solution, which exhibits sharp
boundary layers of width O(ε| ln ε|) along the boundary ∂Ω.

We discretize (1.1) using the standard second-order five-point difference scheme—
see (2.2) for details—on an arbitrary tensor-product mesh {(xi, yj)}, where 0 = x0 <
x1 < · · · < xN = 1 and 0 = y0 < y1 < · · · < yM = 1, while hi = xi − xi−1 and
kj = yj − yj−1 are the local mesh sizes.

This is an idealized situation in the a posteriori mesh construction context since
an irregular mesh, rather than a tensor-product mesh, seems more suitable for a
practical a posteriori mesh construction algorithm. Therefore the error estimate,
which we present, is more interesting from a theoretical point of view. In particular,
it shows that the bounded-mesh-aspect-ratio condition/minimal-angle condition is not
essential in the a posteriori error estimation. Furthermore, if tensor-product meshes
are used at least in crucial layer regions, where the mesh adaptation is most needed,
one might conjecture that in such regions, local analogues of our a posteriori error
estimate would apply.

Our main result is the following maximum norm a posteriori error estimate, in
which the error is understood as the difference between the exact solution and the
bilinear interpolant of the computed solution:

‖UB − u‖∞ ≤ C0

[
max

i=1,...,N
j=0,...,M

{
h2
iM1,ij

}
+ max

i=0,...,N
j=1,...,M

{
k2
jM2,ij

}]
(1.3)

—see Theorem 2.1—where, roughly speaking,

M1,ij ≈ |D2
xUij | ln

(
2 + ε/κ

)
+ 1, M2,ij ≈ |D2

yUij | ln
(
2 + ε/κ

)
+ 1,(1.4)

with κ := min{mini{hi},minj{kj}}. Here UB is the bilinear interpolant of the com-
puted solution U (the finite difference computed solution is originally defined at the
mesh nodes only; hence to measure the error in the entire domain, one first has to
interpolate the computed solution there). The quantities D2

xUij and D2
yUij are the

standard discrete approximations of ∂2u/∂x2 and ∂2u/∂y2 defined in (2.3). In (1.4), a
few terms are skipped, for which the one-dimensional analysis [12] and the numerical
results of section 6 show that they are less important; see Theorem 2.1 for the precise
definitions of M1,ij and M2,ij .

The error constant C0 in (1.3) is independent of ε, the mesh, and aspect ratios of
its elements, although this constant is not specified. In a posteriori error estimation,
much attention focuses on specifying the error constants. Note that for singularly
perturbed problems, the error constant might blow up as ε becomes small, and hence
the existence of an ε-uniform error constant is more significant than its precise value.

Note that, roughly speaking, the a posteriori error estimate (1.3), (1.4) might be
viewed as a discrete analogue of the linear interpolation error estimates [8, 6], which
imply that a suitable anisotropic mesh should be quasi-uniform under the metric
induced by the Hessian matrix. An example of this idea being exploited for mesh
generation is given, e.g., in [10], where anisotropic meshes, defined as mappings of
regular uniform grids, are obtained via functional minimization.
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1604 NATALIA KOPTEVA

The present paper follows [11] and in particular [12], where certain maximum
norm a posteriori error estimates were derived for one-dimensional singularly per-
turbed convection-diffusion and reaction-diffusion problems; see also a more recent
paper [18] for a similar one-dimensional a posteriori error estimate. Note that the
papers [11, 12, 18] report one-dimensional error estimates, while now we extend the
one-dimensional analysis [12] to a two-dimensional case.

Problem (1.1) has often been addressed in the numerical analysis literature. In
particular, we refer the reader to [5], where iterative techniques for the standard finite
difference discretization of (1.1) are developed, and [15, 16], where certain a posteriori
error estimates for a linear version of (1.1) are obtained on anisotropic meshes in the
energy norm.

The paper is organized as follows. In section 2, we describe the numerical method,
present our a posteriori error estimate in Theorem 2.1, and outline its proof. Next, in
section 3, we establish some estimates for the Green’s function of a linearized version
of (1.1). They imply certain stability properties of the differential operator T from
(1.1), which are presented in section 4. Then in section 5, we complete the proof
of Theorem 2.1. Finally, in section 6, numerical results are given that support our
theoretical estimate.

Notation. Let ‖ · ‖p ;Ω̃, where 1 ≤ p ≤ ∞, denote the standard Lp(Ω̃) norm for

any domain Ω̃. Furthermore, the standard notation W k,p(Ω̃) is used for the Sobolev
spaces with the norm ‖ · ‖k,p ;Ω̃ defined, for a function v(x, y) in a domain Ω̃, by

‖v‖k,p ;Ω̃ = ‖v‖p ;Ω̃ +

k∑
l=1

|v|l,p ;Ω̃, k = 1, 2,

|v|1,p ;Ω̃ = ‖vx‖p ;Ω̃ + ‖vy‖p ;Ω̃ , |v|2,p ;Ω̃ = ‖vxx‖p ;Ω̃ + ‖vxy‖p ;Ω̃ + ‖vyy‖p ;Ω̃ ;

see, e.g., [9]. We shall use the notation ‖ · ‖p and ‖ · ‖k,p for ‖ · ‖p ;Ω and ‖ · ‖k,p ;Ω

when there is no ambiguity. Sometimes the domain of interest will be an open ball
B(a, b ; ρ) = {(x, y) : (x− a)2 + (y − b)2 < ρ2} centered at (a, b) of radius ρ.

Throughout the paper we let C denote a generic positive constant that may take
different values in different formulas but is always independent of the mesh and ε. A
subscripted C (e.g., C1) denotes a positive constant that is independent of h and ε
and takes a fixed value.

Remark 1.1. The assumption bu(x, y, u) ≤ β̄ in (1.2) can be omitted since it
follows, for some constant β̄, from 0 < β < bu(x, y, u) and u being a unique and
bounded solution of (1.1); see, e.g., [22, section 12]. Note that assumption (1.2)
enables us to linearize (1.1) and then invoke the Green’s function in our analysis.
On the other hand, this assumption implies that our problem has a unique solution
and thus excludes the possibility of multiple solutions. Hence, strictly speaking, our
results are not applicable to the multiple-solution case. Having said this, we still
believe that the present paper provides some insight into the numerical solution of a
more general multiple-solution version of (1.1), considered, e.g., in [10].

