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Local Fisher discriminant analysis (LFDA) was proposed for dealing with the multimodal problem. It not only combines the idea
of locality preserving projections (LPP) for preserving the local structure of the high-dimensional data but also combines the idea
of Fisher discriminant analysis (FDA) for obtaining the discriminant power. However, LFDA also suffers from the undersampled
problem as well as many dimensionality reduction methods. Meanwhile, the projection matrix is not sparse. In this paper, we
propose double sparse local Fisher discriminant analysis (DSLFDA) for face recognition. The proposed method firstly constructs
a sparse and data-adaptive graph with nonnegative constraint. Then, DSLFDA reformulates the objective function as a regression-
type optimization problem.The undersampled problem is avoided naturally and the sparse solution can be obtained by adding the
regression-type problem to a ℓ1 penalty. Experiments on Yale, ORL, and CMU PIE face databases are implemented to demonstrate
the effectiveness of the proposed method.

1. Introduction

Dimensionality reduction tries to transform the high-dimen-
sional data into lower-dimensional space in order to pre-
serve the useful information as much as possible. It has a
wide range of applications in pattern recognition, machine
learning, and computer vision. A well-known approach for
supervised dimensionality reduction is linear discriminant
analysis (LDA) [1]. It tries to find a projection transformation
by maximizing the between-class distance and minimizing
the within-class distance simultaneously. In practical applica-
tions, LDA usually suffers from some limitations. First, LDA
usually suffers from the undersampled problem [2]; that is,
the dimension of data is larger than the number of training
samples. Second, LDA can only uncover the global Euclidean
structure. Third, the solution of LDA is not sparse, which
cannot give the physical interpretation.

To deal with the first problem, many methods have been
proposed. Belhumeur et al. [3] proposed a two-stage principal
component analysis (PCA) [4] + LDAmethod, which utilizes
PCA to reduce dimensionality so as to make the within-class

scatter matrix nonsingular, followed by LDA for recognition.
However, some useful information may be compromised in
the PCA stage. Chen et al. [5] extracted the most discrimi-
nant information from the null space of within-class scatter
matrix. However, the discriminant information in the non-
null space of within-class scatter matrix would be discarded.
Huang et al. [6] proposed an efficient null-space approach,
which first removes the null space of total scatter matrix.This
method is based on the observation that the null space of total
scatter matrix is the intersection of the null space of between-
class scatter matrix and the null space of within-class scatter
matrix. Qin et al. [7] proposed a generalized null space uncor-
related Fisher discriminant analysis technique that integrates
the uncorrelated discriminant analysis andweighted pairwise
Fisher criterion for solving the undersampled problem. Yu
and Yang [8] proposed direct LDA (DLDA) to overcome the
undersampled problem. It removes the null space of between-
class scattermatrix and extracts the discriminant information
that corresponds to the smallest eigenvalues of the within-
class scatter matrix. Zhang et al. [9] proposed an exponential
discriminant analysis (EDA) method to extract the most
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discriminant informationwhich is contained in the null space
of the within-class scatter matrix.

To deal with the second problem, many methods have
been developed for dimensionality reduction.Thesemethods
focus on finding the local structure of the original data space.
Locality preserving projections (LPP) [10] was proposed to
find an embedding subspace that preserves local information.
One limitation of LPP is that it is an unsupervised method.
Because the discriminant information is important to the
classification tasks, some locality preserving discriminant
methods have been proposed. Discriminant locality preserv-
ing projection (DLPP) [11] was proposed to improve the
performance of LPP. Laplacian linear discriminant analysis
(LapLDA) [12] tries to capture the global and local structure
of the data simultaneously by integrating LDA with a locality
preserving regularizer. Local Fisher discriminant analysis
(LFDA) [13] was proposed to deal with the multimodal
problem. It combines the ideas of Fisher discriminant analysis
(FDA) [1] and LPP andmaximizes between-class separability
and preserves within-class local structure simultaneously. In
LDA, the dimension of the embedding space should be less
than the number of classes. This limitation can be solved by
using the LFDA algorithm.

