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Abstract Interest in change detection techniques has 
considerably increased during recent years in the field of 
autonomous robotics. This is partly because changes in a 
robot’s working environment are useful for several robotic 
skills (e.g., spatial cognition, modelling or navigation) and 
applications (e.g., surveillance or guidance robots). 
Changes are usually detected by comparing current data 
provided by the robot’s sensors with a previously known 
map or model of the environment. When the data consists 
of a large point cloud, dealing with it is a computationally 
expensive task, mainly due to the amount of points and the 
redundancy. Using Gaussian Mixture Models (GMM) 
instead of raw point clouds leads to a more compact 
feature space that can be used to efficiently process the 
input data. This allows us to successfully segment the set of 
3D points acquired by the sensor and reduce the 
computational load of the change detection algorithm. 
However, the segmentation of the environment as a 
Mixture of Gaussians has some problems that need to be 
properly addressed. In this paper, a novel change 
detection algorithm is described in order to improve the 
robustness and computational cost of previous 

approaches. The proposal is based on the classic 
Expectation Maximization (EM) algorithm, for which 
different selection criteria are evaluated. As demonstrated 
in the experimental results section, the proposed change 
detection algorithm achieves the detection of changes in 
the robot’s working environment faster and more 
accurately than similar approaches. 
 
Keywords Change Detection, Gaussian Mixture Models 

                                         
1. Introduction  
 
In the last decade, robots and other autonomous systems 
have been moving away from laboratory setups towards 
complex real-world environments, which are usually 
unknown a priori. These environments present dynamic 
objects (e.g., people or other robots), which are also 
unknown. Therefore, robots must have capabilities to 
perceive and generate models of their environments and 
be aware of the changes in their surroundings. 
Simultaneous Localization and Mapping (SLAM), one of 
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the main research focuses in autonomous robot 
navigation in the last two decades, is starting to exploit 
this idea. Previous research work shows that models of 
the environment and/or objects in the scene are an 
interesting tool for addressing this important task [1] [2].   
 
Change detection is an ability shared by almost all animal 
species, from the lowest evolutionary level to primates, 
which is crucial to appropriately adapt behaviour [3]. In 
the last decade, change detection has emerged as a topic in 
robotics, where the aim is now to provide mechanisms not 
only for the representation and storage of environmental 
information (i.e., short-term or long-term memories), but 
also for detecting changes in the environment.  
 
Change detection is thus a topic of increasing interest in the 
autonomous robotics community [4] [5], whose main goal 
is to provide robots with abilities to autonomously detect 
and respond suitably to scene changes. For instance, when 
visiting a known building or walking a known path, the 
data acquired by the senses (e.g., vision, touch) can provide 
us with information about possible changes if we can 
match it to the data we expect. This problem involves 
different tasks: autonomous acquisition and segmentation 
of information, strategies for deciding where a relevant 
change has been introduced in the scene and extraction of 
semantic models of these changes [6]. Thus, change 
detection emerges as a mechanism that allows robots to 
adapt themselves to new situations and to continue their 
operation, updating their knowledge of the environment 
and focusing their attention on specific regions of interest. 
The basic idea behind most current change detection 
approaches in mobile robotics is to match the obtained data 
with the expected data available in a map (Figure 1).  
 

 

 
Figure 1. The main goal of the proposed algorithm is to detect 
changes in the working environment of the robot (e.g., the chair in 
b). Problem statement: given the 3D point cloud information 
acquired by the 3D sensor at time instant t and a known map on the 
environment, the robot is required to detect changes in the scene. 

In order to improve robustness and to ensure the feasibility 
of the change detection process, sensor data must be 
transformed into a more compact form before comparing it 
with previously acquired data. In this case, the chosen 
representation heavily determines the performance of the 
whole task. The model proposed in this paper consists of 
three major components, sensory, perceptual, and 
conceptual, which are related with the three sub-problems 
that arise when detecting changes in robotics:  

1. the existence of sensors capable of acquiring a 
sufficient amount of accurate data;  

2. the availability of reliable algorithms capable of 
extracting high-level representations from this 
potentially noisy data;  

3. the existence of an accurate and robust method to 
detect changes using this high-level representation.  