2. Numerical method. Main result. Let our problem (1.1) satisfy the stan-
dard compatibility conditions at the corners of the domain Ω:

b(0, 0, 0) = b(0, 1, 0) = b(1, 0, 0) = b(1, 1, 0) = 0,(2.1)

which guarantee that u ∈ C3(Ω̄).
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Numerical method. We require the computed solution U to satisfy the standard
five-point finite difference discretization of problem (1.1):

−ε2D2
xUij − ε2D2

yUij + b(xi, yj , Uij) = 0,(2.2)

for i = 1, . . . N − 1, j = 1, . . . ,M − 1, where U0,j = UN,j = Ui,0 = Ui,M = 0. Here, as
usual, Uij is associated with the mesh node (xi, yj), and we use the standard finite
difference operators, defined for a discrete function Vij by

D−
x Vij =

Vij − Vi−1,j

hi
, D2

xVij =
D−

x Vi+1,j −D−
x Vi,j

(hi + hi+1)/2
,

D−
y Vij =

Vij − Vi,j−1

kj
, D2

yVij =
D−

y Vi,j+1 −D−
y Vi,j

(kj + kj+1)/2
.

(2.3)

By condition (1.2), there exists a unique solution of the discrete problem (2.2) on an
arbitrary mesh {(xi, yj)}; see, e.g., [5].

Clearly, D2
xUij is defined for i = 1, . . . , N−1, j = 0, . . . ,M , while D2

yUij is defined
for i = 0, . . . , N , j = 1, . . . ,M − 1. We now extend D2

xUij to the mesh nodes i = 0, N
as follows. First, formally extend the discrete equation (2.2) to i = 0 and i = N , in
which, using the zero boundary conditions, we set D2

yU0,j = D2
yUN,j = 0. This yields

D2
xU0,j := ε−2b(0, yj , 0), D2

xUN,j := ε−2b(1, yj , 0), j = 0, . . . ,M.(2.4a)

Similarly, extend D2
xUij to j = 0,M by

D2
yUi,0 := ε−2b(xi, 0, 0), D2

yUi,M := ε−2b(xi, 1, 0), i = 0, . . . , N.(2.4b)

Note that by (2.1), the above relations (2.4) imply that D2
xUij = D2

yUij = 0 if (xi, yj)
is (0, 0), (0, 1), (1, 0), or (1, 1), which is consistent with the boundary condition in (1.1).

Remark 2.1. Now that D2
xUij and D2

yUij are extended by (2.4) to all i, j, our
discrete equation (2.2) holds true for all i = 0, . . . , N and j = 0, . . . ,M .

Bilinear interpolation notation. Let UB = UB(x, y) be the standard bilinear
interpolant of the computed solution Uij ; i.e., UB is continuous in Ω̄, bilinear on each
[xi−1, xi] × [yj−1, yj ], and equal to Uij at the mesh nodes:

UB(xi, yj) = Uij for i = 0, . . . , N, j = 0, . . . ,M.(2.5)

Similarly, we introduce the bilinear interpolant vB(x, y) for any discrete function vij
or any continuous function v(x, y).

Furthermore, we shall use the standard one-dimensional linear interpolants vI

and vJ with respect to x and y, respectively, that are defined, for any function v, as
follows. For each fixed y in the domain of v, we have vI(xi, y) = v(xi, y), and vI(x, y)
is linear on each [xi−1, xi]. Similarly, for each fixed x in the domain of v, we have
vJ(x, yj) = v(x, yj), and vJ(x, y) is linear on each [yj−1, yj ].

In particular, consider the bilinear interpolant UB of Uij and the linear one-
dimensional interpolants U I(x, yj) and UJ(xi, y). Clearly,

[U I(x, yj)]
J = [UJ(xi, y)]

I = UB(x, y).(2.6)

Now we state a maximum norm a posteriori error estimate, which is the main
result of the present paper.
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Theorem 2.1. Let u(x, y) be a solution of problem (1.1), (1.2), (2.1), Uij a
solution of problem (2.2) on an arbitrary mesh {(xi, yj)}, and UB(x, y) its piecewise
bilinear interpolant (2.5). Then

‖UB − u‖∞ ≤ C0

[
max

i=1,...,N
j=0,...,M

{
h2
iM1,ij

}
+ max

i=0,...,N
j=1,...,M

{
k2
jM2,ij

}]
,(2.7)

where

M1,ij := min
{
|D2

xUi−1,j |, |D2
xUij |

}
ln
(
2 + ε/κ

)
+ ε|D−

x D
2
xUij | + |D−

x Uij |2 + 1,

M2,ij := min
{
|D2

yUi,j−1|, |D2
yUij |

}
ln
(
2 + ε/κ

)
+ ε|D−

y D
2
yUij | + |D−

y Uij |2 + 1,

with κ := min{mini{hi},minj{kj}}, while the constant C is independent of ε and the
mesh.

Proof outline. By (1.1), we have

TUB − Tu = −ε2
[
∂2/∂x2 + ∂2/∂y2

]
UB + b(x, y, UB),

where ∂2UB/∂x2 and ∂2UB/∂y2 are understood in the sense of distributions. Define
an auxiliary function

q(x, y) := b(x, y, UB(x, y))

and let qB denote its piecewise bilinear interpolant on the mesh {(xi, yj)}. Hence

TUB − Tu = −ε2
[
∂2/∂x2 + ∂2/∂y2

]
UB + qB +

[
q − qB

]
.

Noting that qij := q(xi, yj) = b(xi, yj , Uij) and recalling the discrete equation (2.2)
combined with Remark 2.1 yields qij = ε2D2

xUij + ε2D2
yUij for i = 0, . . . , N , j =

0, . . . ,M . Next, decompose this as qij = q1,ij + q2,ij , where

q1,ij := ε2D2
xUij , q2,ij := ε2D2

yUij , i = 0, . . . , N, j = 0, . . . ,M.(2.8)

Furthermore, using analogues of (2.6) for q1 and q2, we get

qB(x, y) = qB
1 (x, y) + qB

2 (x, y) =
[
qI
1(x, yj)

]J
+
[
qJ
2(xi, y)

]I
, (x, y) ∈ Ω̄.

Therefore

TUB−Tu =

[
−ε2 ∂

2U I(x, yj)

∂x2
+ qI

1(x, yj)

]J

+

[
−ε2 ∂

2UJ(xi, y)

∂y2
+ qJ

2(xi, y)

]I

+
[
q−qB

]
.

Here we used

∂2UB(x, y)

∂x2
=

[
∂2U I(x, yj)

∂x2

]J

,
∂2UB(x, y)

∂y2
=

[
∂2UJ(xi, y)

∂y2

]I

,(2.9)

which follow from (2.6); see also Remark 2.2.
The proof is completed in section 5. First, the residual TUB − Tu is represented

as

TUB − Tu =
∂

∂x
F1(x, y) +

∂

∂y
F2(x, y) +

[
q − qB

]
,(2.10)
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where F1 and F2 are functions of the current mesh and computed solution. This
will enable us to estimate the error UB − u in the maximum norm by linearizing the
operator T and invoking its stability properties, which are obtained in section 4 using
sharp estimates of the Green’s function of section 3.

