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We consider the propagation of short waves which
generate waves of much longer (infinite) wavelength.
Model equations of such long wave-short wave
(LS) resonant interaction, including integrable ones,
are well known and have received much attention
because of their appearance in various physical
contexts, particularly fluid dynamics and plasma
physics. Here we introduce a new LS integrable model
which generalizes those first proposed by Yajima and
Oikawa and by Newell. By means of its associated Lax
pair, we carry out the linear stability analysis of its
continuous wave solutions by introducing the stability
spectrum as an algebraic curve in the complex plane.
This is done starting from the construction of the
eigenfunctions of the linearized LS model equations.
The geometrical features of this spectrum are related
to the stability/instability properties of the solution
under scrutiny. Stability spectra for the plane wave
solutions are fully classified in the parameter space
together with types of modulational instabilities.

1. Integrable models of long wave—short wave
resonant interaction

In several physical applications, waves are represented
as solutions of nonlinear partial differential equations.
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Finding out the dynamical behaviour of waves usually poses mathematical problems, which
are very rarely solvable by analytical methods. More frequently, approximate solutions may be
found by treating nonlinear terms of the equations of motion as small perturbations of the linear
part. In this framework, investigating how the linear superposition of two or more plane waves
changes due to nonlinear effects leads to predictions on wave-wave interaction. A well-known
approach of this kind, the multiscale method (e.g. [1,2] and references therein), requires that
Fourier wave amplitudes be small, say O(¢), and be functions only of appropriately &-rescaled
space and time coordinates, where ¢ is a small dimensionless parameter. In this way, one obtains
partial differential equations in the rescaled variables which are generally simpler, and sometimes
even integrable. When they are, these approximate wave equations, even if nonlinear, are exactly
solvable by spectral techniques.

The best-known example of such model equations is the nonlinear Schrédinger (NLS) equation
in a one-dimensional space:

iSi, + Sgr — 20552 =0, o =41, (1.1)

where & =¢(x — vt) and t, = £2t are the rescaled space and time coordinates, and the asterisk
indicates complex conjugation. This equation follows via the multiscale method from almost any
real propagation equation and provides the lowest-order effect of the nonlinear terms on the
linear solution

£S(€, 1) et L G¥ (g, ) e 0D py — g2 £ —g(x — b),

given by the sum of two plane waves with amplitudes S and S*, and with wavenumber k,
frequency w and group velocity v.

If more plane waves are superimposed, cross-interaction takes place if the wavenumbers
and frequencies satisfy certain resonance conditions. Among the many cases of interest and
physical significance, we consider here wave equations which model the interaction of two small-
amplitude plane waves: one with a very long wavelength (k=0) and a real amplitude L, and a
second one with a much shorter wave length and a complex amplitude S. Equations of this kind
have been derived and proposed with various motivations, which mainly come from plasma
physics [3] and fluid dynamics [4,5].

On the mathematical side, long wave-short wave (LS) equations have been differently
introduced because they are, at the same time, close to physical equations and integrable. This
second distinctive property allows the construction of a broad range of solutions with relevant
and useful insight into experimental observations. The focus of the present work is on LS models
which are integrable.

Two very well-known examples of integrable LS models are the Yajima-Oikawa (YO)
equation [3]

ISt + S —LS=0, Ly =2(S1")x, (1.2)
and the alternative integrable Newell (N) wave system, introduced in [5],
iS¢ 4 Syx 4 (iLy + L2 —201S)S =0, L;=20(1S|%)y, o’=1, (1.3)

where, in addition to an LS coupling, the short wave has the same self-interaction as the NLS
equation; see (1.1). The two systems (1.2) and (1.3) are related by a Miura transformation (see [6]).

In [2,7,8] the YO equation has also been derived via multiscale method applied to a generic
real wave equation, with the resonance condition that the the group velocity vs = &’(ks) of the
short wave equals the group velocity v;, = »'(0) of the long wave, say vs = vi, = v, where w(k) is
the linear dispersion relation, '(k) = dw(k)/dk, and kg is the non-vanishing wavenumber of the
short wave.

The integrability of both the YO and N equations has been exploited to investigate extensions
in various directions. Thus, these LS equations have been generalized to multicomponent short
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waves, either in vector form, as in [9], or in matrix form as in [10] requiring a higher rank matrix
Lax pair. A third LS wave scalar equation, which reads

iS + Syx +1(LS)x — 2IS1°S =0, Ly =2(IS*)x, (1.4)

has been derived in [11] from a 3 x 3 matrix Lax pair, which is however different from the Lax
pair investigated in the present paper (see §§2 and 3), and is not discussed here.

In §3, we show that the YO and N equations, (1.2) and (1.3), do not need to be treated
separately. Indeed, these two model equations can be combined in just one system, namely

iS¢ + Syx + (ieLy + L% — BL — 2a|S1%)S =0, Li=2(IS*)x, (1.5)

which we refer to as YON equations. This system coincides with the YO equation (1.2) for o« =
0, B =1, while it reads as the N equation (1.3) by setting « =0, f =0 and by substituting the
field L with oL (o ==1). In fact, as we will show in §3, the novel system (1.5) is integrable for
any real value of « and B. Thus it is likely to be relevant to applications as it is more flexible in
modelling the LS interaction. Moreover, this unifying result makes our present overall analysis
and discussion of the two model equations (1.2) and (1.3) simpler and more compact.

Other LS integrable equations may be sorted out via transformations of the wave fields.
Indeed, the two integrable LS equations (1.5) and (1.4) may be given an equivalent, even simpler,
form by performing the gauge transformation [5,11]

S(x, t)=e?DS(x, 1), Lix,t)=L(x,H), ¢x=nL, ¢r=2u(SP). (1.6)

This transformation, which introduces the extra real parameter pu, originates from the
conservative form of the evolution equation for the long wave amplitude L, in both the systems
(1.5) and (1.4). Thus gauge transforming the YON system (1.5) yields the three parameter family
of LS resonance equations

iS¢ + S + 2iuLSe + (@ + wlile + (@ — W2 = 25P1 - LIS =0, Li=2057)  (17)
while the same transformation, as applied to the integrable equations (1.4), leads to the LS system
i8¢ + Sxy +iuLSe + (1 + DSy — (uL? + 215781 =0, L =2(157)x. (18)

The integrability of (1.2), (1.3) and (1.4), and of their transformed versions via (1.6), allows the
construction of special exact solutions of these model equations, such as solitons and rogue waves
(e.g. [9,12-15]).