 
Considering the first issue in the context of 3D robotic 
mapping, 3D laser range finders or stereo vision-based 
systems are commonly used. A 3D laser range scanner is 
capable of collecting high-quality range data with a very 
small angular uncertainty. However, they suffer from 
specular reflections. Applying vision for feature 
extraction leads to increased CPU usage due to the 
complexity of the algorithms. In recent years, sensors that 
combine RGB images with depth information (RGBD 
sensors) have become widespread in the robotics 
community. In fact, RGBD cameras allow the acquisition 
of reasonably accurate mid-resolution depth information 
at high data rates.  
 
Regarding the second issue, pattern recognition and 
image processing have inspired different methods for 
clustering 3D points. Thus, simple methods have been 
broadly used to support mobile robot operation 
extracting planar structures, or more compact models [7] 
[8] [9]. Another possibility is to formulate the 3D 
clustering problem using a probabilistic approach, e.g., 
using Mixture Models [10]. Specifically, Mixtures of 
Gaussian distributions provide good models of point 
clusters, as demonstrated in previous work by the 
authors (see [11]).  
 
Finally, with respect to the third question, several metrics 
have been proposed for detecting changes using the data 
acquired by the sensors. Typically, the aim is to compare 
the acquired 3D point cloud with a previously stored one 
by detecting those points whose minimum distance to the 
points of the stored point cloud is higher than a 
threshold. This kind of approach presents several pitfalls 
(e.g., scale invariance, high computational load, finding 
the best threshold). In order to reduce the computational 
cost of this process, more complex metrics, which include 
statistical information associated with the underlying 
point distributions, can be used. In [12], the Earth 
Mover’s Distance was proposed as a new metric for 
solving this case. This metric was employed in a previous 
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work by the authors, where a greedy algorithm was used 
to detect changes in the robots’ environment [6]. In [11], 
the authors used structural matching to solve the change 
detection problem, which was defined as the problem of 
detecting the maximum clique in a graph. Both 
approaches are extended and validated in a large set of 
3D point clouds in [38].  
 
The main drawback of using Gaussian Mixture Models 
for segmenting changes in the scene is their strong 
dependence on the number of Gaussians associated to the 
map. When this number is known a priori, the complexity 
of the problem is reduced and the set of Gaussians is 
estimated using the classic Expectation and Maximization 
(EM) algorithm [13]. However, when the data is acquired 
in real time by the robot, there is no information about 
the number of Gaussians, and thus, it should be 
estimated, which is usually a hard computational task. In 
this vein, the paper proposes an algorithm based on the 
Split-and-Merge paradigm (SM) [14]. The proposal aims 
to deal with local minimum and the initialization 
problem of the classic EM. Moreover, it also improves the 
performance and repeatability of the approach. Therefore, 
the proposed method focuses on the use of different 
model selection criteria in order to robustly estimate the 
number of Gaussians of the mixture, which are evaluated 
using real and simulated 3D data of indoor environments. 
This article extends the previous work of the authors of 
[37], and provides a more thorough experimental 
evaluation with real datasets. 
 
The rest of the paper is organized as follows. Section 2 
summarizes the state of the art in the change detection 
problem for robotics applications. Section 3 describes the 
3D data acquisition and pre-processing stages, as well as 
the change detection approach and the different criteria 
used to estimate the number of Gaussians. Experimental 
results are shown in Section 4. This section also includes a 
comparison of the proposal with other related 
approaches. Finally, Section 5 draws the main conclusions 
and proposes future work. 

