
Claremont Colleges
Scholarship @ Claremont

HMC Senior Theses HMC Student Scholarship

2018

Sequential Probing With a Random Start
Joshua Miller

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/215289203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.claremont.edu
https://scholarship.claremont.edu/hmc_theses
https://scholarship.claremont.edu/hmc_student

Sequential Probing With a Random Start

Joshua Miller

Nick Pippenger, Advisor

Susan Martonosi, Reader

Department of Mathematics

May, 2018

Copyright © 2018 Joshua Miller.

The author grants Harvey Mudd College and the Claremont Colleges Library the
nonexclusive right to make this work available for noncommercial, educational
purposes, provided that this copyright statement appears on the reproduced
materials and notice is given that the copying is by permission of the author. To
disseminate otherwise or to republish requires written permission from the author.

Abstract

Processing user requests quickly requires not only fast servers, but also
demands methods to quickly locate idle servers to process those requests.
Methods of finding idle servers are analogous to open addressing in hash
tables, but with the key difference that servers may return to an idle state
after having been busy rather than staying busy. Probing sequences for
open addressing are well-studied, but algorithms for locating idle servers
are less understood. We investigate sequential probing with a random start
as a method for finding idle servers, especially in cases of heavy traffic. We
present a procedure for finding the distribution of the number of probes
required for finding an idle server by using a Markov chain and ideas from
enumerative combinatorics, then present numerical simulation results in
lieu of a general analytic solution.

Contents

Abstract iii

Acknowledgments xi

1 Introduction 1
1.1 Motivation . 1
1.2 Sequential Probing With a Random Start 2
1.3 Tools for Analysis . 4

2 An Analytical Approach 7
2.1 A Complete Solution for a Small System 7
2.2 A Procedure for a General Analytic Solution 14

3 A Simulation Approach 17

4 Conclusions and Future Work 29

Bibliography 31

List of Figures

1.1 Circular model for a system of N servers. 2

2.1 Diagrammatic representation of a server configuration. . . . 7
2.2 State diagram with rates of transitions for a 5-server system. 9
2.3 State diagram with probabilities of transitions for a 5-server

system. 10
2.4 Catch regions of configuration 11010. 12

3.1 Expected value of number of probes required over time. . . . 19
3.2 Histogram of number of probes required to find an idle server. 19
3.3 Semi-log plot of the histogram shown in Figure 3.2. 20
3.4 Histograms comparing SPRS and uniform probing. 21
3.5 Semi-log plots of the histograms shown in Figure 3.4. 22
3.6 The expected performance of SPRS for various λ. 23
3.7 The data from Figure 3.6 along with the curve 1/(1 − λ). . . 23

3.8 Data and curve from Figure 3.7 transformed to plot 1 −
1

E[X]
vs λ. 24

3.9 A comparison of SPRS and uniform probing for various λ. . 28
3.10 The same comparison as in Figure 3.9, but with λ ranging

from 0.95 to 0.995 in steps of size 0.003. 28

List of Tables

2.1 Equivalence classes of configurations a 5-server system. . . . 8
2.2 Probability mass function for configuration 11010. 13
2.3 PMF and expected value for each of the 8 configurations. . . 13
2.4 Elements of C5 as permutations in S5. 14

3.1 Goodness of fit: 1 − 1/E[X] vs. λ. 25

Acknowledgments

I’d like to thank Professor Pippenger for his patience throughout the last
year, for offering valuable advice and feedback, and for being an incredible
mentor and teacher. I’d like to thank Professor Martonosi for taking the
time to read my work and for providing extremely helpful suggestions for
improvements I could make, especially in the final stages of this research.
Finally, I owe thanks to my friends for their never-ending support.

Chapter 1

Introduction

1.1 Motivation

When you submit any sort of request to a service like Google or Wolfra-
mAlpha, your request is sent to a collection of servers which processes the
request and returns the result to you. Naturally, these services would like to
get the result to you as quickly as possible. The time it takes to return your
result depends not only on the processing speed of the servers, but also on
how quickly an idle server can be located to process your request.

The study of how to quickly find an idle server in our collection of servers
is somewhat analogous to that of open addressing as a means of collision
resolution in hash tables. In open addressing, we search or probe through
our hash table in various manners in search for an empty bin to place an
entry. Common probe-sequences described by Knuth (1998) include linear
probing, which takes fixed-sized steps through the hash table, and double
hashing, which makes use of a second hash function to determine the step
size in the search.

The problem of finding an idle server differs slightly from that of open
addressing in that contents are not removed from a hash table once entered,
whereas servers do become idle again after processing a request. As such,
prior research done on open addressing cannot be immediately adapted to
apply to problems in server queueing.

Several algorithms for finding idle servers have been studied in the past.
Eschenfeldt et al. (2014) studied sequential probing with a fixed starting
point. Furthermore, extensive research has been done on open addressing
algorithms in hash tables. Although such algorithms are for a slightly

2 Introduction

different problem, the methods of analyzing them and the results of such
analysis can be used as guidance for studying server queueing.

1.2 Sequential Probing With a Random Start

Suppose we have a collection of N servers for processing requests. Each
server can be in two possible states: busy or idle. When a server is processing
a request, it is busy and cannot accept any additional requests. When a
server is not processing anything, it is idle. We will think of the servers as
being arranged in a circular manner so that each server has a "next" server
to move to when we are searching for an idle server. This circular model is
illustrated in Figure 1.1. Requests enter the system via a stationary Poisson
point process with parameter λN where 0 ≤ λ ≤ 1. On average, the rate of
entry for each server is λ. When a request enters the system and all servers
are busy, the request is dropped. This is know as loss. Each server processes
requests in a single unit of time, so requests leave the system at a rate equal
to the number of busy servers. With these rates, we expect around λN of
the servers to be busy at any given time. When λ (known as the load factor) is
close to 1, the equilibrium of the system is such that most of the servers are
busy. In such cases, because idle servers are relatively scarce, it is important
that we have an algorithm that can quickly find idle servers.

server 1
server 2

server3

server4

server5

...