To deal with the third problem, many dimensionality
reduction methods integrating the sparse representation
theory have been proposed. These methods can be classified
into two categories. The first category focuses on finding a
subspace spanned by sparse vectors. The sparse projection
vectors reveal which element or region of the patterns is
important for recognition tasks. Sparse PCA (SPCA) [14] was
proposed by using the least angle regression and elastic net
to produce sparse principal components. Sparse discriminant
analysis (SDA) [15] and sparse linear discriminant analysis
(SLDA) [16] were proposed to learn a sparse discriminant
subspace for feature extraction and classification in biological
andmedical data analysis. Bothmethods try to transform the
original objective into a regression-type problem and add a
lasso penalty to obtain the sparse projection axes. One disad-
vantage of these methods is that the number of sparse vectors
is at most𝐶−1.𝐶 is the number of class.The second category
focuses on the sparse reconstructive weight among the
training samples. Graph embedding framework views many
dimensionality reduction methods as the graph construction
[17].The 𝑘-nearest neighbor and the 𝜀-ball basedmethods are
two popular ways for graph construction. Instead of them,
Cheng et al. built the ℓ1-graph based on sparse representation
[18]. The ℓ1-graph has proved that it is efficient and robust
to data noise. ℓ1-graph based subspace learning methods
include sparse preserving projections (SPP) [19] and discrim-
inant sparse neighborhood preserving embedding (DSNPE)
[20].

Motivated by ℓ1-graph and sparse subspace learning,
in this paper, we proposed double sparse local Fisher dis-
criminant analysis (DSLFDA) for multimodal problem. It
measures the similarity on the graph by integrating the sparse
representation and nonnegative constraint. To obtain sparse
projection vectors, the objective function can be transformed
into a regression-type problem. Furthermore, the space

spanned by the solution of regression-type problem is iden-
tical to that spanned by the solution of original problem.The
proposed DSLFDA has two advantages: (1) it remains the
sparse characteristic of ℓ1-graph; (2) to enhance the discrim-
inant power of DSLFDA, the label information is used in the
definition of local scattermatrices.Meanwhile, the projection
vectors are sparse, which can make the physical meaning of
the patterns clear. The proposed method is applied to face
recognition and is examined using the Yale, ORL, and PIE
face databases. Experimental results show that it can enhance
the performance of LFDA effectively.

The rest of this paper is organized as follows. In
Section 2, the LFDA algorithm is presented. The double
sparse local Fisher discriminant analysis algorithm is pro-
posed in Section 3. In Section 4, experiments are imple-
mented to evaluate our proposed algorithm.The conclusions
are given in Section 5.

2. Related Work

In this section, we give a brief of LDA and LFDA. Given a
data set 𝑋 = [𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
] ∈ R𝑚×𝑛 with each column

corresponding to a data sample,𝑥
𝑖
∈ R𝑚 (1 ≤ 𝑖 ≤ 𝑛), the class

label of 𝑥
𝑖
is set to 𝑦

𝑖
∈ {1, 2, . . . , 𝑐}, and 𝑐 is the number of

classes.We denote 𝑛
𝑖
as the number of samples in the 𝑖th class.

Dimensionality reduction tries tomap the point 𝑥
𝑖
∈ R𝑚 into

𝑧
𝑖
∈ R𝑑 (𝑑 ≪ 𝑚) by the linear transformation:

𝑧
𝑖
= 𝑉
𝑇
𝑥
𝑖

(𝑖 = 1, 2, . . . , 𝑛) , where 𝑉 ∈ R
𝑚×𝑑

. (1)

The above transformation can be written as matrix form:

𝑍 = 𝑉
𝑇
𝑋, (2)

where 𝑍 = [𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
] ∈ R𝑑×𝑛.

2.1. Linear Discriminant Analysis. Linear discriminant anal-
ysis tries to find the discriminant vectors by the Fisher
criterion, that is, the within-class distance is minimized
and the between-class distance is maximized simultaneously.
The within-class scatter matrix 𝑆

𝑤
and between-class scatter

matrix 𝑆
𝑏
are, respectively, defined as follows:

𝑆
𝑤
=

𝑐

∑

𝑖=1

∑

𝑥∈𝑋𝑖

(𝑥 − 𝑚
𝑖
) (𝑥 − 𝑚

𝑖
)
𝑇

,

𝑆
𝑏
=

𝑐

∑

𝑖=1

𝑛
𝑖
(𝑚
𝑖
− 𝑚) (𝑚

𝑖
− 𝑚)
𝑇

,

(3)

where𝑋
𝑖
is the data set of class 𝑖.𝑚

𝑖
is themean of the samples

in class 𝑖 and 𝑚 is the mean of the total data. LDA seeks
the optimal projection matrix by maximizing the following
Fisher criterion:

𝑉opt = argmax
𝑉

𝑉
𝑇
𝑆
𝑏
𝑉

𝑉𝑇𝑆
𝑤
𝑉
. (4)

The above optimization is equivalent to solving the following
generalized eigenvalue problem:

𝑆
𝑏
V
𝑖
= 𝜆
𝑖
𝑆
𝑤
V
𝑖
; (5)
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𝑉 = [V
1
, V
2
, . . . , V

𝑑
] consists of the eigenvectors of 𝑆−1

𝑤
𝑆
𝑏
corre-

sponding to the first 𝑑 largest eigenvalues.