Remark 2.2. We understand ∂2UB/∂x2 and ∂2UB/∂y2 in the sense of distribu-

tions. To be more precise, in (2.9) we use ∂2U I(x, yj)/∂x
2 =

∑N−1
i=1 υi(yj)δ(x − xi),

and [∂2U I(x, yj)/∂x
2]J =

∑N−1
i=1 υJ

i (y)δ(x−xi), where δ(·) is the Dirac δ-distribution,
while υi(yj) := D2Uij (hi + hi+1)/2.

3. Green’s function. Assumption (1.2) enables us to linearize (1.1) and then
invoke the Green’s function in our analysis. Hence we start with a linear case of (1.1),
where b(x, y, u) := p(x, y)u− f(x, y):

Lu := −ε2�u + p(x, y)u = f(x, y) in Ω, u = 0 on ∂Ω.(3.1)

Here p ∈ L∞(Ω) and, in accordance with (1.2),

0 < β ≤ p(x, y) ≤ β̄.(3.2)

Introduce the Green’s function G(x, y; ξ, η) of the linear self-adjoint operator L
that, for each (x, y) ∈ Ω, satisfies

LG = −ε2
[
Gξξ + Gηη

]
+ p(ξ, η)G = δ(x− ξ) δ(y − η), (ξ, η) ∈ Ω,
G(x, y; ξ, η) = 0, (ξ, η) ∈ ∂Ω,

(3.3)

where δ(·) is the Dirac δ-distribution. Then the unique solution u of problem (3.1) is

u(x, y) =

∫
Ω

G(x, y; ξ, η) f(ξ, η) dξ dη.(3.4)

Starting from (3.3), throughout the present section, the differential operators L
and L̄ are understood as differential operators in the variables (ξ, η). Furthermore,
all norms are understood as norms of functions of (ξ, η).

Theorem 3.1. The Green’s function G(x, y; ξ, η) from (3.3) satisfies∣∣G(x, y; ·)
∣∣
1,1 ;Ω

≤ Cε−1.(3.5a)

Furthermore, for any ball B(a, b ; ρ) of radius ρ we have∣∣G(x, y; ·)
∣∣
1,1 ;B(a,b ;ρ)∩Ω

≤ Cε−2ρ,(3.5b)

while for the ball B(x, y ; ρ) centered at (x, y) of radius ρ we have∣∣G(x, y; ·)
∣∣
2,1 ;Ω\B(x,y ;ρ)

≤ Cε−2 ln(2 + ε/ρ).(3.5c)

3.1. Constant-coefficient case. First, we shall establish a particular case of
Theorem 3.1. Let p := γ2, where γ = const > 0, and let Ω be the quarter plane
R

2
+ = {x, y > 0}. In this particular case we denote the differential operator by L̄ and

the Green’s function by Ḡ, and for each (x, y) we have

L̄Ḡ(x, y; ξ, η) := −ε2
[
Ḡξξ + Ḡηη

]
+ γ2Ḡ = δ(x− ξ) δ(y − η), ξ, η > 0.(3.6)

The fundamental solution for the differential operator L̄ is

g(x, y; ξ, η) :=
1

2πε2
K0

(γr
ε

)
, r :=

√
(x− ξ)2 + (y − η)2,(3.7)
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where K0 is the modified Bessel function of the second kind of order zero [1]. Hence
the Green’s function for this differential operator over the quarter plane is

Ḡ(x, y; ξ, η) = g(x, y; ξ, η) − g(−x, y; ξ, η) − g(x,−y; ξ, η) + g(−x,−y; ξ, η).(3.8)

Lemma 3.2. For Ḡ(x, y; ξ, η) of (3.8), estimates (3.5) hold true, in which G is
replaced by Ḡ and Ω is replaced by R

2
+.

Proof. We shall prove estimates (3.5) only for ‖Ḡξ‖1 and ‖Ḡξξ‖1 here, since the
estimates for ‖Ḡη‖1 and ‖Ḡηη‖1 with ‖Ḡξη‖1 are obtained similarly. Furthermore, it
suffices to show (3.5) with Ḡ replaced by the first term g(x, y; ξ, η) of the representation
(3.8) of Ḡ, as the estimates for the other three terms are similar.

Since K ′
0 = −K1, where K1 is the modified Bessel function of the second kind of

order one, and ∂r/∂ξ = −(x− ξ)/r, we get

gξ(x, y; ξ, η) =
γ

2πε3
K1

(γr
ε

) x− ξ

r
.

Furthermore, a similar calculation invoking K ′
1(s) = −K0(s) − s−1K1(s) yields

gξξ(x, y; ξ, η) =
γ2

2πε4

[
K0

(γr
ε

)
+

K1(γr/ε)

γr/ε

]
(x− ξ)2

r2
− γ

2πε3
K1

(γr
ε

) (y − η)2

r3
.

Hence we have

|gξ| ≤ Cε−3K1(s), |gξξ(x, y; ξ, η)| ≤ Cε−4

[
K0(s) +

K1(s)

s

]
, s :=

γr

ε
.

To obtain the desired bounds for ‖gξ‖1 and ‖gξξ‖1, we represent these integral norms
in polar coordinates and then substitute r = εγ−1s ; note that dξ dη = r dr dϕ =
Cε2s ds dϕ. For ‖gξ‖1 ;R2 , this yields

∥∥gξ(x, y; ·)∥∥1 ;R2 ≤ Cε−3

∫
R2

K1(s) dξ dη ≤ Cε−1

∫ ∞

0

sK1(s) ds ≤ Cε−1,

where we also used 0 < K1(s) < Cs−1e−s [1]. Similarly,

∥∥gξ(x, y; ·)∥∥1 ;B(a,b ;ρ)
≤ Cε−3

∫
B(x,y;ρ)

K1(s) dξ dη ≤ Cε−1

∫ γρ/ε

0

sK1(s) ds ≤ Cε−2ρ.

Here replacing the integral over B(a, b ; ρ) by the integral over B(x, y ; ρ) yields an
upper bound since K1 is a positive decreasing function. Thus we obtained the desired
estimates for ‖gξ‖1, which imply estimates (3.5a) and (3.5b) for ‖Ḡξ‖1.

Next, in a similar manner, we estimate ‖gξξ‖1:

∥∥gξξ(x, y; ·)∥∥1 ;R2\B(x,y;ρ)
≤ Cε−2

∫ ∞

γρ/ε

s

[
K0(s) +

K1(s)

s

]
ds ≤ Cε−2

[
1 + K0

(ρ
ε

)]

≤ Cε−2 ln

(
2 +

ε

ρ

)
,

where, to get the second inequality, we used 0 < K0(s) < Cs−1e−s and K1 = −K ′
0,

while to get the final bound, we invoked 0 < K0(s) < C ln(2 + s−1) [1]. This implies
estimate (3.5c) for ‖Ḡξξ‖1.