..
.

ser
ve
r N

λN

Figure 1.1 Circular model for a system of N servers.

Sequential Probing With a Random Start 3

The algorithm we will focus on in this paper is sequential probing with
a random start. This is a cross between random probing and sequential
probing with a fixed start. First, we make a uniform random probe into the
collection of servers. If the initial probe is not successful, we will proceed via
sequential probing. That is, we will step one-by-one through the collection
of servers until an idle server is found. For simplicity, we will assume
that the initial random probe and following sequential probing take place
instantaneously. That is, no additional requests will enter the system while
another request is still searching for an idle server. This algorithm is of
particular interest because it has some advantages and disadvantages when
compared to the well-studied random probing.

• Advantage: Sequential probing with a random start avoids the possi-
bility of probing the same busy server twice. Especially in the case of a
high load factor, random probing is likely to probe some busy servers
more than once. By avoiding this, our algorithm improves on one of
the shortcomings of random probing.

• Disadvantage: Sequential probing with a random start will perform
badly when there exist long sequences of busy servers. For example,
if our initial probe is at the beginning of a long chain of busy servers,
then we must step through all of those servers before finding an idle
server. Random probing does not get "stuck" in long sequences of busy
servers like this.

Because it has both an advantage and disadvantage when compared to
random probing, it is not immediately obvious which performs better.
The purpose of this paper is to determine the performance of sequential
probing with a random start. In particular, we will attempt to determine
the probability distribution of the number of probes required to find an idle
server, and we will compare numerical results regarding the performance
of sequential probing with a random start to the performance of other
algorithms.

We can attempt to make some early predictions of what the expected
number of probes required tofindan idle servermight be. In openaddressing,
randomprobing is simply aBernoulli processwhere theprobability of finding
an empty bin given a load factor of λ is 1 − λ. So the expected number of
probes required to find an empty bin using random probing in hash tables is

1
1 − λ

.

4 Introduction

According to Knuth (1963), the expected number of probes required to find
an empty bin using linear probing in hash tables is approximately

1
2

(
1 +

1
(1 − λ)2

)
.

Furthermore, Eschenfeldt et al. (2014) showed that the expected number of
probes required to find an idle server when using sequential probing from a
fixed starting point is approximately

λ
2
.

Given these results of similar problems, we expect the average number of
probes required when using sequential probing with a random start to be
between 1/(1 − λ) and 1/(1 − λ)2.

1.3 Tools for Analysis

Before diving into the analytical approach to this problem (covered inChapter
2), we should familiarize ourselves with several mathematical concepts.

1.3.1 Markov Chains

Suppose we have a sequence of random variables X0 ,X1 , . . . on a set S where
S is the set of states accessible to the system and Xk is the state of the system
at time k. According to Serfozo (2009), such a sequence is considered to be a
Markov Chain if it has the property that

P(Xn+1 � j | X0 , . . . ,Xn) � P(Xn+1 | Xn).
That is, the probability distribution of the state at time n + 1 only depends on
the state at time n. In particular, we will say that the probability of moving
from state i to state j is denoted by

P(Xn+1 � j | Xn � i) � pi j .

We can take these transition probabilities and assemble them into a transition
matrix P where Pi , j � pi , j . Such a matrix is called right stochastic, and each of
its rows sums to 1.

Suppose we have a row vector x which represents the initial distribution
of states of the system we are modeling. Then the vector xPk represents the

Tools for Analysis 5

probability distribution of states after k steps in the system. A stationary
probability vector π is a row vector which does not change after any number
of steps in the system. It can be thought of as an equilibrium, and is
generally called the steady state of the system. Because π does not change
with additional steps in the system, we have that πP � π. We will use this
concept in Section 2.1.

1.3.2 Negative Hypergeometric Distribution

In Chapter 3, we will compare our algorithm to random probing without
replacement; also known as uniform probing. It will be helpful to understand
the negative hypergeometric distribution in order to understand the behavior
of this method of probing.

Suppose we have an urn filled with N marbles, K of which are red or
"unsuccessful," and N − K of which are green or "successful." We’d like to
draw marbles from the urn without replacement until we draw r green (or
"successful")marbles, then answer howmany red (or "unsuccessful")marbles
we encountered. The number of unsuccessful draws within a sample of r
successes will be denoted by k. Let X be a random variable which counts the
number of unsuccessful draws. The negative hypergeometric distribution, a
discrete probability distribution, has the probability mass function

P(X � k) �
�k+r−1

k

��N−r−k
K−k

�
�N

K

�

for k � 0, 1, . . . , K. The expected value of X is

E[X] � rK
N − K + 1

.

In Chapter 3, we will think of idle servers as "successful" draws and busy
servers as "unsuccessful" draws, then we’ll be interested in how many busy
servers are drawn before drawing one idle server. This quantity plus one
will be the number of probes required to find an idle server.

1.3.3 Pólya’s Enumeration Theorem

In a famous paper published inActaMathematica, Pólya (1937) re-discovered
a theorem originally found by Redfield (1927) for counting the number of
orbits of a group action on a set. This theorem, which is a generalization of
Burnside’s Lemma, is presented in its unweighted form below.

