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ABSTRACT 

Analytical solutions are obtained for a coupled system of partial differential 

equations involving hyperbolic differential operators. Oscillatory states are 

calculated by the Hirota bilinear transformation. Algebraically localized 

modes are derived by taking a Taylor expansion. Physically these equations 

will model the dynamics of water waves, where the dependent variable 

(typically the displacement of the free surface) can exhibit a sudden deviation 

from an otherwise tranquil background. Such modes are termed ‘rogue waves’ 

and are associated with ‘extreme and rare events in physics’. Furthermore, 

elevations, depressions and ‘four-petal’ rogue waves can all be obtained by 

modifying the input parameters. 
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1. Introduction 

 Rogue waves are unexpectedly large displacements from an equilibrium 

position or an otherwise tranquil background [1, 2]. Even though such dangerous 

waves have been known to the maritime community for nearly a century, large 

scale theoretical studies in hydrodynamics began only recently [1]. With the 

observation of rogue wave modes in optical fibers as waveguides, studies of such 

large amplitude motions have been pursued across a broad spectrum of physical 

disciplines, under the general category of ‘extreme and rare events in physics’ [2]. 

 The widely used model for rogue waves is the nonlinear Schrödinger (NLS) 

equation (γ = a real parameter, * = complex conjugate), 

iΨt + Ψxx + γΨ2Ψ* = 0,                                                                                          (1) 

where the complex valued, slowly varying wave envelope Ψ evolves under the 

influence of quadratic dispersion and cubic nonlinearity (t, x being slow time and 

group velocity coordinate in fluid mechanics respectively) [3]. Rogue wave 

modes (Peregrine solitons) are analytical solutions algebraically localized in x and 

t [4]: 
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Figure 1 (Color online) Peregrine soliton [Eq. (2)] for the nonlinear 

Schrödinger equation [Eq. (1)] with γ = r = 1. 
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and are only nonsingular for γ > 0. The main displacement occurs near x = t = 0 

as an elevation above the background plane (or continuous) wave Ψ = rexp(iγr2t). 

Eq. (1) conserves the intensity
2

dx
∞

−∞
Ψ∫  for localized boundary conditions, and 

hence there will be accompanying depressions nearby (Figure 1).  

 For special coupled NLS equations (commonly known as the Manakov 

system) with two components (Ψ and Φ),  

iΨt + Ψxx + γ(ΨΨ* + ΦΦ*)Ψ = 0,     iΦt + Φxx + γ(ΨΨ* + ΦΦ*)Φ = 0, 

nonsingular algebraically localized modes can also occur for γ < 0, in sharp 

contrast with the single component case Eq. (1) [5]. The main displacement is 

then a depression below the mean level in the center of the x, t plane. The 

character of the rogue wave mode (elevation or depression) thus appears to 

depend critically on the parameters of the partial differential equations. 

 Other than the NLS systems, many other evolution equations exhibit rogue 

wave modes, e.g. the Hirota equation [6], the Kadomtsev-Petviashvili equation 

[7], the long wave-short wave resonance model [8], and systems displaying PT-

symmetry [9]. The goal of the present work is to propose still another system of 

partial differential equations (PDEs) which possesses rogue wave modes. The 

novel characters include 
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● Formulations for breathers (pulsating modes) and rogue waves are given.  

● The transition in wave profiles among ‘elevations’, ‘depressions’ and ‘four-

petal configurations’ results from variation in one single parameter in the solution 

of the PDEs, and not the PDEs themselves. Physically this parameter is the wave 

number of the carrier wave packet. In other words, for a fixed system of PDEs, 

different families of wave profiles can be observed by changing the input 

wavelength.  

For the widely studied NLS equation of one single complex valued 

component, rogue waves are possible only if dispersion and nonlinearity are of 

the same sign [1, 2]. The situation is more intriguing for two or more components. 

Similarities and differences between the proposed system and the known ones 

will be highlighted in the discussion on wave profiles (Section 4).  

● The appropriate range of this parameter can also be predicted precisely from an 

analysis of modulation instability (i.e. linear stability of the plane wave). 

