103 research outputs found

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    Polynomial tuning of multiparametric combinatorial samplers

    Full text link
    Boltzmann samplers and the recursive method are prominent algorithmic frameworks for the approximate-size and exact-size random generation of large combinatorial structures, such as maps, tilings, RNA sequences or various tree-like structures. In their multiparametric variants, these samplers allow to control the profile of expected values corresponding to multiple combinatorial parameters. One can control, for instance, the number of leaves, profile of node degrees in trees or the number of certain subpatterns in strings. However, such a flexible control requires an additional non-trivial tuning procedure. In this paper, we propose an efficient polynomial-time, with respect to the number of tuned parameters, tuning algorithm based on convex optimisation techniques. Finally, we illustrate the efficiency of our approach using several applications of rational, algebraic and P\'olya structures including polyomino tilings with prescribed tile frequencies, planar trees with a given specific node degree distribution, and weighted partitions.Comment: Extended abstract, accepted to ANALCO2018. 20 pages, 6 figures, colours. Implementation and examples are available at [1] https://github.com/maciej-bendkowski/boltzmann-brain [2] https://github.com/maciej-bendkowski/multiparametric-combinatorial-sampler

    Sequential Probing With a Random Start

    Get PDF
    Processing user requests quickly requires not only fast servers, but also demands methods to quickly locate idle servers to process those requests. Methods of finding idle servers are analogous to open addressing in hash tables, but with the key difference that servers may return to an idle state after having been busy rather than staying busy. Probing sequences for open addressing are well-studied, but algorithms for locating idle servers are less understood. We investigate sequential probing with a random start as a method for finding idle servers, especially in cases of heavy traffic. We present a procedure for finding the distribution of the number of probes required for finding an idle server by using a Markov chain and ideas from enumerative combinatorics, then present numerical simulation results in lieu of a general analytic solution

    Exact solution of the 2d2d dimer model: Corner free energy, correlation functions and combinatorics

    Get PDF
    In this work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model {\it via} the so-called height mapping and the nature of boundary conditions is unravelled. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predict particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms.Comment: Final version to be published in Nuclear Physics B (53 pages and a lot of figures

    Limit Theorems for Stochastic Approximations Algorithms With Application to General Urn Models

    Get PDF
    In the present paper we study the multidimensional stochastic approximation algorithms where the drift function h is a smooth function and where jacobian matrix is diagonalizable over C but assuming that all the eigenvalues of this matrix are in the the region Repzq ą 0. We give results on the fluctuation of the process around the stable equilibrium point of h. We extend the limit theorem of the one dimensional Robin's Monroe algorithm [MR73]. We give also application of these limit theorem for some class of urn models proving the efficiency of this method

    Cooperative Models of Stochastic Growth - On a class of reinforced processes with graph-based interactions

    Get PDF
    Consider a sequence of positive integer-valued random vectors denoted by xn=(x1(n),,xN(n)){\bf x}_n = (x_1(n),\ldots,x_N(n)) for n=0,1,2,n= 0,1,2,\ldots \>. Fix x0{\bf x}_0, and given xn{\bf x}_n, choose a \emph{random} coordinate in+1{1,,N}i_{n+1} \in \{1,\ldots,N\}. The probability that {in+1=i}\{i_{n+1} = i\} for a particular coordinate ii is proportional to a non-decreasing function fif_i of j=1Naijxj(n)\sum_{j =1}^N a_{ij}x_j(n), where aij0a_{ij} \geq 0 measures how strongly jj cooperates with ii. Now, on the event that {in+1=i}\{i_{n+1}=i\}, update the sequence in such a way that xn+1=xn+ei{\bf x}_{n+1}={\bf x}_n + {\bf e}_i, where ei{\bf e}_i is the vector whose ii-th coordinate is 1 and whose other coordinates are 0. Finally, given A=(aij)i,j=1NA=(a_{ij})_{i,j=1}^N and fi,i=1,,N,f_i, \> i =1,\ldots,N, what can one say about limnn1xn\lim_{n \to \infty} n^{-1} {\bf x}_n

    Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms

    Full text link
    This monograph provides an overview of the mathematical theories and computational algorithm design for contagion source detection in large networks. By leveraging network centrality as a tool for statistical inference, we can accurately identify the source of contagions, trace their spread, and predict future trajectories. This approach provides fundamental insights into surveillance capability and asymptotic behavior of contagion spreading in networks. Mathematical theory and computational algorithms are vital to understanding contagion dynamics, improving surveillance capabilities, and developing effective strategies to prevent the spread of infectious diseases and misinformation.Comment: Suggested Citation: Chee Wei Tan and Pei-Duo Yu (2023), "Contagion Source Detection in Epidemic and Infodemic Outbreaks: Mathematical Analysis and Network Algorithms", Foundations and Trends in Networking: Vol. 13: No. 2-3, pp 107-251. http://dx.doi.org/10.1561/130000006
    corecore