Remark 3.1. An inspection of the proof of Lemma 3.2, in which we used the
explicit representation (3.8), (3.7) of the Green’s function in the constant-coefficient
case, shows that the estimates of the Green’s function in Theorem 3.1 are sharp.
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3.2. Smooth-coefficient case. Next, we shall use Lemma 3.2 to establish a
variable-coefficient case of Theorem 3.1 under the additional assumption that

‖p‖C0,1(Ω̄) ≤ C,(3.9)

where C0,1(Ω̄) is a standard Hölder space.
Lemma 3.3. Under condition (3.9), the Green’s function G(x, y ; ξ, η) from (3.3)

satisfies estimates (3.5a) and (3.5c).
Proof. Fix (x, y) ∈ Ω. Without loss of generality consider only the case of x ≤ 1/2

and y ≤ 1/2, as the other cases are similar. Let Ḡ be defined by (3.7), (3.8) with
the frozen coefficient γ2 := p(x, y). By Lemma 3.2, estimates (3.5) hold true for Ḡ.
Hence is suffices to show that the function

v = v(x, y; ξ, η) := G(x, y; ξ, η) − ω(ξ, η) Ḡ(x, y; ξ, η),(3.10)

where ω(ξ, η) is a smooth cut-off function that equals 1 on [0, 3/4] × [0, 3/4] and
vanishes on the boundaries ξ = 1 and η = 1, satisfies

ε2
∣∣v(x, y; ·)∣∣

2,1 ;Ω
+ ε

∣∣v(x, y; ·)∣∣
1,1 ;Ω

≤ C.(3.11)

Clearly, v = 0 for (ξ, η) ∈ ∂Ω. Furthermore, using LG = L̄Ḡ and (3.6), it is easy to
check that Lv = (γ2 − p)Ḡ + L[(Ḡ− ωḠ], i.e.,

Lv = −ε2[vξξ + vηη
]
+ p(ξ, η) v = φ,(3.12a)

φ = φ1 + φ2, φ1 :=
[
γ2 − p(ξ, η)

]
Ḡ, φ2 := L

[
(1 − ω)Ḡ

]
.(3.12b)

Let the stretching transformation from (ξ, η) to the new coordinates ξ̂ := (ξ − x)/ε
and η̂ := (η − y)/ε map the original domain Ω into the domain Ω̂. Using the no-

tation ŵ(ξ̂, η̂) := w(x, y; ξ, η) for any function w, rewrite (3.12a) as −�v̂ + p̂ v̂ = φ̂.

Combining this with v̂ = 0 on ∂Ω̂ yields ‖v̂‖2;Ω̂ ≤ β−1/2‖φ̂‖2;Ω̂ and, more importantly,

∥∥v̂∥∥
2,2 ;Ω̂

≤ C1

(∥∥φ̂∥∥
2;Ω̂

+
∥∥v̂∥∥

2;Ω̂

)
≤ C1

(
1 + β−1/2

) ∥∥φ̂∥∥
2;Ω̂

,(3.13)

where the constant C1 is independent of the size of the domain Ω̂ [17, Chapter 3,
Lemma 8.1, p. 175]. Estimate (3.13), rewritten in the original variables (ξ, η), implies
that

ε2
∣∣v(x, y; ·)∣∣

2,2 ;Ω
+ ε

∣∣v(x, y; ·)∣∣
1,2 ;Ω

≤ C
∥∥φ(x, y; ·)

∥∥
2 ;Ω

.(3.14)

Next, we claim that for φ from (3.12b) we have ‖φ(x, y; ·)‖2 ;Ω ≤ C. Indeed, φ2 = 0 for
(ξ, η) ∈ [0, 3/4] × [0, 3/4] and |φ2| ≤ C outside. Furthermore, condition (3.9) implies
that |γ2 − p(ξ, η)| ≤ Cr, where γ2 = p(x, y). Hence |φ1| ≤ Cε−2rK0(γr/ε), while

∥∥φ1

∥∥2

2
≤ C ε−2

∫
Ω

(r/ε)2K2
0 (γr/ε) dξ dη ≤ C

∫ ∞

0

s3 K2
0 (s) ds ≤ C.

Thus we have established that ‖φ‖L2(Ω) ≤ C. Combining this with (3.14) and |v|k,1 ≤
C|v|k,2 for k = 1, 2, we obtain (3.11) and complete the proof.
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Note that condition (3.9), under which we now proved Theorem 3.1, is suitable
for the particular linear case (3.1) of problem (1.1). However, if we consider the
semilinear case (1.1) and linearize (2.10) to the form (3.1), then the coefficient p
depends on u and U and assumption (3.9) becomes unrealistic. Hence, we still have
to prove Theorem 3.1 for the general case of p satisfying only (3.2).

3.3. General case. Proof of Theorem 3.1. Let Ḡ be defined by (3.8), (3.7)
with the coefficient γ2 := β. Then, by the maximum/comparison principle, L[Ḡ−G] =
[p(ξ, η) − β] Ḡ ≥ 0 combined with Ḡ−G ≥ 0 on ∂Ω implies that 0 ≤ G ≤ Ḡ.

Imitating the proof of Lemma 3.3, we arrive at (3.14), in which again ‖φ2‖2 ≤ C,
while |γ2−p(ξ, η)| ≤ C implies only that |φ1| ≤ Cε−2K0(γr/ε). Hence ‖φ1‖2 ≤ Cε−1

and ‖φ‖2 ≤ Cε−1. Combining this with (3.14) and |v|k,1 ;B(a,b ;ρ) ≤ Cρ|v|k,2 ;Ω or
|v|k,1 ;B(x,y ;ε) ≤ Cε|v|k,2 ;Ω for k = 1, 2, we obtain

ε
∣∣v(x, y; ·)∣∣

1,1 ;B(a,b ;ρ)
≤ Cε−1ρ(3.15)

and

ε2
∣∣v(x, y; ·)∣∣

2,1 ;B(x,y ;ε)
+ ε

∣∣v(x, y; ·)∣∣
1,1 ;B(x,y ;ε)

≤ C ;(3.16)

compare with (3.11).
Combining (3.15) and (3.16) with Lemma 3.2, we observe that G = v + ωḠ

satisfies (3.5b), and furthermore, G satisfies (3.5a) and (3.5c), with Ω replaced by
B(x, y ; ε). Hence, to complete the proof, it suffices to show that

ε2
∣∣G(x, y; ·)

∣∣
2,1 ;Ω\B(x,y ;ε)

+ ε
∣∣G(x, y; ·)

∣∣
1,1 ;Ω\B(x,y ;ε)

≤ C .(3.17)

Next, divide the domain Ω\B(x, y ; ε) into the subdomains Dj := {(ξ, η) ∈ Ω :
ρj < r < ρj+1}, where j = 0, 1, . . . and ρj := 2jε. Furthermore, Dj ⊂ D′

j :=

Dj−1 ∪ D̄j ∪ Dj+1 so that dist(∂Dj\∂Ω , ∂D′
j\∂Ω) ≥ ε/2.