Integrability is also a key property to address one of the basic issues in nonlinear wave
dynamics, namely that of linear stability against small changes of the initial conditions (e.g. [16]
and references therein). For instance, the modulational instability of a periodic wave train, as in
fluid dynamics and optics, has been well exemplified via the NLS equation (1.1) with focusing
self-interaction (0 = —1). Indeed, the NLS equation has deserved special interest as it proves to
yield, for focusing interaction, a simple description of the instability of a regular wave train, a
phenomenon first observed by Talanov [17] in optics and by Benjamin & Feir [18] in a water
tank. For this particular equation, understanding modulational instability of continuous wave
solutions may be achieved via standard Fourier analysis. However this analysis fails if the
unperturbed solution is not just a plane wave [19], or if several nonlinear wave trains have a
resonant interaction. In general, when dealing with integrable systems, the stability of interacting
plane waves is better treated by means of integrability techniques rather than by a Fourier
approach. Indeed, the Lax pair plays a key role as it allows one to extend the linear stability
analysis to other wave solutions, such as those constructed from plane waves by Darboux
dressing methods [20].

The integrability method has been used to unveil the stability properties of plane wave
solutions of two coupled NLS equations [16,21]. For these model equations, instabilities have
been fully classified in terms of coupling constants, amplitudes and wavenumbers, including
instability effects due to defocusing self- and cross-interactions. As for the LS resonance
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interaction, in addition to orbital stability [22] and transverse stability [23], also linear stability
has been considered for solutions of particular models [5].

On the wake of those results, we investigate here the linear stability of continuous wave
solutions of the YON equations (1.5). Although the presentation is intended to be self-contained,
we refer the reader to [16,21] for specific proofs and further details of the general method.
The main target of our approach is the computation of the stability spectrum (S), associated
with the given plane wave solution. For a multicomponent system such as (1.5), this spectrum
does not generically coincide with the ordinary Lax spectrum. It turns out to be a piecewise
continuous curve in the complex plane of the spectral variable A. In each point of this curve,
one or more eigenmode solutions of the linearized equation of motion are well defined (see §2).
The relevant stability—instability properties of the wave solution are readily conveyed by the
geometrical properties of the spectral curve S itself. Additional relevant targets are the linearized
equation eigenfunction frequencies and their associated gain functions, which tell us whether the
wavenumber instability bands are of passband or baseband type [24].

This paper is organized as follows. In §2, we review our approach to linear stability; in
particular, we sketch the role that integrability plays in investigating the linear stability of a
given solution. In §3, the integrability of the unified YON model is established by showing
its corresponding Lax pair. Moreover, we consider the plane wave solution of the YON model
equations, and study its linear stability by constructing and classifying the corresponding stability
spectra. We compute the gain function, characterize the instabilities and show that the plane
wave solution is unstable for a generic choice of the physical parameters. We conclude with some
remarks and outlooks in §4.

2. Integrable equations and small variation of their solutions

Our approach to the linear stability of solutions of integrable partial differential equations starts
from the associated Lax pair, a characteristic feature of integrable systems:

U,=X¥ and W% =TWV. (2.1)

In the present context, the solution ¥(x,t,1) and the coefficients X(x,t,1), T(x,t,1) are 3 x 3
matrices. The latter two matrices are assumed to have the following polynomial dependence on
the complex spectral variable X

X(\)=irX +Q, T(1)=(ir)?A+irB+C, (2.2)
where X is the constant, traceless, diagonal matrix

10 0
¥ =diag{1,0,-1}=|0 0 0 |, (2.3)
00 -1

and Q(x,t) is A-independent and off-diagonal, namely Q;; =0, while its off-diagonal entries
Q]-m(x, t), j # m, are generically six complex-valued functions of x and t; A is a constant matrix,
while B and C can be written in terms of commutators and anti-commutators of X, Q(x, ) and
their powers. Then, the compatibility condition

X — Ty +[X, T]=0 (2.4)

leads to an evolution equation for the matrix Q in the form of a system of six coupled nonlinear
wave equations for the entries of Q. Among other reductions, this system can be reduced to just
two equations describing the resonant interaction of two waves of physical interest (see next
section).

Before looking at any particular reduction, let us first turn our attention to the way integrability
plays an essential role in investigating the linear stability of a given solution Q(x, t). In order to
make this paper self-contained, we first briefly report the main ingredients and features of the

Q0V0LZ07 L Y 205§ 204g edsyjeuinol/ioBulysiigndiiaposiefos H



Downloaded from https://royal societypublishing.org/ on 19 August 2021

method (see [16] and references therein). The starting point is the following theorem (see [16] for
a proof), which provides the quite remarkable and well-known property of the matrix solution
¥(x,t,A) of the two ordinary differential equations (2.1).

Theorem 2.1. Let Q(x, t) be a given solution of the compatibility equation (2.4) and let W (x,t, 1) be a
corresponding fundamental solution of (2.1), that is det W # 0, then the matrix

F(x, t,\)=[2, ¥(x,t, ) M)W Hx, £, 1)), (2.5)

where M(X) is an arbitrary (x, t)-independent matrix, is a solution of the linear equation obtained by
linearizing around Q(x, t) the nonlinear evolution equation resulting from (2.4).

In other words, suppose that Q(x,t) is such a given solution, and that Q(x,t) + 8Q(x,t) is a
second solution of the same evolution equation. Suppose moreover that the entries of 5Q(x, t)
are sufficiently small (this is certainly so at small initial times ¢, if the initial condition §Q(x, 0) is
small enough), then the linearized evolution equation for 5Q(x, t) is obtained by neglecting all the
nonlinear terms. This evolution equation takes the form

8Q¢(x, 1) = LQ(x, 1), (2.6)

where £(V) is a matrix-valued linear function (with (x, t)-dependent coefficients) of V and its x-
derivatives. Then theorem 2.1 states that the matrix F(x,t, 1) (2.5) is a A-dependent solution of the
same linear equation (2.6), namely

Fi(x,t, 1) = L(F(x,t, 1)), (2.7)

for any complex A.