2.2. Local FisherDiscriminantAnalysis. Local Fisher discrim-
inant analysis (LFDA) is also a discriminant analysis method.
It aims to deal with the multimodal problem. The local
within-class scatter matrix 𝑆lw and the between-class scatter
matrix 𝑆lb are defined as

𝑆lw =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
lw
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

,

𝑆lb =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
lb
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

,

(6)

where

𝑊
lw
𝑖𝑗
=

{{

{{

{

𝐴
𝑖𝑗

𝑛
𝑘

, 𝑥
𝑖
, 𝑥
𝑗
belong to 𝑘th class,

0, otherwise,

𝑊
lb
𝑖𝑗
=

{{

{{

{

𝐴
𝑖𝑗
(
1

𝑛
−
1

𝑛
𝑘

) , 𝑥
𝑖
, 𝑥
𝑗
belong to 𝑘th class,

1

𝑛
, otherwise;

(7)

𝐴 is the affinity matrix. 𝐴
𝑖𝑗
= exp(−‖𝑥

𝑖
− 𝑥
𝑗
‖
2
/𝜂
𝑖
𝜂
𝑗
), and 𝜂

𝑖
is

the local scaling of 𝑥
𝑖
defined by 𝜂

𝑖
= ‖𝑥
𝑖
− 𝑥
(𝑘)

𝑖
‖ where 𝑥(𝑘)

𝑖
is

the 𝑘th nearest neighbor of 𝑥
𝑖
.

The objection function of LFDA is formulated as

𝑉opt = argmax
𝑉

tr (𝑉𝑇𝑆lb𝑉)
tr (𝑉𝑇𝑆lw𝑉)

, (8)

where tr(⋅) is the trace of a matrix. The projection matrix can
be obtained by calculating the eigenvectors of the following
generalized eigenvalue problem:

𝑆lbV𝑖 = 𝜆𝑆lwV𝑖, 𝑖 = 1, 2, . . . , 𝑑; (9)

𝑉 = [V
1
, V
2
, . . . , V

𝑑
]. Because of the definition of matrix 𝐴,

LFDA can effectively preserve the local structure of the data.

3. Double Sparse Local Fisher
Discriminant Analysis

3.1. Graph Construction by Sparse Representation. In LFDA,
the affinity matrices are defined by the local scaling method.
This method can be regarded as an extension of 𝑘-nearest
neighbor method. Recent research shows that the ℓ

1-
graph is robust to data noise and efficient for finding the
underlying manifold structure. Therefore, we defined the
new affinity matrix 𝐴 by sparse representation theory. Let

𝐴 = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
]; each 𝑎

𝑖
is a sparse vector and obtained

by the following ℓ1-minimization problem:

min 𝑎𝑖
1

s.t 𝑥
𝑖
= 𝑋𝑎
𝑖

1 = 1𝑇𝑎
𝑖

𝑎
𝑖𝑗
≥ 0, ∀𝑗,

(10)

where 𝑎
𝑖
= [𝑎
𝑖1
, . . . , 𝑎

𝑖,𝑖−1
, 0, 𝑎
𝑖,𝑖+1
, . . . , 𝑎

𝑖,𝑛
]
𝑇 is a 𝑛-dimen-

sional vector in which the 𝑖th element is equal to zero. 1 ∈ R𝑛

is a vector of all ones. The ℓ1-minimization problem (10)
can be solved by many efficient numerical algorithms. In this
paper, the LARS algorithm [21] is used for solving problem
(10).Thematrix𝐴 can be seen as the similarity measurement
by setting thematrix𝐴 = (𝐴+𝐴𝑇)/2.Therefore, the new local
scatter matrices can be defined as follows:

𝑆lw =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
lw
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

, (11)

𝑆lb =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
lb
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

, (12)

where𝑊lw and𝑊lb are the weight matrices and defined as

𝑊
lw
𝑖𝑗
=

{{

{{

{

𝐴
𝑖𝑗

√𝑛𝑘

, 𝑥
𝑖
, 𝑥
𝑗
belong to 𝑘th class,

0, otherwise,

𝑊
lb
𝑖𝑗
=

{{{

{{{

{

𝐴
𝑖𝑗
(
1

√𝑛
−

1

√𝑛𝑘

) , 𝑥
𝑖
, 𝑥
𝑗
belong to 𝑘th class,

1

√𝑛
, otherwise.