Let the stretching transformation from (ξ, η) to the new coordinates ξ̂ := (ξ−x)/ε
and η̂ := (η − y)/ε map Dj into D̂j . Imitating the proof of Lemma 3.3, we use the

notation Ĝ(ξ̂, η̂) := G(x, y; ξ, η) and rewrite the equation from (3.3) as −�Ĝ+p̂ Ĝ = 0
to get the local estimate ∥∥Ĝ∥∥

2,2 ;D̂j
≤ C2

∥∥Ĝ∥∥
2;D̂′

j
(3.18)

[17, Chapter 3, estimate (8.6), p. 171]; compare with the global estimate (3.13). Here
the constant C2 is independent of ε since dist(∂D̂j\∂Ω̂ , ∂D̂′

j\∂Ω̂) ≥ 1/2. Rewriting
the above estimate in the variables (ξ, η) yields

ε2
∣∣G(x, y; ·)

∣∣
2,2;Dj

+ ε
∣∣G(x, y; ·)

∣∣
1,2;Dj

≤ C
∥∥G(x, y; ·)

∥∥
2,D′

j
≤ C‖g(x, y; ·)‖2,D′

j
.

Here we also used |G| ≤ Ḡ ≤ 4g; see (3.7), (3.8). Finally, since |G|k,1 ;Dj ≤ Cρj |G|k,2 ;Dj

for k = 1, 2, we arrive at

ε2
∣∣G(x, y; ·)

∣∣
2,1;Dj

+ ε
∣∣G(x, y; ·)

∣∣
1,1;Dj

≤ Cρj
∥∥g(x, y; ·)∥∥

2,D′
j
.(3.19)

Note that

∥∥g(x, y; ·)∥∥2

2,D′
j
≤ Cε−2

∫ γρj+1/ε

γρj−1/ε

sK2
0 (s) ds ≤ Cε−2e−2s

∣∣∣γρj−1/ε

γρj+1/ε
≤ Cε−2e−γρj/ε
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since for r ≥ ε/2 we have g ≤ Cε−2s−1/2e−s, where s = γr/ε. Furthermore,

∞∑
j=0

ρj
∥∥g(x, y; ·)∥∥

2,D′
j
≤ C

∞∑
j=0

γ(ρj − ρj−1)

2ε
e−γρj/(2ε) ≤ C

∫ ∞

γ/4

se−s ds ≤ C(3.20)

since ρj = 2(ρj − ρj−1), while e−s is decreasing. Combining (3.20) with (3.19), we
get (3.17) and thus complete the proof.

4. Stability properties of differential operators. The main result of the
present section is the following stability theorem for the semilinear differential operator
T from (1.1), which we shall further apply to relation (2.10).

Consider the right-hand side f in the special form

f(x, y) = − ∂

∂x

[
F1(x, y) + F̄1(x, y)

]
− ∂

∂y

[
F2(x, y) + F̄2(x, y)

]
+ f̄(x, y),(4.1a)

where F1, F̄1, F2, F̄2, f ∈ L∞(Ω) and

F1(x, y) = Ai(y)(x− xi−1/2) for (x, y) ∈ (xi−1, xi) × [0, 1], i = 1, . . . , N,(4.1b)

F2(x, y) = Bj(x)(y − yj−1/2) for (x, y) ∈ [0, 1] × (yj−1, yj), j = 1, . . . ,M,(4.1c)

while xi−1/2 := xi − hi/2 and yj−1/2 := yj − kj/2.
Theorem 4.1. Let the function b in (1.1) satisfy (1.2). Then, for any v, w ∈

W 1,2(Ω) such that Tv(x, y) − Tw(x, y) = f(x, y), where f is defined by (4.1), and
v(x, y) = w(x, y) for (x, y) ∈ ∂Ω, we have

‖v − w‖∞ ≤ Cε−1
(
‖F̄1‖∞ + ‖F̄2‖∞

)
+ β−1‖f̄‖∞

+ C

[
max

i=1,...,N

{
h2
i

ε2
max
y∈[0,1]

∣∣Ai(y)
∣∣} + max

j=1,...,M

{
k2
j

ε2
max
x∈[0,1]

∣∣Bj(x)
∣∣}]

ln
(
2 +

ε

κ

)
.

The proof is deferred to section 4.2

4.1. Linear reaction-diffusion. First, we address the linear problem (3.1),
(3.2) with the right-hand side (4.1). Since the differential operator L is linear, it is
convenient to establish stability of u with respect to various components of f sepa-
rately.

Lemma 4.2. There exists a unique solution u ∈ L∞(Ω) of problem (3.1), (3.2)
with the right-hand side (4.1a). Furthermore, if F1 = F2 := 0, then

‖u‖∞ ≤ β−1‖f̄‖∞ + Cε−1
(
‖F̄1‖∞ + ‖F̄2‖∞

)
.(4.2)

Proof. Since L is linear, it suffices to establish the desired estimate in the following
two cases. Case A: f = f̄ , while F̄1 = F̄2 := 0. Then estimate (4.2) is well known and
follows from the maximum/comparison principle extended to functions in the Sobolev
space W 1,2 [9, section 8.1]. Case B: f̄ := 0. Now the desired estimate (4.2) follows
from (3.4) combined with estimate (3.5a).

Lemma 4.3. Let F̄1 = F̄2 = f̄ := 0 in (4.1a). Then the solution u ∈ L∞(Ω) of
problem (3.1), (3.2) with the right-hand side (4.1) satisfies

‖u‖∞ ≤ C

[
max

i=1,...,N

{
h2
i

ε2
max
y∈[0,1]

∣∣Ai(y)
∣∣} + max

j=1,...,M

{
k2
j

ε2
max
x∈[0,1]

∣∣Bj(x)
∣∣}]

ln
(
2 +

ε

κ

)
,

where κ := min{mini{hi},minj{kj}}.
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Proof. It suffices to consider only the case of f := −∂F1/∂x, i.e., F2 := 0, as
the case of f := −∂F2/∂y is considered similarly, while our differential operator L is
linear.