This is a system of six linear partial differential equations; its solutions F(x, f, A), which depend
on the spectral variable 1, play the role of Fourier-like modes if the values of 1 lie in an appropriate
subset S of the complex plane, defined below as stability spectrum because of its key relevance to
finding out whether a given solution Q(x, t) is linearly stable or unstable. This spectrum, which
depends on the particular solution Q(x, t), is defined so as to guarantee the boundedness of each
solution F(x, t,A), at any fixed t, on the entire x-axis. By keeping in mind this analogy with the
Fourier analysis of solutions of linear partial differential equations with constant coefficients, we
assume that the set of solutions F(x, , 1), see (2.5), of equation (2.7) allows the representation

5Q(x, 1) = JS diF(x, 1, 1), (2.8)

for an appropriate choice of M(1), and in an appropriate functional space of initial data: for
instance, we have in mind the physical assumption that the entries of the initial condition §Q(x, 0)
be localized wave packets. Although the proof [16] of the theorem above requires only local
properties (differentiability up to sufficiently high order in x), the integral representation (2.8)
should be justified by spectral methods. To our present purpose, that is assessing the linear
stability of Q(x,t), we do not need to enter into this matter, while we devote our next section
to detail the properties of the stability spectrum S, for a particularly simple choice of Q(x, t).

Before going into this investigation, we give an explicit and general construction of the matrix
eigenfunctions F(x,t, 1) by taking advantage of the properties of the wedge product of three-
dimensional vectors. Consider first the matrix solution ¥ of the Lax pair (2.1) and its three column
vectors w(/),j =1,2,3:

g,:(w(l) e 1//“))- (29)

Without loss of generality, we assume that this fundamental solution has unit determinant, say
det ¥ =y . y@ A O =1. This implies that we can give the defining expression (2.5) of the
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matrix eigenmode the alternative expression
F(x,t,A) =[5, W(x, t, 1) M(L) ¥ (x, £, )], (2.10)

where ¥4 is the adjugate matrix (or classical adjoint) of ¥. In turn, the matrix of co-factors A
can be expressed through its rows, namely

wA(l)T
wh = | yaT
wA(3)T

, (2.11)

where the superscript T stands for transposition that takes a column vector 4% into a row vector,

so that the vectors y4(0) are the columns of wAT The computation of ¥4 is then provided by the
expression (2.11) with

YAD =y () A ), {j, m,n} = cyclic permutations of {1,2, 3}. (2.12)

As we need six eigenfunctions for each value of X if Q(x, t) is generic (non-reduced), we choose to
compute the eigenfunctions (2.10) by setting M equal to one of the six basis matrices M(™),

Mgp:ajaamb, jm=1,2,3, j#m, (2.13)

of the space of the off-diagonal 3 x 3 matrices (here §;,, = 1 for j = m and 8;,, = 0 for j # m), namely
Fim = [, wMU™yA], The convenience of this choice stems from the algebraic identity

W (x, b, ) MU Wi (x,t,20) =y DD Ay ¢, (2.14)

where €jnm 1S the parity of the permutation {j, n, m} of {1,2,3}, that is €nm =1 if {j,n,m} is a cyclic
permutation of {1,2,3}, and €j,,, = —1 otherwise. Thus, the six eigenfunctions finally take the
expression

Fi e, t,0) =12, y O Ay €, j#m, (2.15)

with the side remark that this explicit expression of the eigenfunction F" cubically depends on
just two vector solutions of the Lax pair. Finally, the Fourier-like representation (2.8) can be more
precisely written as

8Q(x, 1) = L da Y uim Q)™ (x, t, 1), (2.16)

jm

where the six functions 2" (1) play the role of Fourier-like transform of 5Q.

3. Interaction of long and short continuous waves

In this section, we consider reductions of the matrix Q in (2.2) which lead, via the compatibility
condition (2.4), to a system of two evolution equations able to model the LS resonant interaction.
To this purpose, the matrix Q should depend only on two wave fields: the amplitudes L(x,t),
modulating a continuous wave with a (infinitely) long wave length, and S(x, t), which modulates
the amplitude of a periodic short wave. As a consequence, one should impose the condition
that L(x, t) be real and dispersion-free, and that S(x, t) be instead complex with a non-vanishing
dispersion coefficient (which, without any loss of generality, is rescaled to unity). As we pointed
out in §1, here we introduce the new integrable model (1.5), which includes the YO and N systems
(1.2) and (1.3), respectively, by setting

Q=| as* 0 s*|. (3.1)
i?L—if «S 0

This system is integrable for any real value of & and f; it reduces to the YO equation (1.2) for « =0,
B =1and to the N equation (1.3) fora =0, f=0and L+ oL (0 ==*1).
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From this choice of the matrix Q, and from the compatibility condition (2.4), the coefficients A,
B, C of the matrix T (see (2.2)) turn out to be

(1 00 0 is 0
A= 3 0 -2 0|, B=[ieS* 0  —iS* (3.2a)
0 0 1 0 —ieS 0
and
—ix|S|? —aLS + 1Sy i|S|2
C=| —a?LS*+BS*—iaS: 2ix|S|2 —aLS*—iS* | . (3.2b)
ia?|S —a2LS + BS +iaSy  —ix|S|?

In these formulae, the parameters «, B are arbitrary but constrained to be real. These parameters
may be considered as independent constants which are responsible for the LS cross-interaction.

Here we are concerned with the linear stability of a given solution S(x, t), L(x, t) of the system
(1.5), under the assumption that this solution is bounded for all values of x. According to standard
practice, we proceed by investigating the time evolution of a small variation 5Q(x,t), namely
8S(x, t), 8L(x, t), of this solution. At the early stage of the evolution, these variations are assumed to
be sufficiently small so as to keep only their linear contributions. Thus, they satisfy the linearized
approximate equation (2.6):

i8St +8Sxy +(iLy + «’L? — BL — 4|S|?)8S + iwSSLy +(20*L — B)SSL — 20 S285* =0,

(3.3)
8L =2(S85*+5*5S)s.