(13)

The final objective function is described as follows:

𝑉opt = argmax
𝑉

𝑉
𝑇
𝑆lb𝑉

𝑉𝑇𝑆lw𝑉
. (14)

The optimal projection 𝑉 can be obtained by solving the
following generalized eigenvalue problem:

𝑆lbV𝑖 = 𝜆𝑆lwV𝑖, 𝑖 = 1, 2, . . . , 𝑑. (15)

When the matrix 𝑆lw is nonsingular, the eigenvectors are
obtained by the eigendecomposition of matrix (𝑆lw)

−1
𝑆lb.

However, the projection matrix is not sparse.
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3.2. Finding the Sparse Solution. We first reformulate formu-
las (11) and (12) in matrix form. Consider

𝑆lb =
1

2

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑊
(lb)
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) (𝑥
𝑖
− 𝑥
𝑗
)
𝑇

=
1

2

𝑛

∑

𝑖,𝑗=1

𝑊
(lb)
𝑖𝑗
(𝑥
𝑖
𝑥
𝑇

𝑖
+ 𝑥
𝑗
𝑥
𝑇

𝑗
− 𝑥
𝑖
𝑥
𝑇

𝑗
− 𝑥
𝑗
𝑥
𝑇

𝑖
)

=

𝑛

∑

𝑖=1

(

𝑛

∑

𝑗=1

𝑊
(lb)
𝑖𝑗
)𝑥
𝑖
𝑥
𝑇

𝑖
−

𝑛

∑

𝑖,𝑗=1

𝑊
(lb)
𝑖𝑗
𝑥
𝑖
𝑥
𝑇

𝑗

= 𝑋(𝐷
(lb)
−𝑊
(lb)
)𝑋
𝑇
= 𝑋𝐿
(lb)
𝑋
𝑇
,

(16)

where 𝐷(lb) is the diagonal matrix and the 𝑖th diagonal
element is 𝐷(lb)

𝑖,𝑖
= ∑
𝑛

𝑗=1
𝑊
(lb)
𝑖𝑗

, 𝐿(lb) = 𝐷(lb) − 𝑊(lb). Similarly,
formula (12) can be expressed as

𝑆lw = 𝑋𝐿
(lw)
𝑋
𝑇
, (17)

where 𝐿(lw) = 𝐷(lw) − 𝑊(lw), 𝐷(𝑤) is the diagonal matrix, and
the 𝑖th diagonal element is𝐷(lw)

𝑖,𝑖
= ∑
𝑛

𝑗=1
𝑊
(lw)
𝑖𝑗

.

Matrices 𝐿(lb) and 𝐿(lw) are always symmetric and positive
semidefinite; therefore, the eigendecomposition of 𝐿(lb) and
𝐿
(lw) can be expression as follows:

𝐿
(lb)
= 𝑈
𝑏
Σ
𝑏
𝑈
𝑇

𝑏
, 𝐿

(lw)
= 𝑈
𝑤
Σ
𝑤
𝑈
𝑇

𝑤
, (18)

where Σ
𝑏
and Σ

𝑤
are the diagonal matrices. Their diagonal

elements are the eigenvalues of matrices 𝐿(lb) and 𝐿
(lw),

respectively. So 𝑆lb and 𝑆lw can be rewritten as

𝑆lb = 𝑋𝐿
(lb)
𝑋
𝑇
= 𝑋𝑈

𝑏
Σ
𝑏
𝑈
𝑇

𝑏
𝑋
𝑇
= 𝑋𝑈

𝑏
Σ
1/2

𝑏
(𝑋𝑈
𝑏
Σ
1/2

𝑏
)
𝑇

= 𝐻
𝑏
𝐻
𝑇

𝑏
,

𝑆lw = 𝑋𝐿
(lw)
𝑋
𝑇
= 𝑋𝑈

𝑤
Σ
𝑤
𝑈
𝑇

𝑤
𝑋
𝑇
= 𝑋𝑈

𝑤
Σ
1/2

𝑤
(𝑋𝑈
𝑤
Σ
1/2

𝑤
)
𝑇

= 𝐻
𝑤
𝐻
𝑇

𝑤
,

(19)

where𝐻
𝑏
= 𝑋𝑈

𝑏
Σ
1/2

𝑏
and𝐻

𝑤
= 𝑋𝑈

𝑤
Σ
1/2

𝑤
.

The following result which was inspired by [14, 16] gives
the relationship between problem (10) and the regression-
type problem.