Fix (x, y) and denote v(ξ, η) := G(x, y; ξ, η). Then, by (3.4), we have

u(x, y) =

∫
Ω

F1(ξ, η)vξ(ξ, η) dξ dη =

N∑
i=1

∫
Ωi

Ai(η)(ξ − xi−1/2) vξ(ξ) dξ dη,(4.3)

where Ωi := (xi−1, xi) × (0, 1), i = 1, . . . , N. Furthermore, let x ∈ [xm−1/2, xm+1/2]
for some 0 < m < N (the cases of x ∈ [0, x1/2] and x ∈ [xN−1/2, 1] are similar) and
introduce the rectangular domain

Ω′ := (xm−1, xm+1) × (y − h̃m, y + h̃m), where h̃m := min{hm, hm+1}/2,

so that

B(x, y ; h̃m) ⊂ Ω′ ⊂ B(xm−1/2, y ;hm) ∪B(xm+1/2, y;hm+1).(4.4)

Clearly, (4.3) can be written as u(x, y) = S1 + S2, where

S1 =

N∑
i=1

∫
Ωi

Ai(η)(ξ − xi−1/2) ṽξ(ξ, η) dξ dη ,

with ṽ := v in Ωi \ Ω′ and ṽ := 0 in Ω′, while

S2 =

m+1∑
i=m

∫
Ωi∩Ω′

Ai(η)(ξ − xi−1/2) vξ(ξ, η) dξ dη .

To estimate S1, note that

ṽξ(ξ, η) = ṽξ(xi−1, η) +

∫ ξ

xi−1

ṽξξ(s, η) ds for ξ ∈ (xi−1, xi).(4.5)

Here ṽξξ is well defined, since the singularity of v occurs at (x, y), which is inside Ω′,
and furthermore, for each i and η either ṽξξ = vξξ or ṽξξ = 0 for all ξ ∈ (xi−1, xi).
Combining (4.5) with

∫ xi

xi−1
(ξ − xi−1/2) dξ = 0 yields

∣∣∣∣∣
∫ xi

xi−1

(ξ − xi−1/2) ṽξ(ξ, η) dξ

∣∣∣∣∣ =

∣∣∣∣∣
∫ xi

xi−1

dξ (ξ − xi−1/2)

∫ ξ

xi−1

ṽξξ(s, η) ds

∣∣∣∣∣
≤ h2

i

4

∫ xi

xi−1

∣∣ṽξξ(s, η)∣∣ ds .
Hence

|S1| ≤
N∑
i=1

h2
i

4

∫ 1

0

|Ai(η)|dη
∫ xi

xi−1

|ṽξξ(s, η)| ds

≤ max
i=1,...,N

{
h2
i

4
max
η∈[0,1]

|Ai(η)|
} ∫

Ω

|ṽξξ(ξ, η)| dξ dη .
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Finally, recalling (4.4) and estimate (3.5c) for vξξ = Gξξ, we get∫
Ω

|ṽξξ(ξ, η)| dξ dη ≤
∫

Ω\B(x,y;h̃m)

|vξξ(ξ, η)| dξ dη ≤ Cε−2 ln(2 + ε/h̃m)

and thus the desired estimate for S1:

|S1| ≤ C max
i=1,...,N

{
h2
i

ε2
max
η∈[0,1]

∣∣Ai(η)
∣∣} ln

(
2 +

ε

κ

)
.

It remains to obtain a similar estimate for S2:

S2 ≤
m+1∑
i=m

hi max
η∈[0,1]

|Ai(η)|
∫
B(xi−1/2,y ;hi)

|vξ(ξ, η)| dξ dη ≤
m+1∑
i=m

max
η∈[0,1]

|Ai(η)|hi
Chi

ε2

≤ C max
i

{
h2
i

ε2
max
η∈[0,1]

|Ai(η)|
}

.

Here we used (4.4) and estimate (3.5b) for vξ = Gξ.

4.2. Semilinear reaction-diffusion. Proof of Theorem 4.1. Using the stan-
dard linearization technique, we have Tv(x, y) − Tw(x, y) = L

[
v(x, y) − w(x, y)

]
,

where the operator L is linear and defined by (3.1) with the coefficient p(x, y) =∫ 1

0
bu(x, y, w(x, y) + s[v(x, y) − w(x, y)]) ds, which, by (1.2), satisfies condition (3.2).

Hence the desired estimate follows from Lemmas 4.2 and 4.3.

5. Analysis of the numerical method. Proof of Theorem 2.1. To com-
plete the proof of Theorem 2.1, which we started in section 2, we shall invoke the
following lemma.

Lemma 5.1. We have

−ε2 ∂
2U I(x, yj)

∂x2
+qI

1(x, yj) =
∂

∂x
F1(x, yj), −ε2 ∂

2UJ(xi, y)

∂y2
+qJ

2(xi, y) =
∂

∂y
F2(xi, y),

where

F1(x, yj) := q1,ij(x− xi−1/2) +
D−

x q1,ij
2

(xi − x)2, x ∈ (xi−1, xi),(5.1a)

for i = 1, . . . , N , j = 0, . . . ,M , and

F2(xi, y) := q2,ij(y − yj−1/2) +
D−

y q2,ij

2
(yj − y)2, y ∈ (yi−1, yi),(5.1b)

for i = 0, . . . , N , j = 1, . . . ,M .
Proof. We closely imitate the one-dimensional argument used in the proof of [12,

Theorem 3.3] and give the proof here only for completeness.
It suffices to obtain the first desired relation, as the other one is similar. To

simplify the presentation, within this proof, fix yj and use the notation U I(x) :=
U I(x, yj), q

I
1(x) := qI

1(x, yj), q1,i := q1,ij , and F1(x) := F (x, yj). Furthermore, for any
function v, let v′ := ∂v/∂x. Thus we intend to show that −ε2(U I)′′ + qI

1 = F ′
1.

First, note that

−ε2(U I)′′ + qI1 = −
[
ε2(U I)′ +

∫ 1

x

qI1(s) ds

]′
.(5.2)
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Recalling (2.3) and (2.8), we observe that

ε2(U I)′ = ε2D−
x U

I
i = ε2D−

x U
I
N−

N−1∑
m=i

q1,m
hm + hm+1

2
, x ∈ (xi−1, xi), i = 1, . . . , N.

Now, substituting the above representation in (5.2) and omitting the derivative of the
constant ε2D−U I

N , we arrive at −ε2(U I)′′ + qI1 = F̃ ′
1, where

F̃1(x) :=

N−1∑
m=i

q1,m
hm + hm+1

2
−
∫ 1

x

qI1(s) ds, x ∈ (xi−1, xi), i = 1, . . . , N.

