544 research outputs found

    A Novel Robust Scene Change Detection Algorithm for Autonomous Robots Using Mixtures of Gaussians

    Get PDF
    Interest in change detection techniques has considerably increased during recent years in the field of autonomous robotics. This is partly because changes in a robot's working environment are useful for several robotic skills (e.g., spatial cognition, modelling or navigation) and applications (e.g., surveillance or guidance robots). Changes are usually detected by comparing current data provided by the robot's sensors with a previously known map or model of the environment. When the data consists of a large point cloud, dealing with it is a computationally expensive task, mainly due to the amount of points and the redundancy. Using Gaussian Mixture Models (GMM) instead of raw point clouds leads to a more compact feature space that can be used to efficiently process the input data. This allows us to successfully segment the set of 3D points acquired by the sensor and reduce the computational load of the change detection algorithm. However, the segmentation of the environment as a Mixture of Gaussians has some problems that need to be properly addressed. In this paper, a novel change detection algorithm is described in order to improve the robustness and computational cost of previous approaches. The proposal is based on the classic Expectation Maximization (EM) algorithm, for which different selection criteria are evaluated. As demonstrated in the experimental results section, the proposed change detection algorithm achieves the detection of changes in the robot's working environment faster and more accurately than similar approaches

    Automatic visual detection of human behavior: a review from 2000 to 2014

    Get PDF
    Due to advances in information technology (e.g., digital video cameras, ubiquitous sensors), the automatic detection of human behaviors from video is a very recent research topic. In this paper, we perform a systematic and recent literature review on this topic, from 2000 to 2014, covering a selection of 193 papers that were searched from six major scientific publishers. The selected papers were classified into three main subjects: detection techniques, datasets and applications. The detection techniques were divided into four categories (initialization, tracking, pose estimation and recognition). The list of datasets includes eight examples (e.g., Hollywood action). Finally, several application areas were identified, including human detection, abnormal activity detection, action recognition, player modeling and pedestrian detection. Our analysis provides a road map to guide future research for designing automatic visual human behavior detection systems.This work is funded by the Portuguese Foundation for Science and Technology (FCT - Fundacao para a Ciencia e a Tecnologia) under research Grant SFRH/BD/84939/2012

    3D Robotic Sensing of People: Human Perception, Representation and Activity Recognition

    Get PDF
    The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives. As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in practical human-centered robotics applications. This research focuses on robotic sensing of people, that is, how robots can perceive and represent humans and understand their behaviors, primarily through 3D robotic vision. In this dissertation, I begin with a broad perspective on human-centered robotics by discussing its real-world applications and significant challenges. Then, I will introduce a real-time perception system, based on the concept of Depth of Interest, to detect and track multiple individuals using a color-depth camera that is installed on moving robotic platforms. In addition, I will discuss human representation approaches, based on local spatio-temporal features, including new “CoDe4D” features that incorporate both color and depth information, a new “SOD” descriptor to efficiently quantize 3D visual features, and the novel AdHuC features, which are capable of representing the activities of multiple individuals. Several new algorithms to recognize human activities are also discussed, including the RG-PLSA model, which allows us to discover activity patterns without supervision, the MC-HCRF model, which can explicitly investigate certainty in latent temporal patterns, and the FuzzySR model, which is used to segment continuous data into events and probabilistically recognize human activities. Cognition models based on recognition results are also implemented for decision making that allow robotic systems to react to human activities. Finally, I will conclude with a discussion of future directions that will accelerate the upcoming technological revolution of human-centered robotics

    Dynamic scene understanding: Pedestrian tracking from aerial devices.

    Get PDF
    Multiple Object Tracking (MOT) is the problem that involves following the trajectory of multiple objects in a sequence, generally a video. Pedestrians are among the most interesting subjects to track and recognize for many purposes such as surveillance, and safety. In the recent years, Unmanned Aerial Vehicles (UAV’s) have been viewed as a viable option for monitoring public areas, as they provide a low-cost method of data collection while covering large and difficult-to-reach areas. In this thesis, we present an online pedestrian tracking and re-identification from aerial devices framework. This framework is based on learning a compact directional statistic distribution (von-Mises-Fisher distribution) for each person ID using a deep convolutional neural network. The distribution characteristics are trained to be invariant to clothes appearances and to transformations. In real world scenarios, during deployment, new pedestrian and objects can appear in the scene and the model should detect them as Out Of Distribution (OOD). Thus, our frameworks also includes an OOD detection adopted from [16] called Virtual Outlier Synthetic (VOS), that detects OOD based on synthesising virtual outlier in the embedding space in an online manner. To validate, analyze and compare our approach, we use a large real benchmark data that contain detection tracking and identity annotations. These targets are captured at different viewing angles, different places, and different times by a ”DJI Phantom 4” drone. We validate the effectiveness of the proposed framework by evaluating their detection, tracking and long term identification performance as well as classification performance between In Distribution (ID) and OOD. We show that the the proposed methods in the framework can learn models that achieve their objectives
    • …
    corecore