Theorem 1. Suppose that 𝑆
𝑙𝑤

is positive definite; its Cholesky
decomposition can be expressed as 𝑆

𝑙𝑤
= 𝐹
𝑤
𝐹
𝑇

𝑤
, where 𝐹

𝑤
∈

R𝑚×𝑚 is a lower triangular matrix. Let 𝑉 = [V
1
, V
2
, . . . , V

𝑑
] be

the eigenvector of problem (15) associated with the first 𝑑 largest

eigenvalues. Let 𝑃 = [𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑑
] and 𝑄 = [𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑑
]

be the optimal solution to the following problem:

𝐽 (𝑃, 𝑄) = argmin
𝑃,𝑄

𝑛

∑

𝑖=1


𝐹
−1

𝑤
𝐻
𝑏
(:, 𝑖) − 𝑃𝑄

𝑇
𝐻
𝑏
(:, 𝑖)



2

+ 𝛼

𝑑

∑

𝑗=1

𝑞
𝑇

𝑗
𝑆
𝑙𝑤
𝑞
𝑗

𝑠.𝑡. 𝑃
𝑇
𝑃 = 𝐼,

(20)

where 𝛼 > 0 and 𝐻
𝑏
(:, 𝑖) is the 𝑖th column of 𝐻

𝑏
. Then the

columns of 𝑄 span the same linear space as well as those of 𝑉.

To obtain sparse projection vectors, we add a ℓ1 penalty
to the objective function (20):

𝐽
1
(𝑃, 𝑄) = argmin

𝑃,𝑄

𝑛

∑

𝑖=1


𝐹
−1

𝑤
𝐻
𝑏
(:, 𝑖) − 𝑃𝑄

𝑇
𝐻
𝑏
(:, 𝑖)



+ 𝛼

𝑑

∑

𝑗=1

𝑞
𝑇

𝑗
𝑆lw𝑞𝑗 + 𝜁

𝑑

∑

𝑗=1


𝑞
𝑗

1

s.t. 𝑃
𝑇
𝑃 = 𝐼.

(21)

Generally speaking, it is difficult to compute the optimal
𝑃 and 𝑄 simultaneously. An iterative algorithm was usually
used for solving problem (21). For a fixed 𝑃, there exists an
orthogonal matrix �̂� such that [𝑃, �̂�] is 𝑚 × 𝑚 column
orthogonalmatrix.Then the first term of (21) can be rewritten
as

𝑛

∑

𝑖=1


𝐹
−1

𝑤
𝐻
𝑏
(:, 𝑖) − 𝑃𝑄

𝑇
𝐻
𝑏
(:, 𝑖)



=

𝐻
𝑇

𝑏
𝐹
−𝑇

𝑤
− 𝐻
𝑇

𝑏
𝑄𝑃
𝑇

2

=

𝐻
𝑇

𝑏
𝐹
−𝑇

𝑤
[𝑃, �̂�
𝑇
] − 𝐻

𝑇

𝑏
𝑄𝑃
𝑇
[𝑃, �̂�
𝑇
]


2

=

𝐻
𝑇

𝑏
𝐹
−𝑇

𝑤
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𝑑
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𝑗



2

+

𝐻
𝑇

𝑏
𝐹
−𝑇

𝑤
�̂�


2
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(22)

If 𝑃 is fixed, then problem (21) is transformed into

argmin
𝑄

𝑑

∑

𝑖=1


𝐻
𝑇

𝑏
𝐹
−𝑇

𝑤
𝑝
𝑗
− 𝐻
𝑇

𝑏
𝑞
𝑗



2

+ 𝛼

𝑑

∑

𝑗=1

𝑞
𝑇

𝑗
𝑆lw𝑞𝑗

+ 𝜁

𝑑

∑

𝑗=1


𝑞
𝑗

1

(23)

which is equivalent to 𝑑 independent LASSO problem.
For a fixed 𝑄, problem (21) is equivalent to minimizing

the following problem with ignoring the constant terms:
𝑛

∑

𝑖=1


𝐹
−1

𝑤
𝐻
𝑏
(:, 𝑖) − 𝑃𝑄

𝑇
𝐻
𝑏
(:, 𝑖)


=

𝐻
𝑇

𝑏
𝐺
−𝑇

𝑤
− 𝐻
𝑇

𝑏
𝑄𝑃
𝑇

2

,

(24)
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Figure 1: Sample images of two individuals from Yale database.

which is subject to 𝑃𝑇𝑃 = 𝐼. The optimal solution can be
obtained by computing the singular value decomposition

𝐹
−1

𝑤
𝐻
𝑏
𝐻
𝑇

𝑏
𝑄 = 𝑈

𝑃
Σ
𝑃
𝑉
𝑃

(25)

and 𝑃 = 𝑈
𝑝
𝑉
𝑇

𝑝
.