6 Introduction

Let X be a finite set, let G be a permutation group which acts on X, and
let Y be a finite set of states which can be used to describe X. For example,
X may be a set of beads, Y may be a set of colors such that each bead may be
colored by one of the elements of Y, and G may be a group of permutations
of X. Let YX be the set of functions X → Y. In the example of the colored
beads, such functions would be different colorings of the beads. Thus, YX

is the set of colorings of the beads. We use this notation because there are
|Y ||X | possible colorings of the beads. The number of orbits under G of the
colorings of X can be computed as

|YX/G| � 1
|G|

∑
g∈G

mc(g)

where m � |Y | and c(g) is the number of cycles which make up g when
thought of as a permutation on X.

In Section 2.2 we will use this theorem to determine the number of
distinct server configurations up to rotation.

Chapter 2

An Analytical Approach

As we will see later on in Section 2.2, finding a general analytic solution
for an arbitrary number of servers is quite difficult. Despite this, we can
find solutions for small systems with relative ease, and we can describe a
procedure for finding a solution for N servers.

2.1 A Complete Solution for a Small System

Suppose we have a system of 5 servers, denoted s1 , s2 , . . . , s5. Given which
servers are busy and which are idle, we can draw a diagramwhich illustrates
the current state of the system:

s1
s2

s4 s3

s5

Figure 2.1 Diagrammatic representation of a configuration with two
non-adjacent idle servers in a system of 5 servers.

In the diagram above, empty circles denote idle servers and filled circles
denote busy servers. This diagram represents when s1, s2 and s4 are busy,
and s3 and s5 are idle. In future diagrams, we will not label the servers with
s1 , . . . , s5. Rather, it will be implied that we begin with s1 at the topmost
position and proceed clockwise.

Figure 2.1 actually represents an equivalence class of server configura-

8 An Analytical Approach

tions. We will consider configurations that are identical up to rotation to be
equivalent. Figure 2.1 is the representative for configurations which consist
of two adjacent busy servers and a third busy server which is not adjacent to
the first two. Rather than describing configurations in this way, we will use
5-bit binary strings of the form a1a2a3a4a5 where

ak �

1 sk is busy
0 sk is idle.

For example, the configuration shown in Figure 2.1 is represented by the
string 11010. Table 2.1 shows all the equivalence classes of configurations,
along with the binary representations of each configuration in that class:

Table 2.1 Equivalence classes of configurations a 5-server system.

Representative
Server Diagram Binary Representations Description

11111 Five busy servers

11110, 01111, 10111,
11011, 11101

Four busy servers

11100, 01110, 00111,
10011, 11001

Three adjacent
busy servers

11010, 01101, 10110,
01011, 10101

Two non-adjacent
idle servers

11000, 01100, 00110,
00011, 10001

Two adjacent
busy servers

10100, 01010, 00101,
10010, 01001

Two non-adjacent
busy servers

10000, 01000, 00100,
00010, 00001

One busy server

00000 No busy servers

In general, wewill always draw the diagramwhich represents the first binary
representation when arranged in reverse lexicographical order. Note that all

A Complete Solution for a Small System 9

25 � 32 possible 5-bit binary strings are listed in this table, so every possible
configuration of 5 servers is represented in one of these 8 equivalence classes

Now thatwe have away to visualize each of the 8 classes of configurations,
we can begin to examine the interactions between states. We will construct
a state transition diagram for the system. Beginning in state 00000, the
only possible transition is into state 10000. There are 5 ways to make this
transition (any of the 5 idle servers could become busy), and because requests
enter the system at a rate λ, we would label the 00000→ 10000 transition
with 5λ. Similarly, if we’re in state 10000 and the next event is a departure
event, then we must move down into the 00000 state. Departures happen at
a rate of 1, and there is only 1 way to move from 10000 to 00000, so we label
the 10000→ 00000 transition with 1. Following this logic, we create a state
diagram to describe the rates of transitions between states. See Figure 2.2.

5λ5

5λ
2

5λ
2

2λ1λ 1

2λ

2

3λ

2

5λ1

3λ

2

4λ

2

Figure 2.2 State diagram with rates of transitions for a 5-server system.

10 An Analytical Approach

We’d like to be able to model this system using a Markov chain so that
we can find out the likelihood of being in any given state in the long run. To
do this, we must first modify the state diagram in Figure 2.2 so that each
edge is labeled with the probability of that transition occurring, rather than
the rate. The probability of a transition can be found by simply dividing the
rate of that transition by the sum of rates of transitions departing from the
same state. Figure 2.3 shows the resulting diagram.

5λ
5λ+41

5λ
5λ+3

2
5λ+4

5λ
5λ+3

2
5λ+4

2λ
5λ+2

1
5λ+3

λ
5λ+2

1
5λ+3

2λ
5λ+1

2
5λ+2

3λ
5λ+1

2
5λ+2

11
5λ+1

3λ
5λ+2

2
5λ+3

4λ
5λ+2

2
5λ+3

Figure 2.3 State diagram with probabilities of transitions for a 5-server
system.

From this diagram, we can write down the stochastic matrix which

A Complete Solution for a Small System 11

describes the system.

P �

00
00

0

10
00

0

10
10

0

11
00

0

11
01

0

11
10

0

11
11

0

11
11

1

00000 0 1 0 0 0 0 0 0
10000 1

5λ+1 0 2λ
5λ+1

3λ
5λ+1 0 0 0 0

10100 0 2
5λ+2 0 0 3λ

5λ+2
2λ

5λ+2 0 0
11000 0 2

5λ+2 0 0 λ
5λ+2

4λ
5λ+2 0 0

11010 0 0 2
5λ+3

1
5λ+3 0 0 5λ

5λ+3 0
11100 0 0 1

5λ+3
2

5λ+3 0 0 5λ
5λ+3 0

11110 0 0 0 0 2
5λ+4

2
5λ+4 0 5λ

5λ+4
11111 0 0 0 0 0 0 1 0

Entry P jk is the probability of transitioning from state j to state k. In order to
find the steady state of the system, we need to find the stationary probability
vector π such that πP � π. In this case π is a left eigenvector of P with
eigenvalue 1. To find π, we first find the cokernel of P − I where I is the
identity matrix. This can be found as the kernel of (P − I)T � PT