  

2. A system of coupled partial differential equations  

 Consider the system 

Axx + λAyy + (uxx + λuyy)A + μA= 0,                                                                        (3a) 

uxy =   σ(AA* – C),                                                                                                (3b) 



 

 7 

where A and u are complex and real valued respectively. The parameters λ, μ, σ 

and C are real. Eqs. (3a, 3b) do indeed bear close resemblance to widely studied 

model systems in physical applications, e.g. the Davey-Stewartson equations for 

water waves in fluid mechanics [10, 11, 12], where A represents a slowly varying 

wave envelope while u typically measures the induced mean flow. The sign of λ 

in Eq. (3a), related to the hyperbolic or elliptic character of the equation, will be a 

crucial factor. In particular we shall focus later on the case of a hyperbolic 

differential operator.  

 An elegant method to find multi-soliton of special nonlinear PDEs is the 

Hirota bilinear method [13, 14]. We shall demonstrate here that this bilinear 

method is also effective in obtaining the rogue wave modes [8, 15]. A sequence 

of dependent variable transformations is implemented (ρ = a real amplitude 

parameter): 

A = ρ exp[i(αx+βy)] g/f,    u = 2 log f ,  g complex and f real.                                (4) 

The resulting bilinear equations are  

2 2 2 2( 2 α λ 2 λβ ) . 0, μ=α +λβ ,x x y yD i D D i D g f+ + + =                                                (5a) 

2 * 2. σρ ( ),x yD D f f gg f= −    C = ρ2,                                                                    (5b) 

where D is the Hirota bilinear operator [13, 14]: 
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                                   (6)   

A remark on the historical development is in order. Eqs. (5a, 5b) actually were 

first studied in a systematic investigation of complex bilinear equations exhibiting 

2-soliton solutions [16]. The investigation then was restricted to the case of zero 

boundary condition in the far field. Here the scope is extended to wave pattern 

with nonzero far field condition. Other contributions of the present work include 

● deducing the governing PDEs (Eq. 3),  

● obtaining the breathers and rogue waves, and finally,  

● performing an analysis on modulation instability, and thus correlating precisely 

with the criterion for the onset of rogue waves. 

 

3. Breathers and rogue waves 

Following earlier works in the literature [8], a family of analytical solutions 

termed breathers can typically be obtained through an expansion scheme (p, q 

complex, ζ(1), ζ(2) being arbitrary phase factors): 

g = 1 + a1 exp(px + qy + ζ(1)) + a2 exp(p*x + q*y + ζ(2))  

+ Ma1a2 exp[(p + p*)x + (q + q*)y + ζ(1) + ζ(2)],                                                   (7a) 

f = 1 + exp(px + qy + ζ(1)) + exp(p*x + q*y + ζ(2))  
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+ M exp[(p + p*)x+(q + q*)y + ζ(1) + ζ(2)] .                                                           (7b) 

Case (A) λ = –1, α = –β, σ > 0                                                                                                         

The algebra simplifies considerably in the special case, 

λ = –1, α = –β,                                                                                                        (8) 

and thus the differential operators in Eq. (3) will be hyperbolic. The parameters in 

Eq. (7) are  

α+−

α
+−=

iqp
ia

2
411 ,

α+−

α
+−=

iqp
ia

2**
412 , ( ) ( )

( ) ( )22

22

**
**

qqpp
qqppM

+−+

−−−
=  , 

and the connection between p and q, i.e. a dispersion relation, is then 

2 2

2 2

2σρ ( ) .
4α ( )

p qpq
p q
−

= −
+ −

 

For a nonsingular solution, q needs to be genuinely complex for purely imaginary 

p, implying a constraint α2 < 2σρ2.   