 
2. Related works 

2.1 Segmentation of 3D scene data  

The problem of modelling arbitrary 3D shapes is common 
in different areas, such as computer graphics, computer 
vision or robotics. In computer graphics, the typical 
approaches deal with triangulation in order to build 
meshes. These methods allow detailed representations, 
but the computational cost is high when the surface 
normals and the neighbourhood are not known a priori. 
Noise and outliers in the data represent another 
important challenge. In [16], a method to deal with mesh 
estimation with noisy data was proposed. After building 
the mesh, the noise in the data is removed. This method 

improves previous approaches; however, it is 
computationally expensive and heavily dependent on 
proper mesh estimation.  
 
Another important approach for representing point 
clouds was proposed in [17]. This allows the surface to be 
efficiently extracted using implicit surfaces with a low 
computational cost [18]. However, when the object is not 
a closed shape, the method is error-prone. The method is 
based on 3D occupancy grids that restrict the 
representation to a limited bounding box. Other authors 
consider basic shapes [19], quadrics [20] and superquadrics 
[6], but the estimation cost could limit the applicability of 
these methods to small point clouds. 
 
In this context, clustering using Mixture Models appears an 
alternative, especially with Gaussian Mixture Models 
(GMM) [21]. GMM exhibits interesting properties, namely, 
good compression and description of data, as demonstrated 
in [22] and [11]. The classical algorithm based on 
Expectation Maximization was used in [22] for segmenting a 
3D point cloud with precise results. However, it was limited 
by the need for a priori knowledge on the number of 
Gaussians, and was very dependent on a good initialization. 
 
Some approaches have been proposed to overcome these 
constraints. In [23], an iterative method was proposed for 
estimating the number of Gaussians in the model, but it 
typically suffers from over-fitting.  Thus, the present paper 
proposes an alternative to EM for estimating a Mixture of 
Gaussians in 3D point clouds without a priori knowledge of 
the number of models, and the evaluation of different model 
selection criteria [24]. 

2.2 Scene change detection in robotics  

In the last decade, the behaviour of autonomous mobile 
robots working in dynamic environments has been 
extensively studied. The common strategy has been to 
remove dynamic objects (e.g., people, other robots) in order 
to improve navigation and localization tasks [25]. 
However, such changes in the robots’ surroundings may 
actually be relevant, depending on the application. In [26], 
the authors presented a system for automatic change 
detection with a security patrol robot using 3D laser range 
data and images from a colour camera, where the texture 
information was crucial in the change detection stage. 
 
Further important work for detecting changes in 
surveillance was presented in [27], where the authors 
used a self-organized network and the concept of 
habituation to detect changes in sonar data. The work 
was extended in [28] using visual information, where 
visual attention was applied through salience maps.  
 
A combination of Gaussian Mixture Models and the Earth 
Mover’s Distance (EMD) algorithm was proposed by [6] to 
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detect changes in raw 3D point clouds. In spite of the 
impressive results obtained, the computational load 
associated to the proposed techniques was not suitable for 
large datasets. This work was extended in [11], where a 
structural matching algorithm based on graph theory was 
used. Both methods are evaluated in [38], where a large set 
of point clouds is used. Their main limitation is shown to 
be related to the computational burden. GMMs have also 
been extensively used to detect novelties in other contexts, 
but as classifiers [29]. In [4], an interesting survey of previous 
works on novelty detection using GMMs was presented. 
 
More recently, in [30], the authors used novelty detection 
to discover new classes in data. Features are selected 
using the Multiple Discriminant Analysis approach. In 
this work, an Automatic Guided Vehicle acquires features 
from a laser scanner and cameras, and then performs the 
validation of the method. Although this approach has 
been demonstrated to be efficient, it requires extensive 
training data for each scenario. 
 
Another important contribution was made by [18], where 
implicit surfaces were used in order to detect changes in 
point clouds. Despite the impressive processing time and 
quality of results, the algorithm is very dependent of the size 
of the bounding box, and sensitive to complete information 
about the object and the density parameters, which are 
manually estimated. 
 