− I. With
some help from Maple, we find that

coker(P − I) � ker(PT
− I) � span

*...........................
,

24
625λ4

24
625

5λ+1
λ4

6
625

(125λ2+100λ+24)(5λ+2)
(25λ2+23λ+6)λ3

6
125

625λ3+900λ2+440λ+72
(25λ2+23λ+6)λ3

2
125

(625λ2+500λ+108)(5λ+3)
(25λ2+23λ+6)λ2

2
125

(625λ2+650λ+192)(5λ+3)
(25λ2+23λ+6)λ2

1
5
5λ+4
λ

1

T
+///////////////////////////
-

The only stochastic vector in this span is the steady state π. With further aid

12 An Analytical Approach

from Maple, we find π to be

π �

12
625λ4+500λ3+300λ2+120λ+24

12(5λ+1)
625λ4+500λ3+300λ2+120λ+24
3λ(625λ3+750λ2+320λ+48)

15625λ6+26875λ5+22750λ4+12900λ3+5160λ2+1272λ+144
3λ(625λ3+900λ2+440λ+72)

15625λ6+26875λ5+22750λ4+12900λ3+5160λ2+1272λ+144
λ2(3125λ3+4375λ2+2040λ+324)

15625λ6+26875λ5+22750λ4+12900λ3+5160λ2+1272λ+144
λ2(3125λ3+5125λ2+2910λ+576)

15625λ6+26875λ5+22750λ4+12900λ3+5160λ2+1272λ+144
125
2

λ3(5λ+4)
625λ4+500λ3+300λ2+120λ+24

625
2

λ4

625λ4+500λ3+300λ2+120λ+24

T

.

Now that we know the steady state of the system, we must analyze each
state to determine the distribution of number of required probes to find
an idle server. Let’s examine configuration 11010 as an example. For each
idle server, there is a set of servers which, if initially probed, will result in
us finding the associated idle server. We will call such sets of servers catch
regions.

b1 b2 i1 b3 i2

c2c1

Figure 2.4 Catch regions of configuration 11010.

In Figure 2.4, i1 and i2 denote the two idle servers of the configuration
and b1, b2, and b3 denote the three busy servers of the configuration. We use
c1 and c2 to denote the catch regions of i1 and i2 respectively. Catch region
c` is the set of servers which, if initially probed into, will result in us finding
i` if our algorithm is sequential probing with a random start. The size of
catch region c` will be denoted by m` .

Let X be a random variable which counts the number of probes required
to find an idle server using our search algorithm. Thenwe get the probability
mass function seen in Table 2.2.

We get this because there are two places we could initially probe such
that it only requires 1 probe to find an idle server; namely i1 and i2. Since

A Complete Solution for a Small System 13

Table 2.2 Probability mass function for configuration 11010.

k 1 2 3
P(X � k) 2

5
2
5

1
5

the initial probe is uniform, there is a 2/5 chance of initially probing one of
these two. Similarly, if we initially probe b2 or b3, then we require 2 probes
to find an idle server. Again, the probability of initially probing one of these
two servers is 2/5. Finally, there is only one place we could probe which will
require us to make 3 probes to find an idle server, and that is b1. There is a
1/5 chance of initially probing here.

We find the expected number of probes required for configuration 11010
to be

E[X] � 1
2
5
+ 2

2
5
+ 3

1
5
�
9
5
probes.

We can repeat such calculations for each of the 8 configurations. Table 2.3
shows the PMF and expected value for each configuration.

Table 2.3 PMF and expected value for each of the 8 configurations.

k
1 2 3 4 5 E[X]

P(X � k | 00000) 1 0 0 0 0 1
P(X � k | 10000) 4

5
1
5 0 0 0 6

5
P(X � k | 10100) 3

5
2
5 0 0 0 7

5
P(X � k | 11000) 3

5
1
5

1
5 0 0 8

5
P(X � k | 11010) 2

5
2
5

1
5 0 0 9

5
P(X � k | 11100) 2

5
1
5

1
5

1
5 0 11

5
P(X � k | 11110) 1

5
1
5

1
5

1
5

1
5 3

P(X � k | 11111) N/A N/A N/A N/A N/A N/A

Together with the probability of being in each state in the long run
(provided by π), we can have a complete probability distribution for the
number of probes required to find an idle server. Note that in the case of all
servers being busy (configuration 11111), an incoming request cannot find
an idle server, so it does not make sense to talk about the probabilities of
requiring various numbers of probes. This is why, in Table 2.3 the entries

14 An Analytical Approach

associated with 11111 are all "NA." When requests enter a system where all
servers are busy, these requests are called loss and are discarded. We touch
briefly again on loss at the end of this chapter.

2.2 A Procedure for a General Analytic Solution

Now that we have an understanding of how to solve for a small system, we
can attempt to find a solution for n servers. The solution outlined in this
section follows the same approach as the example in the previous section,
but is more formal and general.

Let X � {s1 , s2 , . . . , sn} be a set of n servers, let Y �
�
busy, idle

	
be the

set of states available to each server, and let Cn be the cyclic group of order
n. The action of Cn on G can be described as rotations of the vertices of an
n-gon. Thus, by thinking of each server as being the vertex of an n-gon,
the unique orbits of configurations of servers under Cn give us the unique
server configurations up to rotation. Note that we do not wish to consider
configurations equivalent up to reflections because the direction in which
we probe is fixed. If M is the number of unique server configurations up to
rotation, then by application of Pólya’s enumeration theorem we can say

M � |YX/Cn | � 1
n

∑
g∈Cn

2c(g).