Moreover, and for the sake of simplicity, we assume that the initial values 55(x, 0) and §L(x,0)
are localized and bounded functions of x. With these assumptions in mind, the solution S(x, t),
L(x, t) is linearly stable if §S(x, t), L(x,t) remain small for all later times ¢ >0 or, equivalently
because of the integral representation (2.16), if the eigenfunctions EFUm(x, t,1), see (2.15), do not
grow exponentially in time.

As testing a recipe goes by tasting the cake, we apply our approach to the simplest physically
relevant solution of the LS equation (1.5), namely the continuous wave solution

S(x,t)=ae?, Lx,H)=b, 0= gx —vt, v= qz — o?b* + Bb + 20d?, (3.4)

which introduces three independent real parameters: the two amplitudes a and b, and the
wavenumber g of the short wave. The starting point is the construction of a corresponding
fundamental solution ¥ (x, t, 1) of the Lax equations (2.1). This is given by the expression

B (x, 1) = ePWIR(x, 1) el OWO—W)  R(x, £) = diag(1,e ¥, 1}, (3.5)
where
p(h) = %xz + &b — 2aa® — Bb, (3.6)
and where the (x, t)-independent matrix W(1) is
A —ia b
W) =| —iaa q —ia | . (3.7)
o?b— B —iaa —A
Because of the trace expressions
tr(W)=g, tr(W?)=v+3p, (3.8)

the matrix solution (3.5) has unit determinant, det(¥ (x,t, 1)) = 1. To our purpose, and according
to the formalism detailed in the previous section, it is however more convenient to choose the
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alternative solution ¥ (x, t, A) whose column vectors, see (2.9), are
v =&, t,0)fP0), j=1,2,3. (3.9)
Here the three constant vectors f (1) are the eigenvectors of the matrix W() (3.7),
WFD =w;f0, j=1,2,3, (3.10)
which are generically linearly independent. Moreover, we normalize them so that
f(l) . (f(2) /\f(3)) =1, (3.11)

with the implication that det(¥ (x,t, 1)) = 1. This construction finally yields the expression of the
column vectors of ¥(x, t, 1), see (3.9), namely

Y ) = eltitPhRe(), (3.12)

with
nj =wix — wft, j=1,2,3. (3.13)
We are now in the position to obtain the expression of the eigenfunctions F(/m)(x, t, 1), which

correspond to the continuous wave solution (3.4). By inserting in (2.15) the vectors (3.12), and
by taking into account the relation

N +n2+n3=6—3pt, (3.14)
and the matrix identity (for two arbitrary vectors u, v)
e (Ru)(Ru A Rv)T =R[u(u A v)TIR™Y,  R(x,t) = diag{l,e7?,1}, (3.15)
we end up with the expression
Fim(x, 1, 1) = 0= R[Z, fOFD A VIR €1, j#m, (3.16)

where €, is the parity of the permutation {j,n,m} of {1,2,3}. This formula explicitly shows
that, apart from the A-independent phase 6, the eigenfunctions Fi"(x,t, 1) depend on x and t
only via the exponentials (nj—n,). By taking into account the expression of n;, see (3.13), these
exponentials for j # m take the familiar expression

eFbr=end) ke w1 — Wyya, wn=wl —w?, n=1,23mod3, (3.17)

where the wavenumbers k;j(1) and their corresponding frequencies w;(1) are explicitly defined as

ky=wy —ws, kp=ws—w1, ky=wy—wo,

2 2 2 2 2 2 (3.18)
W] =W, — W3, w2=W3— W], ®3=wW]— Wy,

in terms of the eigenvalues w; of the matrix W, see (3.10), or, equivalently, in terms of the roots of
the characteristic polynomial

P(w, 1) = det[ws — W()] = (w — w)(w — wa)(w — w3) = (w — g)(w* — 2> +p) +7, (3.19)
where the two parameters p and r have the expression
p=2aa* —?b® + b=v —¢*, r=a’[2a(q+ ab) — B]. (3.20)

Because of the requirement that the basic solutions (3.16) be bounded functions of x, we conclude
that the spectral representation of §L(x, t) and of §S(x, t) requires integrating with respect to the
complex spectral variable A, see (2.16), over the subset of the complex A-plane where at least one
of the wavenumbers k;(1) is real. These considerations then lead to the following.

Definition 3.1. The stability spectrum S is defined as the set of the complex values of A such
that at least one of the three wavenumber functions ki (%), ka(%), k3(%) is real.
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In this construction, we notice that the dispersion relation between the wavenumber k; and its
corresponding frequency w; is parametrically defined by the pair of functions kj(%) and w;() by
varying the parameter A only over the stability spectrum S. It follows that the continuous wave
solution (3.4) is linearly stable if w;(1) is real for those values of j such that k;(1) is real for any
A over the entire spectrum S. On the contrary, if for some j and 1 €, wj(k) is not real, then this
solution is linearly unstable. In this latter case, the relevant physical information is provided by
the computation of the gain function

() = [Im(w;(A)l, *€S, Im(ki(r)=0. (3.21)

Before proceeding to classify the stability spectra S and gain functions (3.21), it is worth
drawing the reader’s attention to the following fact. If the present approach to linear stability
is applied to continuous wave solutions of the NLS equation (1.1), then the stability spectrum
introduced above by definition 3.1 coincides with the Lax spectrum (which follows from the
Lax differential operator in the space variable x via standard definition) [19,25]. However, this
coincidence of the two spectra is a peculiar property of the 2 x 2 matrix Lax equations. In the
case of N x N Lax equations with N > 3, the two spectra, i.e. the Lax spectrum and the stability
spectrum, as defined here by (3.1) for N =3, are generically different from each other. For such
larger matrices, only the spectrum S as defined above is relevant to stability.

