618 research outputs found

    The Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episode Syndrome-associated Human Mitochondrial tRNALeu(UUR) Mutation Causes Aminoacylation Deficiency and Concomitant Reduced Association of mRNA with Ribosomes

    Get PDF
    The pathogenetic mechanism of the mitochondrial tRNALeu(UUR) A3243G transition associated with the mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome has been investigated in transmitochondrial cell lines constructed by transfer of mutant mitochondrial DNA (mtDNA)-carrying mitochondria from three genetically unrelated MELAS patients or of isogenic wild-type mtDNA-carrying organelles into human mtDNA-less cells. An in vivo footprinting analysis of the mtDNA segment within the tRNALeu(UUR) gene that binds the transcription termination factor failed to reveal any difference in occupancy of sites or qualitative interaction with the protein between mutant and wild-type mtDNAs. Cell lines nearly homoplasmic for the mutation exhibited a strong (70-75%) reduction in the level of aminoacylated tRNALeu(UUR) and a decrease in mitochondrial protein synthesis rate. The latter, however, did not show any significant correlation between synthesis defect of the individual polypeptides and number or proportion of UUR codons in their mRNAs, suggesting that another step, other than elongation, may be affected. Sedimentation analysis in sucrose gradient showed a reduction in size of the mitochondrial polysomes, while the distribution of the two rRNA components and of the mRNAs revealed decreased association of mRNA with ribosomes and, in the most affected cell line, pronounced degradation of the mRNA associated with slowly sedimenting structures. Therefore, several lines of evidence indicate that the protein synthesis defect in A3243G MELAS mutation-carrying cells is mainly due to a reduced association of mRNA with ribosomes, possibly as a consequence of the tRNALeu(UUR) aminoacylation defect

    The Deafness-Associated Mitochondrial DNA Mutation at Position 7445, Which Affects tRNASer(UCN) Precursor Processing, Has Long-Range Effects on NADH Dehydrogenase Subunit ND6 Gene Expression

    Get PDF
    The pathogenetic mechanism of the deafness-associated mitochondrial DNA (mtDNA) T7445C mutation has been investigated in several lymphoblastoid cell lines from members of a New Zealand pedigree exhibiting the mutation in homoplasmic form and from control individuals. We show here that the mutation flanks the 3' end of the tRNASer(UCN) gene sequence and affects the rate but not the sites of processing of the tRNA precursor. This causes an average reduction of ~70% in the tRNASer(UCN) level and a decrease of ~45% in protein synthesis rate in the cell lines analyzed. The data show a sharp threshold in the capacity of tRNASer(UCN) to support the wild-type protein synthesis rate, which corresponds to ~40% of the control level of this tRNA. Strikingly, a 7445 mutation-associated marked reduction has been observed in the level of the mRNA for the NADH dehydrogenase (complex I) ND6 subunit gene, which is located ~7 kbp upstream and is cotranscribed with the tRNASer(UCN) gene, with strong evidence pointing to a mechanistic link with the tRNA precursor processing defect. Such reduction significantly affects the rate of synthesis of the ND6 subunit and plays a determinant role in the deafness-associated respiratory phenotype of the mutant cell lines. In particular, it accounts for their specific, very significant decrease in glutamate- or malate-dependent O2 consumption. Furthermore, several homoplasmic mtDNA mutations affecting subunits of NADH dehydrogenase may play a synergistic role in the establishment of the respiratory phenotype of the mutant cells

    The Bipartite Structure of the tRNA m\u3csup\u3e1\u3c/sup\u3eA58 Methyltransferase from \u3cem\u3eS. cerevisiae\u3c/em\u3e is Conserved in Humans

    Get PDF
    Among all types of RNA, tRNA is unique given that it possesses the largest assortment and abundance of modified nucleosides. The methylation at N1 of adenosine 58 is a conserved modification, occurring in bacterial, archaeal, and eukaryotic tRNAs. In the yeast Saccharomyces cerevisiae, the tRNA 1-methyladenosine 58 (m1A58) methyltransferase (Mtase) is a two-subunit enzyme encoded by the essential genes TRM6 (GCD10) and TRM61 (GCD14). While the significance of many tRNA modifications is poorly understood, methylation of A58 is known to be critical for maintaining the stability of initiator tRNAMet in yeast. Furthermore, all retroviruses utilize m1A58-containing tRNAs to prime reverse transcription, and it has been shown that the presence of m1A58 in human tRNA3 Lys is needed for accurate termination of plus-strand strong-stop DNA synthesis during HIV-1 replication. In this study we have identified the human homologs of the yeast m1A Mtase through amino acid sequence identity and complementation of trm6 and trm61 mutant phenotypes. When coexpressed in yeast, human Trm6p and Trm61p restored the formation of m1A in tRNA, modifying both yeast initiator tRNAMet and human tRNA3 Lys. Stable hTrm6p/hTrm61p complexes purified from yeast maintained tRNA m1A Mtase activity in vitro. The human m1A Mtase complex also exhibited substrate specificity—modifying wild-type yeast tRNAi Met but not an A58U mutant. Therefore, the human tRNA m1A Mtase shares both functional and structural homology with the yeast tRNA m1A Mtase, possessing similar enzymatic activity as well as a conserved binary composition

    NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs.