3. Scene change detection algorithm 
 
The ability to detect changes in the environment is of prime 
importance for the survival and functioning of humans 
and other animals in dynamic and complex environments. 
In the same way, change detection in robotics is a crucial 
skill to adapt behaviours accordingly. The proposed 
system is aimed at detecting significant changes (novelties) 
and segmenting the data (a set of points) related to them. 
Figure 2 depicts the flowchart of the change detection 
approach from an RGBD sequence S. First, the RGBD 
sensor acquires the information from the environment. 
This data is pre-processed in the following stage by two 
consecutive methods with the aim of reducing the number 
of points in the 3D map: (i) a downsampling algorithm, 
and (ii) sparse outliers and ground plane removal methods. 
For both simplification methods, the Point Cloud Library 
(PCL) has been used [31].   
 
Computing changes in the Euclidean space by directly 
processing clouds of points presents several pitfalls. 
Therefore, it is required to represent 3D data in a more 
convenient mathematical space for change detection and 
segmentation. Once the pre-processing stage is 
completed, the data are converted from a set of 3D points 
to a more compact representation, Gaussian Mixtures, i.e., 
clusters extracted using Gaussian Mixture Models. The 

use of these clusters enables the description of the 
environment information in a more convenient way, and 
the detection and segmentation of novelties. Therefore, 
novelties are computed and segmented in this 
mathematical space of GMM.  
 

 
Figure 2. Overview of the change detection algorithm described 
in this paper 

 
In the next subsections, the complete change detection 
algorithm is described with details.   

3.1 Perception of the robot’s surroundings  

The input data for the change detection system is a RGBD 
image acquired using a Primesense sensor mounted on 
an autonomous mobile robot. The camera provides two 
different images: a depth image and a colour image. This 
depth image contains a matrix of pixels, where each pixel 
represents the distance from the sensed area to the image 
plane of the sensor. In addition, the colour image is a 
regular RGB buffer. Both images are acquired in VGA 
resolution at a rate of 30 fps.  Figure 3a illustrates the 
RGBD sensor mounted on the robot. This sensor provides 
a video sequence S, which is composed of RGB and depth 
images (Figure 3b and Figure 3c, respectively).  
 
The pre-processing stage, which performs point cloud 
simplification without losing significant information, 
represents one of the main contributions of this paper. 
Noise and outliers in the dataset are also reduced. Since 
the points acquired by the sensor cannot be assumed to 
be arranged in any particular order, no topological 
information is available. Thus, the simplification of a 
large number of points is hard to solve and usually takes 
a lot of processing time.  
 
The first step of the simplification algorithm is based on 
the downsampling algorithm Voxel Grid Filter, which 
reduces the number of points in a way that does not have 
a big impact on the shape of the surface that the points 
initially represent [31]. 
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Figure 3. a) Kinect sensor mounted on robot RobEx from the 
RoboLab research group; b) RGB image provided by the sensor; 
and c) depth image (different RGB values are associated to 
different distance values) 
 
In order to reduce the noise and outliers in the data, the 
algorithm Statistical Outlier Removal was used, as 
proposed in [32]. This uses statistical analysis of the 
neighbourhood of each point based on a Gaussian 
probabilistic density function. An outlier is defined using 
the covariance of each neighbourhood’s point. In the 
presented work, Mahalanobis distance is used for 
defining the standard deviation in a point as an outlier.  