We begin our analysis of the stability spectra S and of the corresponding gains by observing
that the expression of the coefficients of the characteristic polynomial P(w, 1) (3.19) depends on
the wavenumber g of the short wave solution (3.4), on the parameter r given in (3.20), and on
the parameter p (see (3.20)) and the spectral variable A only via the combination R p. This
shows that it is sufficient to fix the value of the parameters g and r in the polynomial (3.19) and to
define the stability spectrum as a curve in the complex plane of the variable 1> — p. This simplifies
our task as the parameter space is reduced to the (g, r) plane. Thus, hereafter, we introduce the
alternative, and more convenient, complex variable A defined as

A=2%—p, (3.22)

with the implication that the parameter p becomes irrelevant to our characterization and
classification of spectra. In fact, by a minor abuse of notation, we refer to the characteristic
polynomial (3.19) as

P(w, A) = det[w1 — W] = (w — wy)(w — w)(w — w3) = (w — g)(w? — A) +1. (3.23)

In order to make this change of variable from A to A explicit, we denote as S4 the stability
spectrum in the complex A-plane by adopting the following definition.

Definition 3.2. The stability spectrum S4 is defined as the set of all complex values of A such
that at least one of the three wavenumber functions ki(A), kp(A), k3(A), see (3.18), is real.

It is obvious that this spectrum looks different from the spectrum S. Furthermore, we note that
the parameter g, if non-zero, can be rescaled to the value g = 1 by rescaling w by g, A by g> and r
by 4%, or, equivalently, by the change of variables

w—quw, A— @A, r—gr. (3.24)

Nevertheless, we find it convenient to keep g in our formulae, to numerically set g =1 whenever
q+#0, and to separately treat the case 4 =0.

Let us consider now the part of the spectrum S# which lies on the real axis Im A =0. In this
case, all coefficients of the characteristic polynomial P(w, A) are real, and therefore either the three
zeros w1(A), wa(A), w3(A) are real, or one is real and two are complex conjugate. In the first case,
the three wavenumbers k]- are real, while in the second case none of them is real, which leads to
the following.
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Proposition 3.3. If A is real then it belongs to the spectrum S* if and only if the w-discriminant of the
polynomial (3.23) is non-negative, namely if A, P(w, A) > 0, where

Aw P(w, A) =K K3 K3 =443 — 84> A2 + 4q(q° — 9r) A — 2777 4 4rg’. (3.25)

Thus, as shown by this expression (3.25), the large and positive real values of A do belong
to S4, while the large and negative real values of A do not. More explicitly, we approximately
solve the equation P(w, A) =0 around the point at infinity of the complex A-plane and obtain the
following asymptotic expressions of the three roots w;:

wl(A)zfA—iw(L),

2A A3/2
r 1

r 1

where the labelling index j is arbitrary. Consequently, if A is real, large and positive then also
the three wavenumbers k;(A), see (3.18), are real and large. If instead A is real and negative,
and its modulus is large enough, no real wavenumber k; exists and A does not belong to the
spectrum. If A is real, large and positive, the w-discriminant (3.25) is positive, and it remains
so while moving A along the real axis towards the origin, until it reaches its first zero, say A,
of the discriminant Ay P(w, A); see (3.25). At this zero, this discriminant generically changes its
sign and one of the three wavenumbers k;(A) vanishes. In turn, the w-discriminant (3.25) is a
cubic polynomial of the variable A with real coefficients. Therefore, it has either one or three
real A-zeros. In the former case, the discriminant A, P(w, A) is negative for all values A < Ay
and hence, according to our proposition 3.3, the real part of the spectrum S4 is the semi-axis
Ay < A < +o0. Ifinstead the discriminant A, P(w, A) has three real zeros, say Ag < A_ < Ay, then
the interval A_ < A < A4 cannot belong to the spectrum since in this interval the discriminant
AyP(w, A) is negative (see proposition 3.3). Thus, this interval is a finite gap of the spectrum.
Indeed, in this case the real part of the spectrum consists on the finite interval A9 < A < A_ where
the discriminant A, P(w, A) is positive, and the semi-axis A4 < A < +oo0. This finite gap should be
considered as a distinctive feature of the spectra in our classification. Indeed, the A-discriminant
of the discriminant Ay P(w, A), thatis A 4 Ay P(w, A), depends only on the two parameters g, r and
serves our classification purpose, as summarized by the following.

Proposition 3.4. Let A 5 AyP(w, A) be the A-discriminant of the discriminant (3.25), that is
ApAuP(w, A) =16r(8g° — 27r)°. (3.27)
The spectrum S* has one, and only one, finite gap (G) on the real axis if and only if A AyP(w, A) >0,
namely, if and only if r(8q° — 27r) > 0, and it has no gap if r(84> — 27r) < 0. The gap opening and closing

threshold values of the parameters are r =0 and r = (8/27) ¢°.

Let us now turn our attention to the complex values of A that are not on the real axis and yet
belong to the spectrum, A € S4, Im(A) # 0. To this purpose, it is far more convenient to introduce
the new polynomial

P, A)=C -k -B)¢ -1 = +n2+y+n, (3.280)

whose roots ¢j(A), j=1,2,3, are the squares of the differences of the A-dependent roots w;(A) of
the polynomial P(w, A), see (3.18),

5(4) = ka(A) = (Wj41 — wj42)*, j=1,2,3mod 3. (3.28b)
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The coefficients of the polynomial P(¢, A) (3.28a) can be computed explicitly in terms of the
coefficients of the polynomial P(w, A) (3.23) (see [21]), and read

r2=-264+7),
n=06A+3), (3.28¢)
Yo =—4A% +8¢2 A% — 4q(q° — 91 A + 277* — drg’.

The definition (3.284) shows that the w-discriminant (3.25) of the polynomial P(w, A) is simply
related to this new polynomial (3.28a) as it reads

AwP(w, A) = —P(0, A). (3.29)

This property allows one to rewrite our proposition 3.4 on gap characterization in terms of
P(0, A). The spectrum S4 itself can be redefined as the locus of the A-zeros of P(z, A) which
correspond to non-negative values of the variable ¢, say ¢ >0. Thus, to each ¢ >0 there
correspond three values of A which belong to S#. In particular, since this polynomial P(¢, A)
also takes the expression

P(5, A) = —4[A — A1(D][A — A2(D)][A — A3(2)]
= —4A% 4+ A%(9¢ 4 8¢%) — 2A(3¢% — 34%¢ + 29* — 18g7)
+ 23 = 20722 + g*c + 2777 — 4%, (3.30)
with real coefficients for real ¢, we conclude the following.
Proposition 3.5. The spectrum S* is symmetric with respect to the real axis.