The algorithm procedure of DSLFDA is summarized as
follows.

Input: the data matrix𝑋.

Output: the sparse projection matrix 𝑄.

(1) Calculate affinity matrix 𝐴 by ℓ
1-minimization

problem (10).

(2) Calculatematrix𝐻
𝑏
= 𝑋𝑈

𝑏
Σ
1/2

𝑏
by (18) andmatrix𝐹

𝑤

by the Cholesky decomposition of 𝑆lw.
(3) Initialize matrix 𝑃 as an arbitrary column orthogonal

matrix.
(4) For given 𝑃, solve ℓ1-minimization problem (23)

which is equivalent to 𝑑 independent LASSO prob-
lem.

(5) Calculate the SVD of 𝐹−1
𝑤
𝐻
𝑏
𝐻
𝑇

𝑏
𝑄 = 𝑈

𝑃
Σ
𝑃
𝑉
𝑃
and

update 𝑃 = 𝑈
𝑝
𝑉
𝑇

𝑝
.

(6) Repeat steps 4 and 5 until converges.

4. Experimental Results

In this section, we use the proposed DSLFDA method for
face recognition. Three face image databases, that is, Yale
[22], ORL [23], and PIE [24], are used in the experiments.
We compare our proposed algorithm with PCA, LDA, LPP,
LFDA, SPCA, SPP, DSNPE, and SLDA. For simplicity, we
use nearest neighbor classifier for classification task and the
Euclidean metric is used as the distance measure.

4.1. Experiment on the Yale Face Database. The Yale face
database contains 165 grayscale images of 15 individuals. Each
individual has 11 images. These images were captured under
lighting conditions (left-light, center-light, and right-light),
with various facial expressions (normal, happy, sad, sleepy,
surprised, and wink), and with facial details (with glasses or
without).The original size of the images is 243×320 pixels. In
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Figure 2:The recognition performance versus different dimensions
on the Yale database.

our experiments, the face region of each original image was
cropped based on the location of eyes. Each cropped image
was resized to 32 × 32 pixels. Figure 1 shows the cropped
sample images of two individuals from the Yale database.

In the first experiment, we randomly select 𝑙 (𝑙 = 2, 3, 4,
5, 6) images per subject for training and the remaining
images are for testing. 10 time runs were implemented for
stable performance. The average rates are used as the final
recognition accuracies. For LFDA, the parameter is set to 𝑙−1
for simplicity. LPP is implemented in supervised model. For
SPCA, we manually choose the sparse principal component
in order to obtain the best performance. Table 1 shows the
recognition accuracies of different methods with the corre-
sponding dimension.

In the second experiment, we experiment with different
dimensionalities of the projected space. Five images per indi-
vidual were randomly selected for training, and the remain-
ing images were used for testing. Figure 2 shows the perfor-
mance of different methods.

4.2. Experiment on the ORL Face Database. The ORL data-
base contains 400 images of 40 individuals. Each individual
has 10 images. The images were captured at different times,
under various light conditions, and with different facial
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Table 1: The top recognition rates (%) and the corresponding dimensions on Yale database by different methods (mean ± std).

2 trains 3 trains 4 trains 5 trains 6 trains

PCA 46.30 ± 3.26
(30)

51.58 ± 4.00
(44)

56.19 ± 4.16
(56)

57.33 ± 4.60
(74)

62.40 ± 4.06
(84)

LDA 45.11 ± 3.46
(10)

62.08 ± 4.31
(14)

70.86 ± 4.88
(14)

71.44 ± 5.19
(14)

77.22 ± 3.47
(14)

LPP 45.26 ± 3.52
(10)

62.83 ± 4.22
(14)

70.57 ± 4.59
(14)

72.22 ± 3.81
(16)

78.00 ± 3.46
(20)

LFDA 45.11 ± 3.46
(10)

62.50 ± 5.43
(14)

71.33 ± 5.07
(14)

72.33 ± 5.09
(18)

78.27 ± 3.72
(20)

SPCA 43.19 ± 3.22
(28)

49.83 ± 4.08
(44)

54.95 ± 3.70
(56)

56.78 ± 3.33
(44)

61.87 ± 5.11
(30)

SLDA 51.19 ± 5.78
(14)

63.85 ± 3.47
(14)

72.00 ± 4.76
(14)

72.56 ± 2.29
(14)