3.2 Segmentation of the scene based on Mixture of Gaussians 

3.2.1 Gaussian Mixture Models definition 

A Gaussian mixture model is a weighted sum of K 
component Gaussian densities as given by the equation  
 

) =Θ 
=
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where x is a D-dimensional continuous-valued data 
vector, g(x| μi , Σi) are the component Gaussian densities, 
and ωi, i = 1, …, and K are the mixture weights (mixing 
probabilities) which satisfy the condition:   
 

iω > 0 and  1
1

=
=

K

i
iω .      (2) 

 
Thus, the complete GMM is parameterized by the 
notation:   
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Given the input data N
1j{x}S ==  composed of N 3D 

points, a GMM is represented by a collection of Gaussian 
kernels parameterized by Θ, providing a model for each 

cluster of points; each cluster is associated to a Gaussian 
density whose mean is located in the centroid of the 
cluster and whose covariance matrix estimates the spread 
of the cluster [10]. Figure 4a describes a synthetically 
generated ideal hallway, where one object has been 
placed inside. Figure 4b shows a possible representation 
based on GMM (a mixture of only 3D Gaussians).  
 
To estimate the parameters of the GMM, a maximization 
of the following log-likelihood function is performed [10]: 
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Figure 4. GMM computation for a synthetically generated 
hallway: a) cloud of points representing an ideal 3D hallway 
where a new object was placed inside; GMM associated to the 
cloud of points a). The Gaussian function representing the 
novelty is labelled by 1. 

3.2.2 Split-EM algorithm 

Expectation Maximization (EM) approaches have been 
commonly used to find the mixture of Gaussian functions 
that best fits a set of points in ℜD. The main problem is 
the computation of the optimal number of Gaussian 
functions (K). Therefore, the Gaussian mixture modelling 
becomes a compound problem of the determination of 
number of Gaussian components and the parameter 
estimation for the mixture, which is rather challenging. In 
this paper, a modified version of the work presented in 
[6] is provided. For this purpose the Split and Merge-EM 
(SMEM) algorithm has been used [14]. Since the optimal 
number of Gaussian kernels in each dataset is not known 
a priori, the approach proposes initializing the mixture 
model with only one Gaussian, where the mean and 
covariance matrix are the same as those of the point 
cloud. This initial Gaussian is dynamically split until the 
optimal number of Gaussians for the mixture is found. 
There are two important issues to address here: i) How 
should a Gaussian be split? ii) When should this process 
stop? The first question is approached in this paper by 
using an entropy criterion. In general, the entropy H(X) of 
a random variable X with probability mass function 
p(x|Θ) is defined as: 
 

))].|(E[log(p-H(X) Θ= x            (5) 
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In a similar way, the maximum entropy for a multivariate 
Gaussian is defined as: 
 

      |]|)log[(20.5-H D
max Σ= π    (6) 

 
where D is the dimensionality of the data (D = 3 in the 
proposed approach) and |Σ| is the determinant of the 
covariance matrix. It is possible to define the limits for the 
entropy of each Gaussian component in the mixture using 
this equation. 
 
The ratio between these two entropies can be used to 
estimate the density difference for two different times. In 
each loop of the algorithm, the Gaussian with the smallest 
ratio is divided into two new Gaussians. The new ratio ω 
is half of the last value. The means of these new two 
Gaussians are determined by the K-means algorithm [33]. 
The covariance matrix is estimated using a by-default 
approach, as in the M-step of the EM algorithm. 
 
In order to solve the second question, i.e., the stopping 
criterion of the algorithm, three selection model criteria 
were evaluated. The next sub-section describes in detail 
the selection criteria used in the proposed approach. 
 
The algorithm proposed can be summarized in three steps: 

1. Initially, the GMM is composed of only one 
Gaussian (K = 1). After that, the distribution is 
updated using the EM algorithm and the log-
likelihood is computed using the selection criterion. 

2. Split: Given the K and the Θ parameters, the 
Gaussian with the lowest ratio between H(X) and 
Hmax is split. The EM updates the parameters Θ, 
where the new GMM has K+1 Gaussians. The log-
likelihood is recomputed using the selection 
criterion. 

3. If the new log-likelihood using the selection 
criterion is larger than the previous one, the GMM is 
accepted; otherwise, the algorithm returns to step 2. 

3.2.3 Selection criteria analysis 

Selection criteria are used in the literature in order to 
determine a good representation based on models, 
minimizing the number of parameters and maximizing 
the accuracy of the representation. These methods try to 
find a good trade-off between precision and simplicity in 
the representation. 
 
In the case of Gaussian Mixture Models, the main goal is 
to minimize the equation below: 
 

),)((Largmin SC SΘ=Θ Θ           (7) 

 
where LSC(Θ|S) is the log-likelihood function using 
selection criterion and Θ is the Mixture of K Gaussians. 

The selection criterion defines the LSC(Θ|S) using a 
penalty function P(K): 
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where S is the input data, i.e., the point cloud 

N
1i{x}S == ; and P(K) is the penalty function that is 

increased with the value of K. This selection criterion tries 
to avoid over-fitting in the model. The most-used criteria 
are evaluated in this work to estimate GMM from three-
dimensional point clouds. Given the input data, and a 
mixture of Gaussians with J free parameters (J = 10K-1), 
next selection criteria are applied inside the Split-EM 
algorithm to decide when to stop. 
 
 BIC (Bayesian Information Criterion) [34] 
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 AIC (Akaike Information Criterion) [35]: 

 

.2)()(LSC JSLS +Θ−=Θ
          

 (11) 

3.3 Change detection and segmentation 

Once both datasets are transformed into Gaussian  
Mixtures, the aim is to process them in order to estimate 
the changes in the scene, i.e., detecting and segmenting 
novelties in the robot’s surrounding. The Earth Mover’s 
Distance (EMD) was proposed in [12] as a metric for 
measuring distances between two distributions of points 
in the space for which a distance between points is given. 
In the mathematical space of Gaussian Mixture:  
 

{ } { } ) ,

=ΦΘ

== ',...,1j,...,1i

gmm

,,,,EMD(
),(d

KjjjKiii μωμω
,(11) 

 
where Θ and Φ are two mixture of Gaussians with K and 
K’ Gaussians, respectively. If the distance dgmm is higher 
than a threshold, the algorithm detects the change in the 
scene. In this paper, a greedy-EMD algorithm has been 
applied in order to avoid the use of a fixed threshold [6].   
 
The overall structure of the EMD-based algorithm used in 
this paper is shown in Figure 5. The method not only 
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detects changes, but segments them. The set of points 
associated to the change is retrieved using the posterior 
probability. Initially, the algorithm computes the EMD 
distance between the GMMs that represents the reference 
map and the actual map. In each iteration, the algorithm 
selects the Gaussian from the actual GMM with the 
greatest quantified change. Furthermore, it generates a new 
GMM called Change GMM. The best Gaussian is removed 
from the mixture and is included in the Change GMM. The 
EMD distance between the reference GMM and the Actual 
GMM without the Gaussians of the Change GMM is 
computed. If this distance is smaller than the reference 
distance, the reference distance is updated and the process 
restarts, as shown in Figure 5. The Change GMM is then 
defined as the Gaussians that represent the changes. The 
points in the actual point cloud are segmented using the 
Change GMM and the posterior probability. If the Change 
GMM is empty, the algorithm assumes that no novelties 
exist, implying that the two GMMs are similar. The 
posterior probability allows the system to identify the 
topological relation between the segmented regions. This 
kind of information could be useful both for recognition 
and for identification, providing a means to build a 
semantic representation of the environment. See [6] for 
more details about this algorithm. 
 

Figure 5. Change detection and segmentation algorithm based 
on a greedy-EMD method 
 
4. Experimental results 
 
The proposed method was evaluated using real and 
simulated data. The algorithms were developed in C++ and 

the benchmark tests were performed on an Intel Core2Duo 
2.4GHz CPU with 4GB of RAM running GNU/Linux.  
 
Real data were acquired using a RobEx robot (Figure 3a). 
The robot RobEx is a differential robot designed by RoboLab 
at the University of Extremadura. For the experiments 
described in this paper, a Kinect was mounted on top of it 
and set up for acquiring RGBD images at 30 fps. Figures 6a-b 
show the first and second test areas within the RoboLab 
facilities. Both indoor test areas provided a real environment 
for the evaluation of the algorithm.  
 