As a quick check, we can see that this is consistent with what we found in
the previous section. The elements of C5 �

�
1, r, r2 , r3 , r4

	
written as permu-

tations of X � {s1 , . . . , s5} are shown in Table 2.4. Using the information

Table 2.4 Elements of C5 as permutations in S5.

Element of D10 As element of S5 Number of cycles
1 (1)(2)(3)(4)(5) 5
r (12345) 1
r2 (13524) 1
r3 (14253) 1
r4 (15432) 1

from this table, we find the number of distinct server configurations to be

1
5

�
25 + 4(21)� � 8.

A Procedure for a General Analytic Solution 15

As Table 2.1 shows, we did indeed have 8 distinct configurations of servers.
Moving on with the general solution, our next task is to try to fill the

stochastic matrix P for the system. We will use the word state to mean an
equivalence class of configurations that are the same up to action of Cn . We
have M states, so the stochastic matrix P for the system is M ×M.

Consider two states Sa and Sb such that Sa has α busy servers, Sb has
β busy servers, and β − α � 1. In general, Sa and Sb are connected in the
state transition diagram if any of the configurations in Sb can be obtained by
changing any of the idle servers of any of the configurations in Sa to be busy.
If Sa and Sb are not connected, then entries Pab and Pba are zero. If Sa and
Sb are connected, then there will be arrows denoting transitions from Sa to
Sb and vice versa. The transition probability from Sa to Sb is

Pab �
Ua ,bλ

nλ + α
where Ua ,b is the number of ways to set an idle server in a configuration in
Sa busy to obtain a configuration in Sb . Similarly, the transition probability
from Sb to Sa is

Pba �
Db ,a

nλ + β
where Db ,a is the number of ways to set a busy server in a configuration in
Sb idle to obtain a configuration in Sa . Part of the difficulty in finding an
analytical solution to this problem is finding a way to generalize if two states
are connected, and if they are, finding U and D.

The next step once we have P is to compute its steady state π such
that πP � π. This is another part of the difficulty in solving this problem
analytically. While there are ways to find the steady state of a Markov chain,
it is difficult to say what the general form of the solution will be, especially
considering the difficulty in writing what P looks like, in general.

We must now consider each state and come up the PMF for the number
of probes required in each state, as well as an expression for the expected
number of probes. Recall the type of model portrayed by Figure 2.4. Each
idle server i` has a catch region c` of size m` associated with it. In general,
the probability of k probes being required is the number of catch regions of
at least size k, divided by the number of servers n. The expected value of
the number of probes can be expressed more elegantly. For any given catch
region c` , the expected number of probes required in that region is

1 + 2 + · · · + m`

m`
.

16 An Analytical Approach

Then we sum this value over all the catch regions, scaling each by its size
relative to the whole collection (m`/n). If there are a total of h idle servers in
configuration S, then

E[X | S] �
∑

1≤`≤h

m`

n

(1 + 2 + · · · + m`

m`

)
�

1
2n

∑
1≤`≤h

m`(m` + 1).

After finding the steady state π, along with the PMF for each state, we
will have a complete solution to the PMF for the number of probes required
to find an idle server. Additionally, using the steady state π and the expected
value E[X | S] we just found, we can give an expression for the expected
number of probes required.

Finally, althoughwe could use the steady state π to help us determine the
probability of loss, an alternative way of determining the loss in the system
if we’re not interested in anything else is by using the Erlang B formula. The
formula is

Ploss �

(λn)n

n!∑n
i�0

(λn)i

i!

,

where n is the number of servers in the system and λ is the parameter of the
Poisson process governing arrivals of requests in the system.

Chapter 3

A Simulation Approach

Although there are difficulties in finding an analytic solution for a system
with N servers, we can still get a number of results via simulation.

Wehavewritten a discrete event simulation, which loops througha sequence
of events, each of which occurs with a certain probability. In our case, we
have two events:

• Arrival events are events in which a new request enters the system
and finds an idle server if available. This event handles both the initial
random probe and the sequential probing portions of the search. If
there are N servers, K busy servers, and the rate of arrival is λ, then
the probability of the next event being an arrival event is

λN
λN + K

.

• Departure events are events in which a single request leaves the
system, thus making a previously busy server idle again. If there are N
servers, K busy servers, and the rate of arrival is λ, then the probability
of the next event being a departure event is

K
λN + K

.

We get these probabilities based on the rates of arrivals and departures. The
rate of arrival in the whole system is λN because there is an arrival rate
of λ to each of the N servers. The departure rate is K because the rate of
processing is 1 for each of the K busy servers.

18 A Simulation Approach

The simulation is set to run until a specified number of requests have
successfully been processed. In each iteration, either an arrival or a departure
occurs based on the probabilities presented above. Each time a request
successfully finds an idle server, we record the number of probes that were
required to find that idle server.

Before we present results of this simulation, it’s important to discuss
system equilibriums. Two in particular are important to consider:

• equilibrium in the number of busy and idle servers and

• equilibrium in structure.

Equilibrium in the number of busy and idle servers is simply when we have
the expected number of busy servers. That is, when roughly λN servers are
busy. Once we have an equilibrium number of busy servers, it may take
some time for the configuration of servers to become stable.

In order to get consistent results about the performance of this algorithm
in the long run, we wish to only record results when the system has entered
both of these equilibriums. We can ensure we’re in the first equilibrium
by starting the simulation on a system which begins with λN servers
busy. To ensure we’re in the second equilibrium, we can keep track of
the expected value of the number of required probes and start reporting
results once it settles down. Figure 3.1 shows a plot of the expected value
of the required number of probes over time and illustrates when we reach
structural equilibrium.