78.40 ± 2.42
(14)

SPP 46.59 ± 5.36
(16)

52.92 ± 3.63
(28)

57.67 ± 3.54
(48)

58.48 ± 3.76
(68)

64.53 ± 4.63
(72)

DSNPE 50.74 ± 5.26
(12)

63.58 ± 3.64
(30)

73.62 ± 5.04
(46)

75.89 ± 2.82
(54)

80.08 ± 2.61
(64)

DSLFDA 53.11 ± 5.36
(30)

65.17 ± 3.68
(36)

73.24 ± 5.03
(40)

74.44 ± 3.51
(42)

81.47 ± 2.77
(56)

Figure 3: Sample images of two individuals from ORL database.

expressions.The original size of the images is 243×320 pixels.
The images were manually cropped and resized to 32 × 32
pixels. Figure 3 shows the cropped sample images of two
individuals from the ORL database.

In the first experiment, we randomly select 𝑙 (𝑙 = 2, 3, 4,
5, 6) images per subject for training and the remaining images
are for testing. 10 time runs were implemented for stable
performance. The average rates are used as the final recogni-
tion accuracies. The experimental parameters were set as in
Section 4.1.

In the second experiment, we experiment with different
dimensionalities of the projected space. Five images per indi-
vidual were randomly selected for training, and the remain-
ing imageswere randomly selected for testing. Figure 4 shows
the performance of different methods (Table 2).

4.3. Experiment on the PIE FaceDatabase. TheCMUPIE face
database contains 41368 images of 68 individuals.The images
were captured under 13 different poses, under 43 different
illumination conditions, and with 4 different expressions. In
our experiments, we choose a subset (C29) that contains 1632
images of 68 individuals. These were manually cropped and
resized to 32 × 32 pixels. Figure 5 shows the cropped sample
images of two individuals from CMU PIE database.
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Figure 4:The recognition performance versus different dimensions
on the ORL database.

In the first experiment, we randomly select 𝑙 (𝑙 = 3, 6, 9,
12, 15) images per subject for training and the remaining
images are for testing. 10 time runs were implemented for
stable performance. The average rates are used as the final
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Table 2: The top recognition rates (%) and the corresponding dimensions on ORL database by different methods (mean ± std).

2 trains 3 trains 4 trains 5 trains 6 trains

PCA 71.63 ± 3.06
(79)

79.14 ± 1.91
(113)

83.87 ± 1.77
(159)

86.85 ± 2.01
(189)

89.94 ± 2.72
(203)

LDA 75.87 ± 3.42
(27)

85.96 ± 2.61
(39)

91.54 ± 1.51
(39)

93.85 ± 1.63
(39)

95.63 ± 1.89
(39)

LPP 78.78 ± 2.80
(39)

86.25 ± 2.93
(39)

90.46 ± 1.83
(39)

94.40 ± 1.71
(39)

95.94 ± 1.96
(41)

LFDA 82.13 ± 3.19
(39)

87.00 ± 2.97
(37)

90.83 ± 1.73
(37)

94.50 ± 1.90
(39)

96.06 ± 2.74
(39)

SPCA 71.16 ± 2.80
(79)

78.50 ± 2.42
(117)

84.04 ± 1.82
(131)

86.80 ± 2.28
(183)

90.56 ± 2.03
(73)

SLDA 82.03 ± 2.82
(39)

90.21 ± 1.85
(39)

93.79 ± 1.26
(39)

96.05 ± 1.83
(39)

97.56 ± 1.12
(39)

SPP 79.53 ± 2.22
(57)

83.50 ± 2.08
(63)

86.58 ± 2.10
(99)

87.40 ± 2.63
(95)

88.19 ± 3.19
(93)

DSNPE 78.97 ± 3.47
(39)

86.43 ± 1.92
(55)

92.92 ± 1.59
(73)

94.60 ± 1.96
(71)

95.94 ± 2.29
(89)

DSLFDA 81.16 ± 2.88
(69)

90.25 ± 2.51
(67)

94.38 ± 1.54
(81)

96.65 ± 1.20
(87)

97.88 ± 1.03
(95)

Figure 5: Sample images of two individuals from CMU PIE database.

recognition accuracies.The experimental parameterswere set
as in Section 4.1. Table 3 shows the recognition accuracies of
different methods with the corresponding dimension.

In the second experiment, we experiment with differ-
ent dimensionalities of the projected space. Fifteen images
per individual were randomly selected for training, and
the remaining images were randomly selected for testing.
Figure 6 shows the performance of different methods.