A popular method to derive the rogue wave is the Darboux transformation 

[17, 18], but Eqs. (4 – 7) have clearly demonstrated that the Hirota bilinear 

method is also a feasible scheme in computing breathers (and subsequently rogue 

waves) [8, 19]. This alternative is especially valuable as most integrable systems 

possess Hirota forms. To generate the rogue waves, a long wave limit (p tending 

to zero) is now taken with the provision exp(ζ(1)) = exp(ζ(2)) = –1 [8, 15, 19]. 
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 The rogue wave mode is given by 
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                   (9) 

and the constraint in the dispersion relation for complex q, i.e. 20
2

2

<
σρ

α
< , will 

ensure that Eq. (9) is nonsingular. 

Case (B) λ = –1, α = β, σ = –σ0 < 0 (or σ0 > 0) 

Historically from earlier studies in fluid mechanics [3], it is instructive to consider 

a different range for the parameters (even though mathematically the results can 

be deduced by shifting the independent variable). In this case the system becomes 

*
0

( ) μ 0,

σ ( ).

xx yy xx yy

xy

A A u u A A

u AA C

− + − + =

= − −

 

 A similar mechanism can be developed to arrive at the rogue wave solution: 
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  − −  = + + +   −   

       (10) 

provided that 2 2
00 < α 2σ ρ< and 2ρC = . 

 

4. Wave Profiles 

 The constraint concerning ‘elevations’ and ‘depressions’ must be clarified 

first. From Eq. (3b), if uy is localized in x and y, then the integral  

( )* 2ρAA dx
+∞

−∞
−∫  

vanishes, implying that any ‘elevations’ above the mean level ρ must be 

accompanied by nearby ‘depressions’. Nevertheless, a rogue wave is termed an 

‘elevation’ here if the main displacement in the center is above the mean level, 
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despite the fact that several depressions below the mean level must be present 

nearby to conserve the integral. 

For Eq. (3a, 3b) the rogue wave profiles exhibit an intriguing sequence of 

transformations upon changes in the parameters. It will first be instructive to 

review the known properties of the widely studied NLS equation. For the single 

component case, rogue waves can only occur when dispersion and nonlinearity 

are of the same sign. Only modes with an elevation in the center are possible, and 

the maximum displacement is always three times the background. For the two-

component case (two complex valued envelopes), a change in the relative 

frequency (or wave number) between the waveguides can lead to transformations 

among elevations, depressions and ‘four-petal’ configurations, where two 

elevations co-exist with two depressions [20]. Similar transitions can also be 

observed in the long wave-short wave resonance system (LWSW) [21], with one 

complex valued envelope and one real valued function. However, the derivative 

in one independent variable in such LWSW system is only of the first order. The 

major differences between the present efforts and earlier works are that the 

present system (Eqs. (3a, 3b)) involves (a) just one complex valued envelope (A), 

and (b) a second order derivative for both independent variables.  
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The dynamics of the transition can now be described more precisely. For 

the present system, elevation, depression and ‘four-petal’ types rogue wave 

modes can be found by varying the wave number only, without changing the sign 

of σ or other parameters of the PDEs Eqs. (3a, 3b). This contrast with the case of 

one component NLS system can be illustrated through a typical example say σρ2 

= 1, where the existence condition then requires the restriction 

 20 <α< .                                                                                                                           (11) 

As α decreases slightly from the upper bound, a small amplitude rogue wave will 

emerge from the plane wave background. The main displacement is below the 

plane wave background (Figure 2a) and is thus a depression type rogue wave. As 

α decreases further, the depression deepens and splits into two smaller ‘valleys’, 

forming a four-petal pattern (Figure 2b). Just before the splitting occurs, the 

intensity hits a minimum value of zero. In the optical context, this state may be 

termed a ‘black’ rogue wave due to the zero intensity of light at the center.  
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Figure (2a) (Color online) Rogue waves as given in Eq. (9) with σ = ρ = 1: 

Depression type rogue wave when α = 1.4 
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Figure (2b) (Color online) Rogue waves as given in Eq. (9) with σ = ρ = 1: 

Four-petal shaped rogue wave when α = 1. 
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Figure (2c) (Color online) Rogue waves as given in Eq. (9) with σ = ρ = 1:  

Elevation type rogue wave when α = 0.5. 
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    When α is reduced further, the two maxima (instead of the two valleys) will 

eventually merge, giving rise to a typical elevation type rogue wave (Figure 2c). 