Indeed, if A and A* are roots of P(¢, A) for a given non-negative ¢, then both A and A* belong
to the spectrum. Thus the spectrum S* is a symmetric piecewise smooth curve in the complex
A-plane. The transition from a triplet of real A-roots of P(¢, A) to a pair of complex conjugate
A-roots and one real A-root (or vice versa) originates from a collision of two real (or two complex
conjugate) A-roots, while changing the value of the variable ¢. This happens at a zero ¢; of the
discriminant

QER)=AAP(, ), (3.31a)

namely, if Q(¢;) =0, provided this discriminant changes its sign. This discriminant Q(¢) turns out
to be of fifth degree. However, it factorizes as

Q) =4Q1(0) Qa(2),
Q1(¢) =18q¢ +27r — 8¢%, (3.31b)
Qa(0) =3 — 822 + 89(24° — 9r)¢ + 4r(84% — 277).

After the collision where the discriminant Q(¢) changes its sign, the two A-roots scatter off the
real axis. The change of sign makes the factor Q%(;), see (3.31D), irrelevant to this analysis, so that
hereafter we focus our attention on the factor Q»(¢) only. This polynomial has generically three
simple roots

Q@)= —a)& = )¢ — &), (3.32)

which depend only on the parameters g, r, and may be either all three real, if the discriminant of
Q2(¢) is positive,
AcQa(c) = 16r(164° — 271 >0, &1 <L <23, (3.330)

or two of them are complex conjugate and one is real, if this discriminant is instead negative,
3 . .
AcQa(¢)=16r(164° —=271)" <0, Gr=p+ip, G=p—ip, Im(z)=0, (3.330)

where 1, p and ¢3 are real. Thus, our classification is mainly based on the function Q(¢) and
on its discriminant A;Q>(¢). In this context, the necessary existence condition of a gap, which
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follows from our proposition 3.4, can also be established as Q2(0) = —¢142¢3 = 41’(8q3 —27r) > 0.
In the following classification, we find it more convenient to play with the sign of gr rather than
with the sign of g and of r separately. Thus, for instance, the existence condition of a gap of the
spectrum reads (qr)[Sq4 — 27(gr)] > 0 which is never satisfied if g < 0 and it is satisfied only for
0 < gr < (8/27)q".

Consider first a spectrum S whose parameters g, r satisfy the positive discriminant inequality
(3.33a), namely (qr)[16g* — 27(qr)] > 0. In this case, for large enough values of positive ¢, namely
for £3 < ¢ < 4o00,aswell as for {1 < ¢ < ¢, the function Q2 (¢) is positive, Q2(¢) > 0, while Q2(¢) <0
for {, < ¢ < ¢3 and for —oo < ¢ < ¢1. In order to look for distinctive features of the spectrum, we
have to analyse the following four different cases separately according to the positiveness of the
three ¢-roots of Q2(¢).

(i) &1 < &2 < &3 < 0: this case (all roots are negative) is excluded by the Vieta relation ¢1 + ¢ +
r3 =8¢

(ii) ¢1 <& <0 < ¢3: the Vieta relation ¢1¢p¢3 =4r(27r — 8q3) implies (qr)[27(qr) — 8q4] >0,
while the positive discriminant condition (3.33a), ([11‘)[16q4 —27(gr)] > 0, does not allow
gr to be negative. We conclude that only the interval (8/27)q* < gr < (16/27)q* is allowed.
In this case, two A-roots collide for ¢ = ¢3 and, for 0 < ¢ < ¢3, the spectrum acquires two
complex conjugate curves in the A-plane. We refer to this complex part of the spectrum
as branch (B), since the two endpoints at { =0 of the two A-roots trajectories do not
generically coincide with each other (figure 1a). No gap is possible and we term this
spectrum type 0G 1B OL, or of B-type.

(iii) ¢1 <0 < & < ¢3: the same Vieta relation used above necessarily requires 0 < gr < (8 /27)q4,
which is also compatible with the positive discriminant condition. Two A-roots collide
for ¢ =¢3, get off the real axis and collide again for ¢ =¢ on the real A-axis thereby
forming one complex closed curve, which we term loop (L) (figure 2a). In this case, there
is no branch. However, a gap exists because its existence condition ((11*)[85]4 —27(qn)] >0,
see our proposition 3.4, is satisfied. Thus, we call this spectrum of type 1G 0B 1L, or of
LG-type.

(iv) 0 <1 <& < g3t this case is not allowed by two Vieta relations, which lead to the
inequalities 6g* —27(qr) > 0 and (g7)[27(qr) — 8q4]
condition (3.334).

> 0, and by the positive discriminant

Let us consider now those spectra S whose parameters g, r satisfy the negative discriminant
inequality (3.33b) instead, namely (q7)[16g* — 27(qr)] < 0. Again we distinguish all possible cases
according to the ¢{-roots (3.33b).

(i) £3 < 0: no spectrum exists because the Vieta relations for the polynomial Q>(¢), see (3.31b),
and the sign of the discriminant (3.33b) are never compatible with each other.
(ii) ¢3 >0, u < 0: the Vieta relations and the discriminant sign imply that the spectrum exists
if either gr < 0 or (16/27)g* < gr. This spectrum is of type 0G 1B OL.
(iii) ¢3 >0, u > 0: again, combining Vieta relations and the discriminant negative sign shows
that the spectrum exists only if gr < 0, and it is of type 0G 1B OL.

These observations above conclude our characterization and classification of spectra, which
are summarized in table 1. As stated after our definition 3.2 of the spectrum S4, see also (3.24),
the classification as in table 1 has been derived with the assumption that g # 0. For the sake of
completeness, we now remove this limitation by computing the spectrum for g =0 with r # 0 (see
below for r = 0). We first observe that in this special case the polynomial P(¢, A) reads

P, A)=—(4A — £)(A — §)* + 277, (3.34)

and therefore P(0, A) = —4A3 + 2772, According to our proposition 3.3 and to the relation (3.29),
the real part of the spectrum is the semi-axis Ag < A <400 with Ag= [(27/4)r*11/3. As for the
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Table 1. Stability spectra.

gr<0 0<gr<ig ¢t <ar
0G1B 0L 1G0B1L 0G1B 0L

complex part of the spectrum, we note that Q»(¢) = £3 — 10812, see (3.31b), and therefore the only
real zero of Qy(¢) is the positive number ¢3 = (10812)1/3. For this value of ¢, the polynomial P(¢, A)
must have a double real A-root Ap, which is found to be Ap = (1/2)¢3 = (1/2)(108r%)1/3 =21/3 A,.
As ¢ is moved from oo towards the origin, two real A-roots collide with each other at Ap for { = ¢3
to give rise to a branch, whose off real parts terminate for ¢ =0 at the complex conjugated points
Ag exp(2imr/3), Ag exp(—2in/3). Thus, for g =0, r # 0 the spectrum is of type 0G 1B OL.