A calculation shows that

N−1∑
m=i

q1,m
hm + hm+1

2
= q1,i

hi

2
+

∫ 1

xi

qI1(s) ds− q1,N
hN

2
,

and, omitting the derivative of another constant q1,NhN/2, we obtain F̃ ′
1 = F ′

1, where

F1(x) := q1,i
hi

2
−
∫ xi

x

qI1(s) ds, x ∈ (xi−1, xi), i = 1, . . . , N.(5.3)

Thus we have obtained the desired relation −ε2(U I)′′+qI1 = F ′
1, in which F1 is defined

by (5.3), and it remains to show that the definition of F1 in (5.1a) is equivalent to
(5.3). Indeed, by computing

∫ xi

x
qI(s) ds in (5.3) using qI1(x) = q1,i − (xi − x)D−q1,i,

we get (5.1a).
Remark 5.1. One can easily check that F1 and F2 or (5.1) allow an alternative

representation:

F1(x, yj) := q1,i−1,j(x− xi−1/2) +
D−

x q1,ij
2

O(h2
i ), x ∈ (xi−1, xi),

F2(xi, y) := q2,i,j−1(y − yj−1/2) +
D−

y q2,ij

2
O(k2

j ), y ∈ (yi−1, yi).

E.g., the new representation of F1 follows from q1,ij = q1,i−1,j + hi D
−
x q1,ij .

Proof of Theorem 2.1 (continued from section 2). Extending F1 and F2 of (5.1)
onto the whole domain Ω̄ by linear interpolation,

F1(x, y) :=
[
F1(x, yj)

]J
, F2(x, y) :=

[
F2(xi, y)

]I
,

we obtain (2.10). Now, invoking Theorem 4.1 yields

‖UB − u‖∞ ≤ C

[
max

i=1,...,N
j=0,...,M

{
h2
i

ε2
|q1,ij |

}
+ max

i=0,...,N
j=1,...,M

{
k2
j

ε2
|q2,ij |

}]
ln
(
2 +

ε

κ

)
(5.4)

+ C

[
max

i=1,...,N
j=0,...,M

{
h2
i

ε
|D−

x q1,ij |
}

+ max
i=0,...,N
j=1,...,M

{
k2
j

ε
|D−

y q2,ij |
}]

+ β−1‖q − qB‖∞.

Combining this with (2.8) and the bilinear interpolation estimate

‖q− qB‖∞ ≤ C

[
max

i=1,...,N
j=0,...,M

{
h2
i (1 + |D−

x Uij |2)
}

+ max
i=0,...,N
j=1,...,M

{
k2
j (1 + |D−

y Uij |2)
}]

,(5.5)
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we obtain a version of the desired a posteriori error estimate (2.7) in which the quan-
tities min

{
|D2

xUi−1,j |, |D2
xUij |

}
and min

{
|D2

yUi,j−1|, |D2
yUij |

}
are replaced by |D2

xUij |
and |D2

yUij |, respectively.
By Remark 5.1, the quantities |q1,ij | and |q2,ij | in (5.4) can be replaced by

min{|q1,i−1,j |, |q1,ij |} and min{|q2,i,j−1|, |q2,ij |}, respectively. Combining this sharper
version of (5.4) with (2.8) and (5.5) yields the desired estimate (2.7).

Finally, note that the interpolation error estimate (5.5), which we used, follows
from q−qB = [q−qI ]+[qI−(qI)J ] combined with |∂2q(x, yj)/∂x

2| ≤ C(1+ |D−
x Uij |2)

for x ∈ (xi−1, xi) and |∂2q(xi, y)/∂y
2| ≤ C(1 + |D−

y Uij |2) for y ∈ (yj−1, yj); see
[3, Comment 2.15] for a similar argument.

6. Numerical results. The maximum norm a posteriori error estimate of
Theorem 2.1 implies that

e := ‖UB − u‖∞ ≤ C̃η, η := max{η0, η1, η2, η3},(6.1)

ηl := max

{
max

i=1,...,N
j=0,...,M

{h2
iM

(l)
1,ij} ; max

i=0,...,N
j=1,...,M

{k2
jM

(l)
2,ij}

}
, l = 0, 1, 2, 3,

where C̃ = C ln
(
2 + ε/κ

)
, while M

(0)
1,ij = M

(0)
2,ij = 1,

M
(1)
1,ij := |D−

x Uij |2, M
(2)
1,ij := min{|D2

xUi−1,j | , |D2
xUij |}, M

(3)
1,ij := ε|D−

x D
2
xUij |,

M
(1)
2,ij := |D−

y Uij |2, M
(2)
2,ij := min{|D2

yUi,j−1| , |D2
yUij |}, M

(3)
2,ij := ε|D−

y D
2
yUij |.

Here ηl and M (l), l = 1, 2, 3, involve discrete analogues of lth-order derivatives.
In this section we present numerical results on a priori chosen meshes to inves-

tigate the efficiency of the upper maximum norm error estimator η in (6.1) and its
components ηl. It is also of interest which of ηl is the principal component in η if any.
We shall examine the errors e and, more importantly, the quantities η, e/η, ηl, e/ηl
and their dependence on ε, N = M , and particular mesh choices.

We consider ε = 10−k, k = 1, . . . , 10, and two tensor-product meshes with M = N :
a variant of the layer-adapted mesh by Bakhvalov [4] and a simple uniform mesh;
see Tables 6.1–6.5. Note that a Bakhvalov-type layer-adapted mesh was chosen for
the numerical experiments, since it yields ε-uniform second-order accuracy [4, 13].
Furthermore, we expect a robust adaptive algorithm to generate a mesh that is very
close to a Bakhvalov mesh, as in [14, section 6 and Figure 2].

To be precise, if ε ≤ ε̄, our Bakhvalov-type mesh is given by xi = yi := x(i/N)
for i = 0, 1, . . . , N , where x(ξ) := ελ ln [b/(b− ξ)] for ξ ∈ [0, θ], x(1) := 1, and x(ξ) is
continuous on [0, 1] and linear on [θ, 1]. We use the constants b = 1/2, ε̄ = b/λ, and
θ = b− ελ. The constant λ will be specified later. For ε > ε̄, the Bakhvalov mesh is
defined to be a simple uniform mesh.

Our test problem is the linear problem (3.1), in which p(x, y) := 1, and whose
exact solution

u(x, y) :=

(
cos(πx) − e−x/ε − e−1/ε

1 − e−1/ε

)(
1 − y − e−y/ε − e−1/ε

1 − e−1/ε

)

exhibits boundary layers and a corner layer.
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Table 6.1

Bakhvalov mesh, λ = 3: Maximum norm error e and the efficiency constant e/η for the upper
maximum norm error estimator η.

