701 research outputs found

    Supervised Kernel Locally Principle Component Analysis for Face Recognition

    Get PDF
    In this paper, a novel algorithm for feature extraction, named supervised kernel locally principle component analysis (SKLPCA), is proposed. The SKLPCA is a non-linear and supervised subspace learning method, which maps the data into a potentially much higher dimension feature space by kernel trick and preserves the geometric structure of data according to prior class-label information. SKLPCA can discover the nonlinear structure of face images and enhance local within-class relations. Experimental results on ORL, Yale, CAS-PEAL and CMU PIE databases demonstrate that SKLPCA outperforms EigenFaces, LPCA and KPCA

    Face Recognition Using Double Sparse Local Fisher Discriminant Analysis

    Get PDF

    Ridge regression for two dimensional locality preserving projection

    Full text link
    Two Dimensional Locality Preserving Projection (2D-LPP) is a recent extension of LPP, a popular face recognition algorithm. It has been shown that 2D-LPP performs better than PCA, 2D-PCA and LPP. However, the computational cost of 2D-LPP is high. This paper proposes a novel algorithm called Ridge Regression for Two Dimensional Locality Preserving Projection (RR- 2DLPP), which is an extension of 2D-LPP with the use of ridge regression. RR-2DLPP is comparable to 2DLPP in performance whilst having a lower computational cost. The experimental results on three benchmark face data sets - the ORL, Yale and FERET databases - demonstrate the effectiveness and efficiency of RR-2DLPP compared with other face recognition algorithms such as PCA, LPP, SR, 2D-PCA and 2D-LPP.<br /

    Discriminative Hessian Eigenmaps for face recognition

    Get PDF
    Dimension reduction algorithms have attracted a lot of attentions in face recognition because they can select a subset of effective and efficient discriminative features in the face images. Most of dimension reduction algorithms can not well model both the intra-class geometry and interclass discrimination simultaneously. In this paper, we introduce the Discriminative Hessian Eigenmaps (DHE), a novel dimension reduction algorithm to address this problem. DHE will consider encoding the geometric and discriminative information in a local patch by improved Hessian Eigenmaps and margin maximization respectively. Empirical studies on public face database thoroughly demonstrate that DHE is superior to popular algorithms for dimension reduction, e.g., FLDA, LPP, MFA and DLA. ©2010 IEEE.published_or_final_versionThe 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, TX., 14-19 March 2010. In IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings, 2010, p. 5586-558

    Local Feature Discriminant Projection

    Get PDF
    In this paper, we propose a novel subspace learning algorithm called Local Feature Discriminant Projection (LFDP) for supervised dimensionality reduction of local features. LFDP is able to efficiently seek a subspace to improve the discriminability of local features for classification. We make three novel contributions. First, the proposed LFDP is a general supervised subspace learning algorithm which provides an efficient way for dimensionality reduction of large-scale local feature descriptors. Second, we introduce the Differential Scatter Discriminant Criterion (DSDC) to the subspace learning of local feature descriptors which avoids the matrix singularity problem. Third, we propose a generalized orthogonalization method to impose on projections, leading to a more compact and less redundant subspace. Extensive experimental validation on three benchmark datasets including UIUC-Sports, Scene-15 and MIT Indoor demonstrates that the proposed LFDP outperforms other dimensionality reduction methods and achieves state-of-the-art performance for image classification

    Globally maximizing, locally minimizing : unsupervised discriminant projection with applications to face and palm biometrics

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore