39 research outputs found

    A system of coupled partial differential equations exhibiting both elevation and depression rogue wave modes

    Get PDF
    Analytical solutions are obtained for a coupled system of partial differential equations involving hyperbolic differential operators. Oscillatory states are calculated by the Hirota bilinear transformation. Algebraically localized modes are derived by taking a Taylor expansion. Physically these equations will model the dynamics of water waves, where the dependent variable (typically the displacement of the free surface) can exhibit a sudden deviation from an otherwise tranquil background. Such modes are termed ‘rogue waves’ and are associated with ‘extreme and rare events in physics’. Furthermore, elevations, depressions and ‘four-petal’ rogue waves can all be obtained by modifying the input parameters.postprin

    Breathers and 'black' rogue waves of coupled nonlinear Schrödinger equations with dispersion and nonlinearity of opposite signs

    Get PDF
    Breathers and rogue waves of special coupled nonlinear Schrödinger systems (the Manakov equations) are studied analytically. These systems model the orthogonal polarization modes in an optical fiber with randomly varying birefringence. Studies earlier in the literature had shown that rogue waves can occur in these Manakov systems with dispersion and nonlinearity of opposite signs, and that the criterion for the existence of rogue waves correlates closely with the onset of modulation instability. In the present work the Hirota bilinear transform is employed to calculate the breathers (pulsating modes), and rogue waves are obtained as a long wave limit of such breathers. In terms of wave profiles, a ‘black’ rogue wave (intensity dropping to zero) and the transition to a four-petal configuration are elucidated analytically. Sufficiently strong modulation instabilities of the background may overwhelm or mask the development of the rogue waves, and such thresholds are correlated to actual physical properties of optical fibers. Numerical simulations on the evolution of breathers are performed to verify the prediction of the analytical formulations.postprin

    Integrability and linear stability of nonlinear waves

    Get PDF
    It is well known that the linear stability of solutions of (Formula presented.) partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general (Formula presented.) matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for (Formula presented.) for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants

    Complex extreme nonlinear waves: classical and quantum theory for new computing models

    Get PDF
    The historical role of nonlinear waves in developing the science of complexity, and also their physical feature of being a widespread paradigm in optics, establishes a bridge between two diverse and fundamental fields that can open an immeasurable number of new routes. In what follows, we present our most important results on nonlinear waves in classical and quantum nonlinear optics. About classical phenomenology, we lay the groundwork for establishing one uniform theory of dispersive shock waves, and for controlling complex nonlinear regimes through simple integer topological invariants. The second quantized field theory of optical propagation in nonlinear dispersive media allows us to perform numerical simulations of quantum solitons and the quantum nonlinear box problem. The complexity of light propagation in nonlinear media is here examined from all the main points of view: extreme phenomena, recurrence, control, modulation instability, and so forth. Such an analysis has a major, significant goal: answering the question can nonlinear waves do computation? For this purpose, our study towards the realization of an all-optical computer, able to do computation by implementing machine learning algorithms, is illustrated. The first all-optical realization of the Ising machine and the theoretical foundations of the random optical machine are here reported. We believe that this treatise is a fundamental study for the application of nonlinear waves to new computational techniques, disclosing new procedures to the control of extreme waves, and to the design of new quantum sources and non-classical state generators for future quantum technologies, also giving incredible insights about all-optical reservoir computing. Can nonlinear waves do computation? Our random optical machine draws the route for a positive answer to this question, substituting the randomness either with the uncertainty of quantum noise effects on light propagation or with the arbitrariness of classical, extremely nonlinear regimes, as similarly done by random projection methods and extreme learning machines

    The hierarchy of rogue wave solutions in nonlinear systems

    Get PDF
    Oceanic freak waves, optical spikes and extreme events in numerous contexts can arguably be modelled by modulationally unstable solutions within nonlinear systems. In particular, the fundamental nonlinear Schroedinger equation (NLSE) hosts a high-amplitude spatiotemporally localised solution on a plane-wave background, called the Peregrine breather, which is generally considered to be the base-case prototype of a rogue wave. Nonetheless, until very recently, little was known about what to expect when observing or engineering entire clusters of extreme events. Accordingly, this thesis aims to elucidate this matter by investigating complicated structures formed from collections of Peregrine breathers. Many novel NLSE solutions are discovered, all systematically classifiable by their geometry. The methodology employed here is based on the well-established concept of Darboux transformations, by which individual component solutions of an integrable system are nonlinearly superimposed to form a compound wavefunction. It is primarily implemented in a numerical manner within this study, operating on periodically modulating NLSE solutions called breathers. Rogue wave structures can only be extracted at the end of this process, when a limit of zero modulation frequency is applied to all components. Consequently, a requirement for breather asymmetry ensures that a multi-rogue wavefunction must be formed from a triangular number of individual Peregrine breathers (e.g. 1, 3, 6, 10, ...), whether fused or separated. Furthermore, the arrangements of these are restricted by a maximum phase-shift allowable along an evolution trajectory through the relevant wave field. Ultimately, all fundamental high-order rogue wave solutions can be constructed via polynomial relations between origin-translating component shifts and squared modulation frequency ratios. They are simultaneously categorisable by both these mathematical existence conditions and the corresponding visual symmetries, appearing spatiotemporally as triangular cascades, pentagrams, heptagrams, and so on. These parametric relations do not conflict with each other, meaning that any arbitrary NLSE rogue wave solution can be considered a hybridisation of this elementary set. Moreover, this hierarchy of structures is significantly general, with complicated arrangements persisting even on a cnoidal background

    Solitons, Breathers and Rogue Waves in Nonlinear Media

    No full text
    In this thesis, the solutions of the Nonlinear Schrödinger equation (NLSE) and its hierarchy are studied extensively. In nonlinear optics, as the duration of optical pulses get shorter, in highly nonlinear media, their dynamics become more complex, and, as a modelling equation, the basic NLSE fails to explain their behaviour. Using the NLSE and its hierarchy, this thesis explains the ultra-short pulse dynamics in highly nonlinear media. To pursue this purpose, the next higher-order equations beyond the basic NLSE are considered; namely, they are the third order Hirota equation and the fifth order quintic NLSE. Solitons, breathers and rogue wave solutions of these two equations have been derived explicitly. It is revealed that higher order terms offer additional features in the solutions, namely, ‘Soliton Superposition’, ‘Breather Superposition’ and ‘Breather-to-Soliton’ conversion. How robust are the rogue wave solutions against perturbations? To answer this question, two types of perturbative cases have been considered; one is odd-asymmetric and the other type is even-symmetric. For the odd-asymmetric perturbative case, combined Hirota and Sasa-Satsuma equations are considered, and for the latter case, fourth order dispersion and a quintic nonlinear term combined with the NLSE are considered. Indeed, this thesis shows that rogue waves survive these perturbations for specific ranges of parameter values. The integrable Ablowitz-Ladik (AL) equation is the discrete counterpart of the NLSE. If the lattice spacing parameter goes to zero, the discrete AL becomes the continuous NLSE. Similar rules apply to their solutions. A list of corresponding solutions of the discrete Ablowitz-Ladik and the NLSE has been derived. Using associate Legendre polynomial functions, sets of solutions have been derived for the coupled Manakov equations, for both focusing and defocusing cases. They mainly explain partially coherent soliton (PCS) dynamics in Kerr-like media. Additionally, corresponding approximate solutions for two coupled NLSE and AL equations have been derived. For the shallow water case, closed form breathers, rational and degenerate solutions of the modified Kortweg-de Vries equation are also presented

    A new integrable model of long wave–short wave interaction and linear stability spectra

    Get PDF
    We consider the propagation of short waves which generate waves of much longer (infinite) wavelength. Model equations of such long wave–short wave (LS) resonant interaction, including integrable ones, are well known and have received much attention because of their appearance in various physical contexts, particularly fluid dynamics and plasma physics. Here we introduce a new LS integrable model which generalizes those first proposed by Yajima and Oikawa and by Newell. By means of its associated Lax pair, we carry out the linear stability analysis of its continuous wave solutions by introducing the stability spectrum as an algebraic curve in the complex plane. This is done starting from the construction of the eigenfunctions of the linearized LS model equations. The geometrical features of this spectrum are related to the stability/instability properties of the solution under scrutiny. Stability spectra for the plane wave solutions are fully classified in the parameter space together with types of modulational instabilities
    corecore