Once we are in the desired equilibriums, we can plot a histogram of
the number of probes required to find an idle server and calculate the
expected value and standard deviation for the number of required probes.
The histogram is show in Figure 3.2.

In addition to the histogram displayed, we were able to calculate that the
expected number of probes was 95.45 with a standard deviation of 141.37.
Despite the large value of the standard deviation here, repeated simulations
consistently show that the expected number of probes is around 95. Note
that this is close to and slightly less than 1/(1− λ) � 100 which we predicted
in Section 1.2. This seems to indicate that, at least for λ � 0.99, sequential
probing with a random start has a better performance than random probing.
Later on we will see results that show this is not the case for all λ.

Figure 3.2 shows adistributionwhich is similar in shape to the exponential
distribution. To see if we actually have exponential decay here, we can make
a semi-log plot of the same results. See Figure 3.3. We see that we don’t

19

Figure 3.1 Aplot of the expected value of the number of required probes
over time. This is the result after 10 million requests through a system of
1000 servers with λ � 0.99.

Figure 3.2 Histogram of the number of probes required to find an idle
server in a system with 1000 servers, λ � 0.99, and beginning from
expected equilibrium. This is the result after 10 million requests went
through the system.

quite have exponential decay, as is evidenced by the lack of linearity on the

20 A Simulation Approach

left end of the semi-log plot. This indicates qualitative difference between
sequential probing with a random start and random probing, the results
for which we would expect to follow a geometric distribution. The fact that
the left end of the distribution trends upward from a linear fit indicates
that sequential probing performs better than random probing; at least for
λ � 0.99.

Figure 3.3 Semi-log plot of the histogram shown in Figure 3.2.

Wementioned back in Section 1.2 that sequential probing with a random
start has both advantages and disadvantages in comparison to random prob-
ing. Because of this, it is difficult to quantify the algorithm’s disadvantage
by comparing it to random probing. The solution is to compare to random
probing without replacement. That is, we will consider an algorithm that
randomly probes the collection of servers in search of an idle server, but
does so without replacement as to not probe the same place twice. Such an
algorithm is called uniform hashing in the related problem of open addressing
Yao (1985), so we will refer to it as uniform probing here. Relative to uniform
probing, sequential probing with a random start only has the disadvantage
mentioned in Section 1.2 and no advantage. By comparing these two, we
can isolate the effects of this disadvantage.

In order to compare these two algorithms, we ran both algorithms
in parallel. That is, both went through the same sequence of arrival and
departure events at the same time. We collected the results for each algorithm

21

individually. As before, we can plot the histogram of the number of probes
required to find an idle server, as well as calculate the expected value and
standard deviation of the number of required probes.

a. Sequential probing with a random
start

b. Uniform probing

Figure 3.4 Histograms of the number of probes required to find an idle
server in a system of 1000 servers λ � 0.99, and beginning from expected
equilibrium. These are the results after 10 million requests went through
the system.

Figure 3.4 compares the histograms for both sequential probing with a
random start and uniform probing when simulated in parallel. Both share
similar shapes, although uniform probing appears to decay more quickly.
As before, we can also examine semi-log plots to compare how close to an
exponential distribution these histograms are. See Figure 3.5.

We note that uniform probing is farther from exponential than sequential
probing with a random start. In particular, due to the more severe deviation
from a linear fit, uniform appears to perform better than sequential probing
with a random start, as expected. This is also consistent with the expected
values for the number of required probes we calculated. From this parallel
simulation we found that the expected number of probes for sequential
probing with a random start was 95.22 with a standard deviation of 140.94,
while uniform probing had an expected value of 68.77 with a standard
deviation of 118.94.

Up until this point, we have only been looking at simulations with a

22 A Simulation Approach

a. Sequential probing with a random
start

b. Uniform probing

Figure 3.5 Semi-log plots of the histograms shown in Figure 3.4.

load factor of λ � 0.99. The reason for this is that we are interested in the
performance when the system is under a heavy load. However, to get a
bigger picture of the performance of this algorithm, especially relative to
other methods of probing, we should examine results for other values of λ.

To begin, we can look at a simple plot of the expected number of probes
required vs λ. This is shown in Figure 3.6.

This gives us an idea of how the expected number of probes required
grows with λ, and even gives us a way to compare to the expected per-
formance of other probing methods such as random probing and uniform
probing. Recall that the expected performance of random probing is

1
1 − λ

.

If we overlay this curve on the same plot as the data seen in Figure 3.6, we
can see how the two algorithms compare, on average, at different values of λ.
See Figure 3.7. This figure shows our empirical data about the performance
of sequential probing with a random start (the points) compared to the
theoretical performance of random probing for a fixed load factor of λ
(represented by the curve).

It would be ideal to try to fit a curve to this data and have a formula for
expected performance of sequential probing with a random start based on λ.

23

Figure 3.6 The expected number of probes required to find an idle
server in a system of 1000 servers for λ ranging from 0.5 to 0.99 in steps
of size 0.035.

0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

100

120

λ

E
xp
ec
te
d
nu
m
be
ro
fp
ro
be
s
re
qu
ire
d

Figure 3.7 The data from Figure 3.6 along with the curve 1/(1 − λ).

However, because the performance blows up at λ � 1, it is difficult to find an
accurate fit. To help alleviate this, we can transform the the data so that the

24 A Simulation Approach

expected performance of the algorithm we’re comparing to is a represented
as a straight line which does not blow up in the region of λ ∈ [0, 1].

For random probing, since we expect the performance to be E[X] �

1/(1 − λ), we solve for λ and find

λ � 1 −
1

E[X]
and plot 1−1/E[X] on the vertical axis and λ on the horizontal axis. Then the
performance of random probing is the 45◦ line, and the data for sequential
probing with a random start can still be overlain on to make a comparison.