Unlike the NLS Peregrine solitons, the maximum displacement is not always 

three times the background amplitude, but is instead just bounded above by this 

constraint. Finally as α tends to zero in Eq. (11), the solution Eq. (9) loses the 

character of a rogue wave and becomes a traveling wave (Figure 3).  

 

 

Figure 3 (Color online) Traveling wave solution as given in Eq. (9)  

with σ = ρ = 1 and α = 0. 
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5. Modulation instability 

 Modulation instability refers to the exponential growth of background 

noise in the propagation of a plane wave in a system where dispersion and 

nonlinearity interact. Detailed discussions have been given in monographs in the 

literature of hydrodynamics [22] and optics [23], and hence the presentation here 

will be brief. Starting with the plane wave  

A =  ρexp[iα(x–y)],   u = 0 

of Eq. (3), one introduces perturbations 

A =  ρexp[iα(x–y)](1 + A’),   u = u’. 

Linearization and seeking modes of the form exp[i(kx – sy)] will yield 

(s2 – k2)2(ks + 2σρ2) = 4ksα2(s – k)2 . 

Following the reasoning that the rogue waves are the long wave disturbances, we 

look for s = ξk + O(k2) as k tends to 0. Complex values of ξ (or instability) will 

arise if Eq. (11) holds, implying that the onset of modulation instability correlates 

precisely with the existence criterion of rogue wave. This result confirms again 

similar trends found in the literature for NLS equation and other systems [5, 8]. 
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6. Discussions and conclusions 

 A system of partial differential equations with localized analytical solutions 

is proposed. The recently studied mechanisms for rogue waves, e.g. the Hirota 

bilinear method and the connection with modulation instability, are demonstrated 

to be applicable. A very valuable feature for this system is that transitions among 

various classes of wave profiles, e.g. ‘elevations’, ‘depressions’ and ‘four-petal’ 

configurations, can be observed by modifying the input parameters (or physically 

the incident wave). In contrast with earlier results in the literature, such 

transformations in the present system are attained with just one complex valued 

envelope [20] and in a system with a second order derivative for both independent 

variables [21]. The Hirota method, demonstrated to be effective for discrete 

systems [24], is thus useful for rogue wave too, an entity of importance in fluids, 

optics and plasma [25, 26]. 

 Equations exhibiting similar analytic structures have been used extensively 

in modeling water waves in fluid mechanics. Several examples will be discussed: 

● A slowly varying envelope subject to long wavelength modulations in two 

mutually perpendicular, horizontal dimensions will lead to the Davey-Stewartson 

equations, where the complex valued envelope is coupled to the real valued 

induced mean flow [10]. The governing differential operator for the mean flow 
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(corresponding to the real valued u of Eqs. (3a, 3b)) may be elliptic or hyperbolic, 

depending on the properties of the fluid like depth or surface tension. The 

character of the differential equations may have significant implications in terms 

of singularity formation (or building up of large amplitude motion physically) 

[11]. Similar Davey-Stewartson type equations also arise in a two-layer fluid [12]. 

● In hydrodynamic or optical waveguide media with inhomogeneous material 

properties, variable-coefficient type nonlinear Schrödinger equations will occur 

[27, 28]. Whether such variable-coefficient equations can generate rogue waves 

will need further investigations. 

● Instead of considering waves on fluids of finite depth, dynamical systems 

which elucidate motion on shallow water (long waves), e.g. Kadomtsev 

Petviashvili and Boiti-Leon-Manna-Pempinelli equations also exhibit intriguing 

features regarding solitons [29, 30, 31]. 

Besides hydrodynamic waves [22], the subject of modulation instability has 

also been studied extensively in optical physics [23], since such instability will 

lead to growth and saturation of plane waves in temporal and spatial optical 

waveguides. All these indicators will make Eqs. (3a, 3b) a valuable system in 

future modeling studies in applied mathematics [32]. 
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