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−k, k = 4, . . . , 10

N e e/η e e/η e e/η e e/η

32 3.60e-3 1.25e-1 4.04e-3 1.19e-1 4.21e-3 1.23e-1 4.23e-3 1.24e-1
64 9.16e-4 1.25e-1 1.02e-3 1.19e-1 1.07e-3 1.24e-1 1.08e-3 1.24e-1
128 2.32e-4 1.26e-1 2.58e-4 1.19e-1 2.70e-4 1.24e-1 2.72e-4 1.25e-1
256 5.85e-5 1.27e-1 6.46e-5 1.19e-1 6.78e-5 1.24e-1 6.82e-5 1.25e-1
512 1.47e-5 1.27e-1 1.62e-5 1.19e-1 1.70e-5 1.24e-1 1.71e-5 1.25e-1

Table 6.2

Bakhvalov mesh, λ = 3: Upper maximum norm error estimator η, its components η1, η2, η3,
and its efficiency constant e/η.

ε = 10−1 ε = 10−k, k = 4, . . . , 10

N η1 η2 η3 = η e/η η1 η2 η3 = η e/η

32 1.75e-2 2.61e-2 2.88e-2 1.25e-1 3.10e-2 3.09e-2 3.41e-2 1.24e-1
64 4.72e-3 6.96e-3 7.31e-3 1.25e-1 8.26e-3 8.25e-3 8.65e-3 1.24e-1
128 1.22e-3 1.80e-3 1.84e-3 1.26e-1 2.13e-3 2.13e-3 2.18e-3 1.25e-1
256 3.11e-4 4.57e-4 4.62e-4 1.27e-1 5.41e-4 5.41e-4 5.47e-4 1.25e-1
512 7.86e-5 1.15e-4 1.16e-4 1.27e-1 1.36e-4 1.36e-4 1.37e-4 1.25e-1

Table 6.3

Uniform mesh: Maximum norm error e and the efficiency constant e/η2 for the component η2

of the upper maximum norm error estimator η.

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−k, k = 5, . . . , 10

N e e/η2 e e/η2 e e/η2 e e/η2

32 3.45e-1 4.17e-1 5.68e-1 5.71e-1 5.77e-1 5.78e-1 5.78e-1 5.79e-1
64 1.60e-1 2.77e-1 5.54e-1 5.59e-1 5.77e-1 5.77e-1 5.78e-1 5.78e-1
128 5.40e-2 1.91e-1 5.11e-1 5.28e-1 5.76e-1 5.77e-1 5.78e-1 5.78e-1
256 1.57e-2 1.53e-1 4.04e-1 4.56e-1 5.73e-1 5.74e-1 5.78e-1 5.78e-1
512 4.21e-3 1.35e-1 2.20e-1 3.24e-1 5.63e-1 5.66e-1 5.78e-1 5.78e-1

Table 6.4

Uniform mesh: The components η2 and η3 of the upper maximum norm error estimator η and
the efficiency constant e/η2 for η2.

ε = 10−4 ε = 10−7 ε = 10−10

N η2 η3 = η e/η2 η2 η3 = η e/η2 η2 η3 = η e/η2

32 9.99e-1 3.12e+2 5.78e-1 9.99e-1 3.12e+5 5.79e-1 9.99e-1 3.12e+8 5.79e-1
64 1.00e+0 1.56e+2 5.77e-1 1.00e+0 1.56e+5 5.78e-1 1.00e+0 1.56e+8 5.78e-1
128 9.99e-1 7.81e+1 5.77e-1 1.00e+0 7.81e+4 5.78e-1 1.00e+0 7.81e+7 5.78e-1
256 9.99e-1 3.90e+1 5.74e-1 1.00e+0 3.91e+4 5.78e-1 1.00e+0 3.91e+7 5.78e-1
512 9.95e-1 1.95e+1 5.66e-1 1.00e+0 1.95e+4 5.78e-1 1.00e+0 1.95e+7 5.78e-1

Table 6.5

Bakhvalov mesh, λ = 1: Maximum norm error e, upper maximum norm error estimator η, its
components η1, η2, η3, and its efficiency constant e/η.

ε = 10−5 ε = 10−10

N e η1 η2 η3 = η e/η e η1 η2 η3 = η e/η

32 7.50e-2 9.60e-3 1.67e-2 2.13e-1 3.52e-1 9.48e-2 9.61e-3 1.58e-2 2.41e-1 3.93e-1
64 3.81e-2 2.41e-3 8.37e-3 1.05e-1 3.64e-1 4.91e-2 2.41e-3 7.93e-3 1.20e-1 4.09e-1
128 1.89e-2 6.02e-4 4.22e-3 5.15e-2 3.66e-1 2.49e-2 6.02e-4 3.98e-3 5.94e-2 4.19e-1
256 9.17e-3 1.51e-4 2.13e-3 2.52e-2 3.64e-1 1.25e-2 1.51e-4 1.99e-3 2.95e-2 4.23e-1
512 4.40e-3 3.76e-5 1.07e-3 1.23e-2 3.58e-1 6.22e-3 3.76e-5 9.96e-4 1.46e-2 4.25e-1
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Tables 6.1 and 6.2 present numerical results for the Bakhvalov mesh with λ = 3.
This mesh yields ε-uniform second-order accuracy in the maximum norm; i.e., ul-
timately, we would like to be able to construct a similar adaptive mesh. We ob-
serve agreement with our theoretical estimate (6.1). Not only does e/η stabilize—
see Table 6.1—but it becomes very close to the linear interpolation error constant
1/8 = 1.25e − 1. Table 6.2 is given to compare the components ηl of η. We observe
that η2 ≈ η3 = η. Furthermore, for ε ≤ 10−2 we have η1 ≈ η2 ≈ η3, while for ε = 10−1

the quantity η1 is dominated by η2 and η3. The quantity η0 is not presented, since it
is negligible and, furthermore, known a priori.

When uniform meshes are used—see Tables 6.3 and 6.4—the boundary layers
are not resolved and e = O(1). This is indicated by η = η3 blowing up even more
significantly than e. Unlike η3 the component η2 remains bounded. Thus both η2 and
η3 not being small correctly indicates that the method is inaccurate. But η2 better
reflects the actual errors since e/η2 ≈ const = 0.58 in Table 6.4.

Finally we consider the Bakhvalov mesh with λ = 1; see Table 6.5. Since the
condition λ > 2, which implies ε-uniform second-order accuracy for our test problem
[4, 13], is violated, the errors slightly decrease as ε → 0. We observe that η1 is too
small compared to η and e.

In summary, for our test problem on the meshes considered, the error estimator η
indicates correctly whether or not the method is ε-uniformly accurate. Furthermore,
we observe that the quantity η = η3 might blow up (see Table 6.4), while the com-
ponent η1 is sometimes too optimistic (see Table 6.5). The component η2 seems the
most relevant estimator for the actual error e. Besides, η2 does not blow up, like η3,
and hence seems a suitable error indicator for a posteriori mesh construction.
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