0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.6

0.7

0.8

0.9

1.0

λ

1
-

1

E
X

Figure 3.8 Data and curve from Figure 3.7 transformed to plot 1−
1

E[X]
vs λ.

Figure 3.8 shows the results we’ve been discussing transformed in this
way. The line represents the expected performance of random probing, and
the points represent the results of our simulations. When transformed in
this way, we can find a polynomial fit to the data rather than trying to find
a fit the form 1/(1 − λ) or 1/(1 − λ)2. The shape of the data suggests that a
polynomial fit of degree 2 would be appropriate here.

Using Mathematica, we find a degree-2 polynomial fit of the form
aλ + bλ2. We leave off a constent term in order to meet the condition that

25

when λ � 0, we have 1 − 1/E[X] � 0. The fit is

1 −
1

E[X] � 1.34325λ − 0.321585λ2.

Table 3.1 shows some information about the goodness of this fit. In addition,
the R2 value is 0.99981, and the adjusted R2 is 0.999783. Transforming the

Table 3.1 Goodness of fit: 1 − 1/E[X] vs. λ.
Estimate Std. Error t-Statistic P-Value

a 1.34325 0.0230279 58.3316 4.07063 × 10−18
b −0.321585 0.0282078 −11.4006 1.80048 × 10−8

fit allows us to obtain a fit for the pre-transformed data. Doing so yields

E[X] � 1
1 + 0.321585λ2 − 1.34325λ

.

This is the formula which tells us the expected performance of sequential
probing with a random start as a function of λ. Note that this formula
shares some similarities to what we predicted the results might be back in
Chapter 1.

We would like to compare the performance of sequential probing with
a random start to that of uniform probing in this manner. If we follow the
same procedure, the transformation we’ll make is based on the formula for
the expected value of the negative hypergeometric distribution (see Section
1.3.2), but with +1 added since we’re interested in also counting the probe
which finds an idle server. Thus, we would use the formula

E[X] � λN
(1 − λ)N + 1

+ 1.

Here we’re taking K � λN to be the number of busy servers and r � 1 to
be the number of idle servers we encounter before stopping. Solving for λ
yields

λ �
(N + 1)(E[X] − 1)

NE[X] .

Normally we would plot the quantity on the right side of this equation on
the vertical axis and λ on the horizontal axis to get a plot akin to what we
have for random probing in Figure 3.8. However, this time we should be
more careful in how we make our comparison. Note that the formula for the

26 A Simulation Approach

expected value of the negative hypergeometric distribution depends on the
number of busy servers. If we plug in λN for this quantity, we fail to account
for instances where there are more or fewer busy servers. In our simulation,
we don’t always have λN servers busy, so it would be inaccurate to compare
the simulation results to a line which assume a constant number of busy
servers. In order to account for this, we should compute the likelihood of
having a certain number of servers busy, then weight the formula for the
expected performance of uniform probing accordingly. Note that this is
different from calculating the probability of having certain configurations of
servers, which we discussed in Chapter 2. Here we only need to consider
the number of busy servers, not their arrangement.

Let PK denote the probability of having K busy servers. Allen (1990)
gives the following formula for the steady state probability of having K busy
servers:

PK �
(λN)K

K!
*
,

N∑
i�0

(λN)i

i!
+
-

−1

This formula holds regardless of the probing method. However, as N grows
large and λ grows close to 1, using this formula to compute probabilities
becomes more difficult. As a result, we turn to a recursive method of
computation. Recall that, given N servers, K of which are busy, and an
individual arrival rate of λ, system-wide rates of arrival and departure are
λN and K respectively. Based on these rates, we can establish the following
relationship between the probabilities of having K and K + 1 servers busy:

λNPK � (K + 1)PK+1.

Then if we assign PN to be some constant C, we can recursively calculate
the relative probabilities of having any number of servers busy. These
should sum to 1 if C was picked correctly, but if not, we can normalize
these probabilities by what they sum to since this method correctly finds the
relative probabilities of these events. Computing probabilities in this way
yields the same results as those given by the formula presented by Allen
(1990), but this method avoids dealing with very large numbers.

We can nowuse these probabilities in conjunctionwith the expected value
formula for the negative hypergeometric distribution to get a more precise
result for the expected performance of uniform probing with parameter λ.

27

In particular, we use the formula

E[X] �
N∑

K�0
PKE[X | K],

where
E[X | K] � K

N − K + 1
+ 1

is the expected number of probes required to find an idle server using
uniform probing when there are K busy servers.

It’s difficult to solve for λ and make the same transformation as we did
for random probing, so here we present untransformed results comparing
sequential probing with a random start to uniform probing. Figure 3.9
shows this comparison where the data for uniform probing was computed
using the method described above. The plot shows that uniform probing is
consistently better than sequential probing with a random start, as expected.
However, the performance of SPRS follows the same general shape as that of
uniformprobing, and generally isn’t toomuchworse. The difference between
the points for uniform probing and sequential probing with a random start
illustrates negative impact of the disadvantage of poor performance in long
sequences of busy servers.

To get a closer look at the comparison between these two probing
algorithms for high load factors, we can look at an additional plot where
λ ranges from 0.95 to 0.995. This comparison can be seen in Figure 3.10.
Even in heavy traffic, we see that sequential probing with a random start
has similar performance to uniform probing.

28 A Simulation Approach

Out[49]=

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲

▲

▲

0.5 0.6 0.7 0.8 0.9 1.0
0

20

40

60

80

100

λ

E
xp
ec
te
d
nu
m
be
ro
fp
ro
be
s
re
qu
ire
d

▲ Uniform Probing

SPRS

Figure 3.9 A comparison of the expected number of probes required to
find an idle server using sequential probing with a random start (SPRS)
and uniform probing. These results are for a system of 1000 servers with
λ ranging from 0.5 to 0.99 in steps of size 0.035.