A similar analysis can be carried out at any zero of discriminants of cubic polynomials, in
particular to discuss threshold phenomena. Indeed, the inequalities shown in table 1 divide
the plane (g, r) into regions with different types of spectra. At the boundaries of these regions,
the inequalities in table 1 turn into equalities which characterize thresholds. One simple and
interesting instance of such thresholds occurs at the special value r =0. In this special case, the
spectrum S* is readily found because the roots of the characteristic polynomial (3.23) P(w, A) =
(w — q)(w2 — A) are explicit. The corresponding spectrum is entirely real and we will call it of type
0G 0B OL. Indeed, the wavenumber functions kj(A) have the simple expression

ki(A)=—q— VA, k(A)=g—vA, k(A)=2VA, 0<A<+oo. (3.35)

A second threshold occurs for 27r — 84> =0, where a gap disappears. At these threshold points
of the (g,r)-plane the discriminant Q(0), see (3.31b), vanishes with the implication that the
polynomial P(0, A) = —4[A + (1/3)q2]2[/\ — (8/3)[12] has a double A-root at A = —(1/3)q2, where
a branch closes up and becomes a loop. The corresponding spectrum can be classified as 1G 0B
1L where however the gap is reduced to just one point.

Let us now turn our attention to the time variable ¢ and to the stability of the plane wave
solution (3.4). This point requires investigating whether the frequencies w1(A), w2(A), w3(A), see
(3.18), are real numbers for A € S*. Our starting point is their relation to the wavenumbers ki(A)

1 .
o) = 3Ki(2q + ki +2Kkia), j=1,2,3mod 3, (3.36)

which can be derived from their definition (3.18) by first inverting the map {wj} — {k]-}, that is (see
(3.18))

1
wj = 3(q +ki+2ki12), j=1,2,3mod 3. (3.37)

This relation (3.36) is clearly not a dispersion relation since each frequency w; is written in terms of
two wavenumbers, k; and kj 1. In order to compute the dispersion relation, we need to eliminate
the variable A among the algebraic relations P(w, A) =0, P({, A)=0 and w;=k;(g — wj). This
requires a tedious but straightforward computation aimed to factorize high degree polynomials.
This is done with the help of the additional algebraic relation R(, A) =0 with the following
specifications:

R(E, A) = (6 — 0])(E — 03)(E — 3) =& + 8267 + 51 + 8o, (3.38a)

where the coefficients 8,(A) can be explicitly computed as in [16], and have the following
expression:
8= —2(g" — 6gr — 24 A + A?),

51 = (7" — 6q7 — 207 A + A2, (3.38b)
8o =r*(—4q°r + 277 — 4q* A + 36qr A + 847 A* — 443).

This additional polynomial R(§, A), as shown in (3.384), is defined in the same way as P(¢, A) by
substituting the wavenumbers k; with the frequencies wj, and by replacing the polynomial P(w, A)
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Figure 1. B-type spectrum, ¢ =1, r = —4. (a) Spectrum S4, (b) gain function I” versus ks, (c) wavenumbers versus real
(blue) and non-real (red) values of A, (d) real frequency versus ks (see (3.41)). (Online version in colour.)

with the characteristic polynomial of the matrix W?, that is
det[w? 1 — W?] = —P(w, A)P(—w, A) = (w* — ¢*)(w?* — A + 2qr(w?* — A) — 1*. (3.39)

The upshot of this calculation is the three-branch dispersion relation H(%kj, ;) =0, where
H(k, w) is the polynomial

H(k, w) = 0° — 4gke® + K2 (4% — K)o — 47K>. (3.40)

It is worth noticing that this dispersion relation H(k, @) = 0 can be obtained by means of a standard
Fourier approach to the linearized equations. In other words, the continuous wave solution (3.4)
is so special that its stability properties can be investigated by both Fourier expansion and our
Lax pair method. However, since the Fourier expansion approach works only for this particular
solution, we have turned our focus on the integrability methods in order to explicitly apply the
mathematical formalism (see §2) in a simple context. The next, and harder, task will be to extend
the present analysis to other known solutions, such as solitary waves, say solitons, periodic and
rogue waves.

Let us now consider the linear stability of the plane wave solution (3.4) for generic values of
g and r. Our analysis has shown that the A-spectra have a real component and a complex, off
real one. The former lies on the real axis, and at each point all three wavenumbers ki(A), ka(A),
k3(A) are real. Since the corresponding frequencies w;(A), according to their expression (3.36),
are also real, the eigenfunctions (3.16) on this component of the spectrum are bounded in £, and

Q0V0LZ07 L Y 205§ 204g edsyjeuinol/ioBulysiigndiiaposiefos H



Downloaded from https://royal societypublishing.org/ on 19 August 2021

Im(A)
o
[ Tm(w)!

0.5
21 0 1 2 3
Re(A)

(©) 4 d 12
10t .
3 B 8 L J
2t g |
= 2 4l ,
17 20 ]
0 L N
0 210 -5 0 5 10

k

Re(A)

Figure 2. LG-type spectrum, ¢ =1, r = 0.1. (a) Spectrum S4, (b) gain function I” versus ks, (c) wavenumbers versus real
(blue) and non-real (red) values of A, (d) real frequency versus ks (see (3.41)). (Online version in colour.)

do not cause instabilities. On the contrary, if A is off the real axis, namely on a branch or on a
loop, which are the complex components of S#, only one of the three wavenumbers, for instance
k3(A), is real, while the other two ki (A), ko(A) are non-real. On branches and loops, while k3(A) is
real, the corresponding frequency ws(A) is necessarily complex with a non-vanishing imaginary
part. This follows from the expression (3.36). Precisely, since w3 = (1/3)k3 (29 + k3 + 2k1), the real
frequency is

1 2
Re(w3) = §k3(2q +k3) + §k3 Re(kq). (3.41)
The corresponding instability is characterized by the gain function (3.21)
2
I3(2) = [Im(ws3)| = 3 Ik Imu(k1)1, (342)

which is non-vanishing as far as A remains on the non-real component of the spectrum. We
conclude this analysis with the following.

