407 research outputs found

    A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms

    Full text link
    Mammography remains the most prevalent imaging tool for early breast cancer screening. The language used to describe abnormalities in mammographic reports is based on the breast Imaging Reporting and Data System (BI-RADS). Assigning a correct BI-RADS category to each examined mammogram is a strenuous and challenging task for even experts. This paper proposes a new and effective computer-aided diagnosis (CAD) system to classify mammographic masses into four assessment categories in BI-RADS. The mass regions are first enhanced by means of histogram equalization and then semiautomatically segmented based on the region growing technique. A total of 130 handcrafted BI-RADS features are then extrcated from the shape, margin, and density of each mass, together with the mass size and the patient's age, as mentioned in BI-RADS mammography. Then, a modified feature selection method based on the genetic algorithm (GA) is proposed to select the most clinically significant BI-RADS features. Finally, a back-propagation neural network (BPN) is employed for classification, and its accuracy is used as the fitness in GA. A set of 500 mammogram images from the digital database of screening mammography (DDSM) is used for evaluation. Our system achieves classification accuracy, positive predictive value, negative predictive value, and Matthews correlation coefficient of 84.5%, 84.4%, 94.8%, and 79.3%, respectively. To our best knowledge, this is the best current result for BI-RADS classification of breast masses in mammography, which makes the proposed system promising to support radiologists for deciding proper patient management based on the automatically assigned BI-RADS categories

    Review of Different Methods of Abnormal Mass Detection in Digital Mammograms

    Get PDF
    Various images from massive image databases extract inherent, implanted information or different examples explicitly found in the images. These images may help the community in initial self-screening breast cancer, and primary health care can introduce this method to the community. This study aimed to review the different methods of abnormal mass detection in digital mammograms. One of best methods for the detection of breast malignancy and discovery at a nascent stage is digital mammography. Some of the mammograms with excellent images have a high intensity of resolution that enables preparing images with high computations. The fact that medical images are so common on computers is one of the main things that helps radiologists make diagnoses. Image preprocessing highlights the portion after extraction and arrangement in computerized mammograms. Moreover, the future scope of examination for paving could be the way for a top invention in computer-aided diagnosis (CAD) for mammograms in the coming years. This also distinguished CAD that helped identify strategies for mass widely covered in the study work. However, the identification methods for structural deviation in mammograms are complicated in real-life scenarios. These methods will benefit the public health program if they can be introduced to primary health care's public health screening system. The decision should be made as to which type of technology fits the level of the primary health care system

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Detection of breast pathologies in digital mammography images by thresholding and mathematical morphology

    Get PDF
    This paper proposes an algorithm for mass and micro-calcification detection by manual thresholding and prewitt detector. This algorithm has been tested using mammography images of different densities from multiple databases of a health clinic and images taken from the internet (40 images in total). The results are very accurate, allowing better detection of breast pathologies (mass and micro-calcification). Finally, the detection of breast pathologies was performed using as input a detection algorithm specially designed for this purpose. After segmentation by manual thresholding, morphological opening, morphological dilatation and Prewitt contour detection we have a demarcation of the masses and breast micro-calcification. The results obtained show the robustness of the proposed manual thresholding method. In order to evaluate the efficiency of our pathology detector, we compared our results with those in the literature and performed a qualitative evaluation with a rate of 98.04% for the detection of breast pathologies.  A radiologist from the health clinic evaluated the results and considers them acceptable to the CAD

    Cellular Automata for Medical Image Processing

    Get PDF

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    MLO Mammogram Pectoral Masking with Ensemble of MSER and Slope Edge Detection and Extensive Pre-Processing

    Get PDF
    Breast Cancer is a fatal disease. Several people are losing their lives as a result of Breast Cancer. Mammography is the most often used Breast screening modality where we can see both mass and microcalcifications and both are the two major indicators of Breast Cancer. We can see Pectoral muscle also on MLO Mammograms. Digital Image Processing based computer aided diagnosis systems are being used widely to help the radiologist in detecting mass and microcalcifications in MLO Mammograms. However, because the intensity levels of the Pectoral muscle are similar to masses, in computer aided diagnosis system, Pectoral presence in the Mammogram has a detrimental effect on identifying mass. Therefore, in computer aided diagnosis system, Pectoral muscle masking substantially enhances lesion detection. This study suggests a novel ensemble computer aided diagnosis system strategy that combines the MSER based and SlopeEdgeDetection methods with extensive pre-processing to identify and cover Pectoral muscle from MLO Mammograms. The results demonstrate that the new procedure is straightforward and improves the precision of Pectoral region covering. Compared to the average accuracy of the state-of-the-art solutions which is 94%, the suggested technique achieves an accuracy of 99%. Performance analysis makes use of the Mini-MIAS database
    • …
    corecore