Out[57]=

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

0.95 0.96 0.97 0.98 0.99
0

20

40

60

80

100

λ

E
xp
ec
te
d
nu
m
be
ro
fp
ro
be
s
re
qu
ire
d

▲ Uniform Probing

SPRS

Figure 3.10 The same comparison as in Figure 3.9, but with λ ranging
from 0.95 to 0.995 in steps of size 0.003.

Chapter 4

Conclusions and Future Work

We have provided an analytical solution for the probability distribution of
the number of required probes for a 5-server system and have outlined a
procedure for determining the solution in the case of N servers. Writing
down the solution in the general case is difficult, so we have also written
a simulation which can provide results for large systems that we would
otherwise not try to solve analytically. Aside from providing numerical
results for statistics like the expected performance of our algorithm, the
simulations allow us to look at a number of histograms and other plots
which help illustrate the shape of the probability distribution which arises
from sequential probing with a random start and compare our algorithm to
others.

Results indicate that with λ ≥ 0.99, sequential probing with a random
start performs slightly better than random probing. However, looking at a
wider range of values of λ reveals that sequential probing with a random
start is not always better than random probing. Regardless, a key finding is
that these two do seem to share similar performance for many values of λ.
Sequential probing with a random start is more similar to random probing
than linear probing, even though the randomness of SPRS is limited to a
single initial probe.

Aside fromfinding that SPRS performsmore similarly to randomprobing
than to linear probing, we also compared SPRS to uniform probing in
an attempt to understand the disadvantageous aspects of our algorithm.
Random probing has an advantage and disadvantage when compared to
sequential probing with a random start, but uniform probing does not have
any disadvantage in such a comparison. Thus, comparing our algorithm
to uniform probing helps to highlight the disadvantageous behavior of our

30 Conclusions and Future Work

algorithm; namely that it does not perform well when there are long chains
of busy servers. A careful comparison of the two resulted in Figures 3.9
and 3.10 which provide a visual representation of the difference between
SPRS and uniform probing. Future research could attempt to model the
difference between the numerical results in this comparison as a fraction of
the performance of uniform probing. This would give quantitative insight
into the severity of the disadvantage of poor performance in long chains of
busy servers.

Future research could investigate this disadvantage in another waywhich
does not involve comparing SPRS to other algorithms. Simulations could
keep track of the lengths of chains of busy servers as well as the results
regarding how many probes were required to find an idle server. The
number of required probes could be modeled as a function of the number of
and sizes of such chains.

This could also be a worthwhile approach for the analytical solution.
Rather than using configurations of servers as states in a Markov model,
there may be a way to define states based on the number of and sizes of
chains of busy servers. This may simplify the problem slightly and help
simplify the procedure for finding the solution, or even allow us to write
down a general solution.

Bibliography

Allen, Arnold O. 1990. Probability, Statistics, and Queueing Theory: With
Computer Science Applications. Academic Press, Inc., 2nd ed.

Bolch, Gunter, Hermann de Meer, Kishor Shridharbhai Trivedi, and Stefan
Greiner. 2006. Queueing Networks and Markov Chains: Modeling and Perfor-
mance Evaluation with Computer Science Applications. John Wiley and Sons.
URL https://doi.org/10.1002/0471791571.ch6.

Eschenfeldt, Patrick, Ben Gross, and Nicholas Pippenger. 2014. Stochastic
service systems, random interval graphs and search algorithms. Random
Structures and Algorithms 45(3):421–442.

Harary, Frank, and EdgarM. Palmer. 1973. Graphical Enumeration. Academic
Press, Inc.

Knuth, Donald. 1963. Notes on open addressing.

———. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc.

Pólya, G. 1937. Kombinatorische Anzahlbestimmungen für Gruppen,
Graphen und chemische Verbindungen. Acta Mathematica 68(1):145–254.
doi:10.1007/BF02546665. URL https://doi.org/10.1007/BF02546665.

Pólya, G., and R.C. Read. 1987. Combinatorial Enumeration of Groups,
Graphs, and Chemical Compounds. Springer-Verlag New York. doi:
10.1007/978-1-4612-4664-0. URL https://doi.org/10.1007/978-1-4612-4664-0.

Redfield, J. Howard. 1927. The theory of group-reduced distributions.
American Journal of Mathematics 49(3):433–455. URL http://www.jstor.org/
stable/2370675.

https://doi.org/10.1002/0471791571.ch6
https://doi.org/10.1007/BF02546665
https://doi.org/10.1007/978-1-4612-4664-0
http://www.jstor.org/stable/2370675
http://www.jstor.org/stable/2370675

32 Bibliography

Schuster, Eugene F., and William R. Sype. 1987. On the negative hypergeo-
metric distribution. International Journal of Mathematical Education in Science
and Technology 18(3):453–459. URL https://doi.org/10.1080/0020739870180316.

Serfozo, Richard. 2009. Probability and Its Applications: Basics of Applied
Stochastic Processes. Springer.

Yao, Andrew C. 1985. Uniform hashing is optimal. J ACM 32(3):687–693.
doi:10.1145/3828.3836. URL http://doi.acm.org/10.1145/3828.3836.

https://doi.org/10.1080/0020739870180316
http://doi.acm.org/10.1145/3828.3836

	Claremont Colleges
	Scholarship @ Claremont
	2018

	Sequential Probing With a Random Start
	Joshua Miller

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Sequential Probing With a Random Start
	Tools for Analysis

	An Analytical Approach
	A Complete Solution for a Small System
	A Procedure for a General Analytic Solution

	A Simulation Approach
	Conclusions and Future Work
	Bibliography