    Get PDF
    Expression of human mitochondrial DNA is indispensable for proper function of the oxidative phosphorylation machinery. The mitochondrial genome encodes 22 tRNAs, 2 rRNAs and 11 mRNAs and their post-transcriptional modification constitutes one of the key regulatory steps during mitochondrial gene expression. Cytosine-5 methylation (m5C) has been detected in mitochondrial transcriptome, however its biogenesis has not been investigated in details. Mammalian NOP2/Sun RNA Methyltransferase Family Member 2 (NSUN2) has been characterized as an RNA methyltransferase introducing m5C in nuclear-encoded tRNAs, mRNAs and microRNAs and associated with cell proliferation and differentiation, with pathogenic variants in NSUN2 being linked to neurodevelopmental disorders. Here we employ spatially restricted proximity labelling and immunodetection to demonstrate that NSUN2 is imported into the matrix of mammalian mitochondria. Using three genetic models for NSUN2 inactivation-knockout mice, patient-derived fibroblasts and CRISPR/Cas9 knockout in human cells-we show that NSUN2 is necessary for the generation of m5C at positions 48, 49 and 50 of several mammalian mitochondrial tRNAs. Finally, we show that inactivation of NSUN2 does not have a profound effect on mitochondrial tRNA stability and oxidative phosphorylation in differentiated cells. We discuss the importance of the newly discovered function of NSUN2 in the context of human disease.Medical Research Council, UK [MC_UU_00015/4 to M.M.]; EMBO [ALFT 701-2013 to L.V.H.]; National Research Foundation of Korea [NRF-2019R1A2C3008463 to S.Y.L and H.W.R.]; Cancer Research UK [C13474/A18583, C6946/A14492 to E.A.M.]; Wellcome Trust [104640/Z/14/Z, 092096/Z/10/Z to E.A.M.]. Funding for open access charge: MRC

    Human Mitochondrial tRNA Mutations in Maternally Inherited Deafness

    Get PDF
    AbstractMutations in mitochondrial tRNA genes have been shown to be associated with maternally inherited syndromic and non-syndromic deafness. Among those, mutations such as tRNALeu(UUR)3243A>G associated with syndromic deafness are often present in heteroplasmy, and the non-syndromic deafness-associated tRNA mutations including tRNASer(UCN)7445A>G are often in homoplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary factors underlying the development of hearing loss. However, other tRNA mutations such as tRNAThr15927G>A and tRNASer(UCN)7444G>A are insufficient to produce a deafness phenotype, but always act in synergy with the primary mitochondrial DNA mutations, and can modulate their phenotypic manifestation. These tRNA mutations may alter the structure and function of the corresponding mitochondrial tRNAs and cause failures in tRNAs metabolism. Thereby, the impairment of mitochondrial protein synthesis and subsequent defects in respiration caused by these tRNA mutations, results in mitochondrial dysfunctions and eventually leads to the development of hearing loss. Here, we summarized the deafness-associated mitochondrial tRNA mutations and discussed the pathophysiology of these mitochondrial tRNA mutations, and we hope these data will provide a foundation for the early diagnosis, management, and treatment of maternally inherited deafness

    Chronic Progressive External Ophthalmoplegia Is Associated with a Novel Mutation in the Mitochondrial tRNA(Asn) Gene

    Get PDF
    Chronic progressive external ophthalmoplegia (CPEO) is caused by a decreased oxidative phosphorylation (OXPHOS) activity due to large-scale deletions of the mitochondrial genome in 50 % of the patients. The deletions encompass structural OXPHOS genes as well as tRNA genes, required for their expression so that the pathogenesis could be due to the deleted OXPHOS subunits or to an impaired mitochondrial translation. We have analyzed the mitochondrial genome of a patient presenting with CPEO for single base substitutions and discovered a novel heteroplasmic mutation in the tRNAAsn gene at position 5692 that converts a highly conserved adenine into a guanine. This mutation is unique because it is located at the transition of the anticodon loop to the anticodon stem and it leads to an additional base pair, thus reducing the number of loop-forming nucleotides from seven to five. Our findings suggest that CPEO can be caused by a single base substition in a mitochondrial tRNA gene so that the mitochondrial protein synthesis becomes the rate limiting step in OXPHOS fidelity
    • …
    corecore