5. Discussion and Conclusion

5.1. Discussion. Based on the above experimental results, we
can conclude the following observations.

(1) For each method, the recognition rate increases with
the increase of training sample sizes. The supervised
extension of LPP can effectively improve the perfor-
mance. PCA and SPCA achieve the worst results in all
experiments; meanwhile, the performance of SPCA
is inferior to that of PCA on all face databases. The
reason may be that the number of nonzero variables
for each component is selected equally.

(2) For LDA and SLDA, the dimensionalities of projected
subspace are𝐶−1 at most;𝐶 is the number of classes.
LFDA and DSLFDA can overcome this limitation;
hence, we may project the original high-dimensional
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Figure 6:The recognition performance versus different dimensions
on the CMU PIE database.

data into a low-dimensional subspace whose dimen-
sionality is larger than the number of classes.

(3) From Table 3, LPP and SLDA outperform LFDA
on the CMU PIE database. However, DSLFDA can
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Table 3: The top recognition rates (%) and the corresponding dimensions on CMU PIE database by different methods (mean ± std).

3 trains 6 trains 9 trains 12 trains 15 trains

PCA 36.11 ± 0.85
(155)

55.05 ± 0.94
(179)

66.81 ± 2.08
(387)

76.80 ± 1.66
(415)

83.45 ± 1.77
(431)

LDA 78.40 ± 1.43
(67)

87.70 ± 1.30
(67)

90.17 ± 1.04
(67)

91.67 ± 0.46
(67)

92.37 ± 0.56
(67)

LPP 78.72 ± 1.19
(79)

89.40 ± 0.96
(187)

91.08 ± 0.86
(163)

92.22 ± 0.52
(179)

92.79 ± 0.65
(179)

LFDA 78.68 ± 1.49
(99)

88.88 ± 1.09
(139)

90.70 ± 0.68
(143)

91.83 ± 0.51
(83)

92.43 ± 0.58
(127)

SPCA 33.25 ± 0.60
(63)

52.51 ± 1.05
(347)

65.03 ± 2.14
(499)

75.40 ± 1.97
(695)

83.32 ± 2.02
(751)

SLDA 78.17 ± 1.38
(67)

88.46 ± 1.23
(67)

92.15 ± 1.09
(67)

94.68 ± 0.36
(67)

96.36 ± 0.73
(67)

SPP 75.11 ± 0.97
(67)

87.26 ± 1.04
(87)

90.59 ± 1.35
(87)

93.42 ± 0.56
(99)

95.36 ± 0.80
(99)

DSNPE 78.93 ± 1.11
(119)

88.35 ± 1.22
(79)

91.77 ± 1.28
(83)

94.09 ± 0.60
(67)

96.05 ± 0.49
(51)

DSLFDA 78.35 ± 1.24
(147)

88.99 ± 1.20
(263)

92.31 ± 1.10
(211)

95.10 ± 0.47
(191)

96.63 ± 0.62
(251)

achieve better performance than other methods. This
point shows that DSLFDA improves not only the
performance of LFDA but also the performance of
sparse-based method, such as SLDA. The proposed
DSLFDA algorithm constructs the graph on the
original data and obtains the nonnegative similarity
measurement.This is different from SPP and DSNPE.

(4) From the experimental results, we obtain that SPP can
get competitive performance on CMU PIE database,
rather than ORL and Yale databases. The reason may
be that the sparse representation needs abundant
training samples. Conversely, the nonnegative simi-
larity measurement in DSLFDA is adaptive and can
overcome the drawback of sparse representation.

(5) DSNPE can be regarded as an extension of SPP. It can
extract the discriminant information and perform
better than SPP. On the Yale database, DSNPE can
achieve the best recognition performance when the
training samples per individual are four and five.

5.2. Conclusion. In this paper, we proposed a sparse projec-
tionmethod, calledDSLFDA, for face recognition. It defines a
novel affinity matrix that describes the relationships of points
on the original high-dimensional data. The sparse projection
vectors are obtained by solving the ℓ1-optimization problem.
Experiments on Yale, ORL, and CMU PIE face databases
indicate that DSLFDA can get competitive performance com-
pared to other dimensionality reduction methods.

We only focus on supervised learning in this paper.
Because a large amount of unlabeled data is available in
practical applications, semisupervised learning has attracted
much attention in recent years [25–27]. One of our future
works is to extend our approach under the semisupervised
learning framework. On the other hand, DSLFDA needs the
local within-class scatter matrix positive definite. We add an

identity matrix to the local within-class scatter matrix for
regularization.Thismaymotivate us to find the regularization
method to approximate the local within-class scatter matrix
well.
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