The simulated data were acquired using RCIS 
(RoboComp InnerModel Simulator) [36]. RCIS is a 3D 
robot simulator designed for use in academia, in early 
stages of development, and, mainly, for research 
purposes. One of its most remarkable features is that it 
enables users to control the noise produced by the 
simulated sensors and actuators. This ability can be used 
to test how robust algorithms are against noise and, if 
noise is set to zero, to differentiate between problems 
dealing with noise and algorithm errors. RCIS 
implements all the interfaces of the hardware abstraction 
layer of RoboComp (e.g., Camera, Laser, RGBD, Joint 
Motor Bus), which represent most of the common 
hardware used in autonomous robotics. For the tests 
described in this paper three RGBD sensors with different 
noise levels were simulated within an indoor scenario. 
The use of this simulator allows an evaluation of the 
algorithms according to different sensor noise values.  
 

 
Figure 6. a) First test area, an indoor scenario in which the robot 
Nomad has been placed to represent a change; b) a pair of chairs in 
the room, the second of the experiments; and c) the simulated indoor 
scenario used for the first experiment using the RCIS simulator 
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The experiments were focused on the evaluation of the 
algorithm in terms of robustness and computational 
resources. A comparative study of the different selection 
criteria was obtained as a result.  

4.1 Simulated scenario 

As aforementioned, the RCIS RoboComp Simulator was 
used in order to evaluate the robustness of the algorithm 
regarding different sensor noise values. Figure 7 illustrates 
the environment used for this experiment. The image was 
acquired in the same robot pose; however, a change has been 
introduced in the scene (i.e., a table, as shown in Figure 7b).  
 

 
Figure 7. a) An indoor environment simulated by RCIS 
RoboComp Simulator; b) the same scenario, but where a new 
element has been introduced 
 
Three different RGBD sensor noise values were used in 
the experiments. The distance noise was simulated using 
a normal distribution with μ = 0, and variance values as 
defined in Table 1.     
 

Test Sigma (m) 
0 0.001  
1 0.01 
2 0.1 

Table 1. Depth noise values used for the experiment in the 
simulated test area 
 
Table 2 illustrates the number of points associated to the 
scene acquired by the simulator for each experiment after 
the simplification stage. In Table 4, n1 represents the 
number of points after the simplification stage for the 
scene presented in Figure 7a. Similarly, n2 describes the 
number of points after the simplification stage for the 
scene presented in Figure 7b. 
 

Test n1 n2

0 14586 14033 
1 19167 18271 
2 9528 8823 

 

Table 2. Number of points obtained after the simplification stage 
for the experiments described in this paper 
 
The same experiments were achieved for each selection 
criterion AIC, BIC and MDL. The results are summarized in 
Table 3, where Ki represents the number of Gaussians in the 

mixture, for the scene presented in Figure 7a and Figure 7b, 
respectively. The computational load of the change detection 
algorithm is also shown in Table 3. The number of changes 
detected in the scene is presented in Table 4.  The ground 
truth of the change is manually selected in the scene. The 
change corresponds to only one Gaussian in all the tests.  
 
As shown in Tables 3 and 4, the best selection criterion is 
the Minimum Description Length. MDL allows the 
algorithm to segment the 3D scene into a representative 
Mixture of Gaussians with low computational cost. The 
GMM obtained using the MDL criterion is enough for 
detecting the change in the scene.     
 