Proposition 3.6. All stability spectra S are classified with respect to the parameters q and r #0 in
two types: the B-type (having a real part and one branch) and the LG-type (having a real part with one
finite gap, and one loop). Only for r =0 is the spectrum totally real with no complex part. The continuous
wave solution is linearly stable if and only if r =0, with w1 = k2 + 2qk1, wr = —k5 + 29ka, w3 =0, and is
unstable for all values of q and all non-vanishing values of r.
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Examples of these two types of spectra have been numerically computed, by evaluating the
A-roots of P(¢, A) in (3.34), as ¢ varies from 0 to the largest, positive, real ¢-root of Q»(¢) in
(3.31D), as detailed in appendix C of [16]. In figure 1, we show the B-type spectrum (figure 1a);
the corresponding gain function I" on the branch (figure 1b), which proves that this instability is
of baseband type, namely waves are unstable |k| = 0; the functions k]-(A), forj=1,2,3,if Aisreal,
together with the function k3(Re(A)) on the branch (figure 1c); the real frequency on the branch
as a function of k =kj3 (figure 1d). The same functions are plotted in figure 2b—d, for an LG-type
spectrum, which is shown in figure 24. In particular, figure 2b shows that in this case the instability
is of passband type, namely, waves are stable for sufficiently small values of |k|.

4. Summary and conclusion

Research on instabilities of nonlinear waves has witnessed a renewed interest in recent years,
following the study of the modulational instability of continuous wave solutions of the focusing
NLS equation. We exploited integrability to construct a method to predict whether a nonlinear
wave, described by an integrable, nonlinear system, is linearly stable against small perturbations.
Here, we displayed how this approach works in the resonant coupling of long and short waves.
As a side result, we first introduce a new model equation which combines two very well-known
integrable models, namely the YO equation (1.2) and the Newell equation (1.3), into the more
general YON equation (1.5), which features two arbitrary, real parameters, and thus it is likely to
fit a broader range of physical contexts. This outcome is similar to the one that proves that the
Korteweg-de Vries (KdV) and the modified-KdV equations are just two particular cases of the
Gardner equation [26,27].

A common feature of all these LS equations is that a long wave always arises as generated
by short waves. This process, which is guessed by observing the evolution equations (1.5)
themselves, is revealed by the first two conservation laws put =gux, n=1,2, where p; is the
density and g, is the current. The first conservation law is the long wave equation itself, with
p1=L and g; =2|52. The second conservation law turns out to have the conserved density
02 =15? — («/2)L? and the current g2 =2Im(5S%) — 2aL|S|2.

In this work, we give the 3 x 3 Lax pair associated with the new YON model and display
how this Lax pair allows us to construct the basic solutions, or eigenfunctions, of the linearized
model equations. These computations are specialized to the continuous wave (or plane-wave)
solutions (3.4) of the YON equations. In this case, the explicit construction of the eigenfunctions
of the linearized wave equations allows us to define, and compute, their associated wavenumbers
k and frequencies w. Not only are these physical quantities related to each other by an explicit or
implicit dispersion relation (3.40), as in standard Fourier analysis, but they are also parametrically
related as k = k(A), w = w(A), where the variable A lives in the complex plane. In turn, the complex
variable A is simply connected to the spectral variable A, which appears in the Lax pair. The key
point is the definition of the stability spectrum, an algebraic curve whose geometrical properties
convey relevant physical information, and which generically differs from the Lax spectrum.
Eigenfunctions, wavenumbers and frequencies are defined on the stability spectrum. In particular,
on the real A part of the spectrum the eigenfunctions are bounded functions of time (stability),
while on the non-real part of the spectrum the eigenfunctions exponentially grow with time
(instability). This strictly complex part of the spectrum brings its own information: it displays
one open branch, if the instability is of baseband type, or a closed loop, if the instability is instead
of passband type.

All the spectra are classified by their dependence on essentially one real parameter r; see (3.20).
This is a simple function of the amplitudes a and b of the short and, respectively, long waves of
the wavenumber g of the short wave, and of the self- and cross-coupling constants o and g of the
model. For a generic choice of all these parameters, only two types of spectra, and therefore of
perturbed wave behaviours, emerge from our analysis. Plots illustrate these two typical stability
spectra. Their properties show that all values of the parameters lead to instabilities, with the only
exception of the case r =0, which instead guarantees stability since the associated spectrum has
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neither a branch nor a loop. This special case corresponds to more than one choice of the physical
parameters, according to the expression (3.20) r = a%[2a (g9 + ab) — B]1 =0. Interesting cases depend
on the particular physical setting and context. For instance, if the short wave amplitude g4, as
well as the coupling constants & and $ are not vanishing, the plane wave solution is stable if the
wavenumber g is so chosen to take the value q=(8/2a) — ab. It is plain that other choices are
possible to satisfy the stability condition » =0.

The algebraic construction of the eigenfunctions of the linearized LS equation (3.3), according
to the method that we have displayed in this work, requires not only the computation of a solution
of the YON system (1.5), but also the computation of the corresponding solution ¥ (x, t, 1) of the
Lax pair associated with that solution. Generically, this task may turn out to be quite difficult;
however, it may be feasible for particular solitary wave solutions, either periodic (breathers) or
localized solitons.

Few integrable models have been systematically investigated so far by the present
method [16,21,28,29]. Subsequent research should be devoted to investigate linear stability of
solutions of other integrable wave equations of applicative relevance. In particular, this linear
stability approach needs to be formulated so as to deal with solutions which are different
from just continuous waves, whereas results obtained in the scalar cases should be extended
to multicomponent systems. Our present results are likely to be relevant to the investigation
of solutions which are homoclinic to continuous waves, such as solitons propagating on a
background, and rogue waves.
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