Criterion Test 0 Test 1 Test 2
K1

     K2

Time
(s)

K1

      K2

Time
(s) 

K1

      K2

Time
(s) 

AIC  13 
     14

10.969  16 
   18 

14.14 20 
    20 

7.125 

BIC  6  
   6

3.472 6 
     8 

5.22 16 
     

18 

6.286 

MDL  4  
     4 

2.813 6 
   7 

1.93 7 
      7

0.924

 

Table 3. Comparative study of the different selection criteria 
used in the segmentation algorithm. Number of Gaussians in the 
mixture and computational time are shown 
 

Criterion Test 0  Test 1 Test 2

AIC 1 2 0 
BIC 1 3 4 

MDL 1 1 1

Table 4. Number of Gaussians detected as changes in the scene 
 
Figure 8 shows the results after applying the change 
detection algorithm in the simulated environment for each 
selection criterion and for a Gaussian noise with μ = 0, and 
variance σ = 0.01 m (similar results were obtained with 
other noise values). Figure 8a illustrates the Mixture of 
Gaussians associated to the scenario shown in Figure 7a. 
Similarly, Figure 8b draws the GMM of the scenario 
described in Figure 7b. Finally, Figure 8c illustrates the 
detected change, i.e. the Gaussian of the mixture after 
evaluating the greedy-EMD algorithm. Only the MDL 
selection criterion correctly segments the change. The 
coloured ellipsoids shown Figures 8b and 8c are generated 
using 1.5 standard deviation based on the covariance 
matrix, and the point clouds are shown by blue dots.  
 
Table 5 demonstrates that the MDL criterion is the most 
adequate for the segmentation algorithm. The MDL 
criterion allows faster segmenting of the point cloud, 
using a smaller number of Gaussians in the mixture. As 
shown in Figure 9, MDL also obtains an accurate 
segmentation of the change in the scene.   
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Figure 8. a) Map of the environment and segmentation based on Gaussian Mixture Models; b) map of the environment after placing a 
table (change) in the environment; and c) segmentation of the change in the scene. Only the MDL selection criterion correctly segments 
the change.    
 

 
Figure 9. a) First test area, an indoor scenario in which the robot Nomada is placed to represent a change; b) a depth image where a pair 
of chairs in the room; and c) a simulated indoor scenario using an RCIS RoboComp 3D simulator. The number of points in both tests are 
n1 = (19798, 13140) and n2 = (18437, 10507), respectively. 
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Criterion Test 0  Test 1
K1

     K2

time(s) it K1

K2

time(s) it

AIC 12 
    20 

18.96 570 12 
 16 

9.18 643 

BIC 12 
   20

18.10 563 12 
 16 

8.9 620 

MDL  7 
      8

5.64 309 6 
    8 

3.76 368 

Table 5. Comparative study of the different selection criteria 
used in the segmentation algorithm using real point clouds. 
The number of Gaussians in the mixture and computational 
time, as well as the number of iterations, are shown.   
 
5. Conclusions and future work 
 
In this paper, a change detection and segmentation 
algorithm based on Mixture of Gaussians has been 
described for use in autonomous robots. It has been 
tested using both real and simulated RGBD data. Real 
data are acquired using the Kinect sensor, which 
provides RGB and depth (D) images. The 3D point 
clouds are transformed into a new high-level 
representation based on a Gaussian Mixture Model. 
Computing changes in this new Mathematical Space are 
faster and have some advantages with respect to using 
the Euclidean space. Robustness and the improvement 
of the computational load of the approach have been 
achieved thanks to an efficient estimate of the number 
of Gaussians of the mixture. Therefore, different 
selection criteria have been evaluated in order to make 
the segmentation process in the Split and Merge 
method more robust. Experimental results obtained 
with the application of the proposed algorithm with 
both real and simulated data demonstrate the reliability 
of the method in real robot environments.  
 
Future work will focus on including an attentional model 
with a novelty filter in order to process only salient 
locations, rather than the whole scene. Visual 
information can also be included in the change detection 
process in order to improve the estimation in structured 
environments. For instance, it is interesting to take into 
account floor and roof removals, or other main planes 
(e.g., walls). This helps to improve the performance of 
such systems by allowing them to allocate extra 
processing resources to those stimuli deemed to be of 
higher potential relevance. Applications to underwater 
side sonar scanning data will also be evaluated. 
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